MAB241 COMPLEX VARIABLES

LAURENT SERIES

1 What is a Laurent series?

The Laurent series is a representation of a complex function $f(z)$ as a series. Unlike the Taylor series which expresses $f(z)$ as a series of terms with non-negative powers of z, a Laurent series includes terms with negative powers. A consequence of this is that a Laurent series may be used in cases where a Taylor expansion is not possible.

2 Calculating the Laurent series expansion

To calculate the Laurent series we use the standard and modified geometric series which are

$$
\frac{1}{1-z}=\left\{\begin{array}{cc}
\sum_{n=0}^{\infty} z^{n}, & |z|<1, \tag{1}\\
-\sum_{n=1}^{\infty} \frac{1}{z^{n}}, & |z|>1 .
\end{array}\right.
$$

Here $f(z)=\frac{1}{1-z}$ is analytic everywhere apart from the singularity at $z=1$. Above are the expansions for f in the regions inside and outside the circle of radius 1 , centred on $z=0$, where $|z|<1$ is the region inside the circle and $|z|>1$ is the region outside the circle.

2.1 Example

Determine the Laurent series for

$$
\begin{equation*}
f(z)=\frac{1}{(z+5)} \tag{2}
\end{equation*}
$$

that are valid in the regions

$$
\text { (i) }\{z:|z|<5\} \text {, and (ii) }\{z:|z|>5\} \text {. }
$$

Solution

The region (i) is an open disk inside a circle of radius 5 , centred on $z=0$, and the region (ii) is an open annulus outside a circle of radius 5 , centred on $z=0$. To make the series expansion easier to calculate we can manipulate our $f(z)$ into a form similar to the series expansion shown in equation (11). So

$$
f(z)=\frac{1}{5\left(1+\frac{z}{5}\right)}=\frac{1}{5\left(1-\left(-\frac{z}{5}\right)\right)} .
$$

Now using the standard and modified geometric series, equation (1), we can calculate that

$$
f(z)=\frac{1}{5\left(1-\left(-\frac{z}{5}\right)\right)}=\left\{\begin{array}{cl}
\frac{1}{5} \sum_{n=0}^{\infty}\left(-\frac{z}{5}\right)^{n}, & |z|<5 \\
-\frac{1}{5} \sum_{n=1}^{\infty} \frac{1}{\left(-\frac{z}{5}\right)^{n}}, & |z|>5
\end{array}\right.
$$

Hence, for part (i) the series expansion is

$$
f(z)=\frac{1}{5} \sum_{n=0}^{\infty}\left(-\frac{z}{5}\right)^{n}=\frac{1}{5} \sum_{n=0}^{\infty} \frac{(-1)^{n} z^{n}}{5^{n}}=\sum_{n=0}^{\infty} \frac{(-1)^{n} z^{n}}{5^{n+1}}, \quad|z|<5,
$$

which is a Taylor series. And for part (ii) the series expansion is

$$
f(z)=-\frac{1}{5} \sum_{n=1}^{\infty} \frac{1}{\left(-\frac{z}{5}\right)^{n}}=-\frac{1}{5} \sum_{n=1}^{\infty} \frac{(-1)^{n} 5^{n}}{z^{n}}=-\sum_{n=1}^{\infty} \frac{(-1)^{n} 5^{n-1}}{z^{n}}, \quad|z|>5 .
$$

2.2 Example

Determine the Laurent series for

$$
\begin{equation*}
f(z)=\frac{1}{z(z+5)} \tag{3}
\end{equation*}
$$

valid in the region $\{z:|z|<5\}$.
Solution
We know from example 2.1 that for

$$
\frac{1}{(z+5)}, \text { the series expansion is } \sum_{n=0}^{\infty} \frac{(-1)^{n} z^{n}}{5^{n+1}}, \quad|z|<5
$$

It follows from this that we can calculate the series expansion of $f(z)$ as

$$
f(z)=\frac{1}{z} \cdot \frac{1}{(z+5)}=\frac{1}{z} \sum_{n=0}^{\infty} \frac{(-1)^{n} z^{n}}{5^{n+1}}=\sum_{n=0}^{\infty} \frac{(-1)^{n} z^{n-1}}{5^{n+1}} .
$$

2.3 Example

For the following function f determine the Laurent series that is valid within the stated region R.

$$
\begin{equation*}
f(z)=\frac{1}{z(z+2)}, R=\{z: 1<|z-1|<3\} . \tag{4}
\end{equation*}
$$

Solution
The region R is an open annulus between circles of radius 1 and 3 , centred on $z=1$. We want a series expansion about $z=1$; to do this we make a substitution $w=z-1$ and look for the expansion in w where $1<$ $|w|<3$. In terms of w

$$
f(z)=\frac{1}{(w+1)(w+3)}
$$

To make the series expansion easier to calculate we can manipulate our $f(z)$ into a form similar to the series expansion shown in equation (1). To do this we will split the function using partial fractions, and then manipulate each of the fractions into a form based on equation (1), so we get

$$
f(z)=\frac{1}{2}\left(\frac{1}{w+1}-\frac{1}{w+3}\right)=\frac{1}{2}\left(\frac{1}{1-(-w)}-\frac{1}{3\left(1-\left(-\frac{w}{3}\right)\right)}\right)
$$

Using the the standard and modified geometric series, equation (1), we can calculate that

$$
\frac{1}{1-(-w)}=\left\{\begin{aligned}
\sum_{n=0}^{\infty}(-w)^{n}=\sum_{n=0}^{\infty}(-1)^{n} w^{n}, & |w|<1 \\
-\sum_{n=1}^{\infty} \frac{1}{(-w)^{n}}=-\sum_{n=1}^{\infty} \frac{(-1)^{n}}{w^{n}}, & |w|>1
\end{aligned}\right.
$$

and

$$
\frac{1}{3\left(1-\left(-\frac{w}{3}\right)\right)}=\left\{\begin{aligned}
\frac{1}{3} \sum_{n=0}^{\infty}\left(-\frac{w}{3}\right)^{n}=\frac{1}{3} \sum_{n=0}^{\infty} \frac{(-1)^{n} w^{n}}{3^{n}}=\sum_{n=0}^{\infty} \frac{(-1)^{n} w^{n}}{3^{n+1}}, & |w|<3, \\
-\frac{1}{3} \sum_{n=1}^{\infty} \frac{1}{\left(-\frac{w}{3}\right)^{n}}=-\frac{1}{3} \sum_{n=1}^{\infty} \frac{(-3)^{n}}{w^{n}}=-\sum_{n=1}^{\infty} \frac{(-1)^{n} 3^{n-1}}{w^{n}}, & |w|>3 .
\end{aligned}\right.
$$

We require the expansion in w where $1<|w|<3$, so we use the expansions for $|w|>1$ and $|w|<3$, which we can substitute back into our $f(z)$ in partial fraction form to get

$$
f(z)=\frac{1}{2}\left[-\sum_{n=1}^{\infty} \frac{(-1)^{n}}{w^{n}}-\sum_{n=0}^{\infty} \frac{(-1)^{n} w^{n}}{3^{n+1}}\right]=-\frac{1}{2}\left[\sum_{n=1}^{\infty} \frac{(-1)^{n}}{w^{n}}+\sum_{n=0}^{\infty} \frac{(-1)^{n} w^{n}}{3^{n+1}}\right]
$$

Substituting back in $w=z-1$ we get the Laurent series, valid within the region $1<|z-1|<3$,

$$
f(z)=-\frac{1}{2}\left[\sum_{n=1}^{\infty} \frac{(-1)^{n}}{(z-1)^{n}}+\sum_{n=0}^{\infty} \frac{(-1)^{n}(z-1)^{n}}{3^{n+1}}\right] .
$$

2.4 Example

Obtain the series expansion for

$$
\begin{equation*}
f(z)=\frac{1}{z^{2}+4} \tag{5}
\end{equation*}
$$

valid in the region $|z-2 \mathrm{i}|>4$.

Solution

The region here is the open region outside a circle of radius 4 , centred on $z=2 \mathrm{i}$. We want a series expansion about $z=2 \mathrm{i}$, to do this we make a substitution $w=z-2 \mathrm{i}$ and look for the expansion in w where $|w|>4$. In terms of w

$$
f(z)=\frac{1}{z^{2}+4}=\frac{1}{(z-2 \mathrm{i})(z+2 \mathrm{i})}=\frac{1}{w(w+4 \mathrm{i})} .
$$

To make the series expansion easier to calculate we can manipulate our $f(z)$ into a form similar to the series expansion shown in equation (1). To do this we will manipulate the fraction into a form based on equation (1). We get

$$
f(z)=\frac{1}{4 \mathrm{i} w\left(1-\left(\frac{-w}{4 \mathrm{i}}\right)\right)}=\frac{1}{4 \mathrm{i} w\left(1-\frac{\mathrm{i} w}{4}\right)} .
$$

Using the the standard and modified geometric series, equation (1), we can calculate that

$$
\frac{1}{4 \mathrm{i} w\left(1-\frac{\mathrm{i} w}{4}\right)}=\left\{\begin{array}{cl}
\frac{1}{4 \mathrm{i} w} \sum_{n=0}^{\infty}\left(\frac{\mathrm{i} w}{4}\right)^{n}=\sum_{n=0}^{\infty} \frac{(\mathrm{i} w)^{n-1}}{4^{n+1}}, & |w|<4, \\
-\frac{1}{4 \mathrm{i} w} \sum_{n=1}^{\infty} \frac{1}{\left(\frac{\mathrm{i} w}{4}\right)^{n}}=-\frac{1}{4 \mathrm{i} w} \sum_{n=1}^{\infty}\left(\frac{4}{\mathrm{i} w}\right)^{n}=-\sum_{n=1}^{\infty} \frac{4^{n-1}}{(\mathrm{i} w)^{n+1}}, & |w|>4 .
\end{array}\right.
$$

We require the expansion in w where $|w|>4$, so

$$
f(z)=-\sum_{n=1}^{\infty} \frac{4^{n-1}}{(\mathrm{i} w)^{n+1}}=-\sum_{n=2}^{\infty} \frac{4^{n-2}}{(\mathrm{i} w)^{n}} .
$$

Substituting back in $w=z-2 \mathrm{i}$ we get the Laurent series valid within the region $|z-2 \mathrm{i}|>4$

$$
f(z)=-\sum_{n=2}^{\infty} \frac{4^{n-2}}{(\mathrm{i}(z-2 \mathrm{i}))^{n}} .
$$

3 Key points

- First check to see if you need to make a substitution for the region you are working with, a substitution is useful if the region is not centred on $z=0$.
- Then you will need to manipulate the function into a form where you can use the series expansions shown in example (1): this may involve splitting by partial fractions first.
- Find the series expansions for each of the fractions you have in your function within the specified region, then substitute these back into your function.
- Finally, simplify the function and, if you made a substitution, change it back into the original variable.

