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MAB241 COMPLEX VARIABLES
LAURENT SERIES

1 What is a Laurent series?

The Laurent series is a representation of a complex function f(z) as a series. Unlike the Taylor series which
expresses f(z) as a series of terms with non-negative powers of z, a Laurent series includes terms with negative
powers. A consequence of this is that a Laurent series may be used in cases where a Taylor expansion is not
possible.

2 Calculating the Laurent series expansion

To calculate the Laurent series we use the standard and modified geometric series which are
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Here f(z) = liz is analytic everywhere apart from the singularity at ’ .

z = 1. Above are the expansions for f in the regions inside and outside [' V1

the circle of radius 1, centred on z = 0, where |z| < 1 is the region \ 2| < 1
inside the circle and |z| > 1 is the region outside the circle. \ /

2.1 Example
Determine the Laurent series for

f(z) = (2)

that are valid in the regions
(i) {z : |z| <5}, and (ii) {z : |z| > 5}.

Solution
The region (i) is an open disk inside a circle of radius 5, centred on z = 0,

and the region (ii) is an open annulus outside a circle of radius 5, centred on . .
z = 0. To make the series expansion easier to calculate we can manipulate _5/ \

our f(z) into a form similar to the series expansion shown in equation ([1)). *
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Now using the standard and modified geometric series, equation ([I]), we can calculate that
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Hence, for part (i) the series expansion is
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which is a Taylor series. And for part (ii) the series expansion is
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2.2 Example
Determine the Laurent series for )
z)= ——— 3
f(2) 255 (3)
valid in the region {z : |z| < 5}.
Solution
We know from example that for 2> 5
1 —1)" e .
the series expansion is —_—, z| < 5. /] N
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It follows from this that we can calculate the series expansion of f(z) as '
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2.3 Example
For the following function f determine the Laurent series that is valid within the stated region R.
f(Z)= -, R={z:1<]z~1] <3} (4)
)= —F"-7=7T =12 : z — .
2(z+2)
Solution
The region R is an open annulus between B R P I
circles of radius 1 and 3, centred on z = 1. R
We want a series expansion about z = 1; K - \\\ K PN \\\
to do this we make a substitution w = z—1 72; 0y 1 ‘: 734 71,'/ | ‘I
and look for the expansion in w where 1 < \ P ) | N |
|w] < 3. In terms of w Nl<llz=11<3 /) " 1 <||lw| <3,
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To make the series expansion easier to calculate we can manipulate our f(z) into a form similar to the
series expansion shown in equation . To do this we will split the function using partial fractions, and then
manipulate each of the fractions into a form based on equation , so we get
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Using the the standard and modified geometric series, equation (1)), we can calculate that
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We require the expansion in w where 1 < |w| < 3, so we use the expansions for |w| > 1 and |w| < 3, which
we can substitute back into our f(z) in partial fraction form to get
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Substituting back in w = z — 1 we get the Laurent series, valid within the region 1 < |z — 1| < 3,

2.4 Example
Obtain the series expansion for
1

zZ) = 5
valid in the region |z — 2i| > 4.
Solution
The region here is the open region outside a circle |2 —2i] >4
of radius 4, centred on z = 2i. We want a series e \\\ L jw| >4
expansion about z = 2i, to do this we make a :’ 2
substitution w = z—2i and look for the expansion ' ' ! )
in w where |w| > 4. In terms of w I N //
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To make the series expansion easier to calculate we can manipulate our f(z) into a form similar to the series
expansion shown in equation . To do this we will manipulate the fraction into a form based on equation

(1). We get
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Using the the standard and modified geometric series, equation , we can calculate that
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We require the expansion in w where |w| > 4, so
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Substituting back in w = z — 2i we get the Laurent series valid within the region |z — 2i| > 4
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3 Key points

e First check to see if you need to make a substitution for the region you are working with, a substitution
is useful if the region is not centred on z = 0.

e Then you will need to manipulate the function into a form where you can use the series expansions
shown in example : this may involve splitting by partial fractions first.

e Find the series expansions for each of the fractions you have in your function within the specified region,
then substitute these back into your function.

e Finally, simplify the function and, if you made a substitution, change it back into the original variable.

For more information on Laurent series refer to the lecture notes.
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