
Average Grain Size in Polycrystalline 
Ceramics 

MEL I. MENDELSON" 
Fairchild Semiconductor Research and Development Laboratory, Palo Alto, California 94304 

A model is proposed which realistically characterizes the 
grain structure of polycrystalline ceramics. The average grain 
size of a log-normal d i s t r i b u t i o n  of g r a i n  sizes with 
tetrakaidecahedral (truncated octahedral) shape is related to 
the average intercept size by a proportionality constant. This 
result can be used to determine the average grain size of a 
sintered powder c o m p a c t  c o m p o s e d  of nontextured grains 

which shows no discontinuous grain growth. 

I. Introduction 
PHYSICAL model for specifying the average grain size is A n e  c e  s s a r y for characterizing the structure-sensitive 

properties of sintered ceramic materials. Such a model is de- 
veloped by carefully analyzing the variables on which the 
grain size depends: (1) selection of a structural parametert 
(2)  structural anisotropy, (3) grain shape, and (4) grain 
size distribution. From the model, the average grain size is 
related to practical measurements which can be performed 
on the plane of polish. 

Previous methods have inadequately defined the grain size 
variables, as indicated by different values for converting the 
average intercept size to the average grain size.' The struc- 
tural parameter has not been systematically related to the 
desired physical property. Hence, the average grain size 
can range from the size of the smallest to the largest grain, 
depending on which parameter is chosen to represent the 
physical property.2 Methods for determining the average 
grain size have been based on spherical grain geometry with 
a small (almost negligible) size distribution',4 and equiaxed 
grains of undefined shape and unknown size distribution."' 
These methods are too unrealistic and vague to be used as 
microstructural models. 

At the present time a model which completely describes the 
grain structure is physically impossible. Some assumptions 
for the grain size variables must be made in order to specify 
an average grain size. These are as  follows: a structure con- 
sisting of nontextured, equiaxed grains of regular polyhedral 
shape with a particular size distribution, where only normal 
(continuous) grain growth occurs. This applies to many, 
but certainly not to all, sintered powder compacts- 

11. Development of Model 
The steps followed in this analysis are (1) selecting a 

proper structural parameter and grain geometry, (2) selecting 
a proper size distribution, and (3)  relating the average grain 
size to an average intercept size. 

At present, too little is known about the correlation of 
structure with properties to rigorously determine which pa- 
rameter s h o u l d  b e  used. N e v e r t h e l e s s ,  the Sv (grain 
boundary surface area to grain volume ratio) parameter has 
been selected. This is a good choice because: ( a )  It can 
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?The type of weighted average (e.g. number, area, and 
volume) used to relate the grain size to the physical property. 

Fig. 1. Tetrakaideca- Fig. 2. Convex grain show- 
hedral grain of edge ing the caliper dimension 
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be quantitatively determined from intercept measurements on 
the plane of polish'; (b )  it designates the three-dimensional 
structure independently of grain shape and size distribution; 
and ( c )  it describes the structural changes that occur dur- 
ing normal grain growth. A surface area per unit volume 
weighted average of the grain size may be correlated with such 
properties as  heterogeneous nucleation, creep, and inter- 
granular fracture strength. 

A r e a s o n a b l e  c h o i c e  f o r  t h e  g r a i n  s h a p e  is a 
tetrakaidecahedron (truncated octahedron). Actually a dis- 
tribution of c o m p l e x  p o l y h e d r a  e x i s t s ;  however ,  a 
tetrakaidecahedron is the space-filling polyhedron which ap- 
proaches the average, ideal shape for a polycrystalline struc- 
ture during grain growth.' This shape has previously been 
assumed.4.9 The geometry of a tetrakaidecahedron can be 
expressed by six (100) square faces and eight (111) hexag- 
onal faces, as shown in Fig. 1. The surface area and volume 
of a single grain of edge length I are 6( 1 +2V\/3)Z2 and 8V/21', 
respectively. Hence, 

(1) 
Sv = 2.3675 3 f2  

1 

The edge length in Eq. (1)  is an unsatisfactory dimension 
to be correlated with the average intercept measurement. 
Therefore, a caliper dimension D( 0 )  is defined for any random 
orientation 0 in a grain, as shown in Fig. 2. The average 
caliper dimension D is the mean perpendicular distance (aver- 
aged over all orientations) between two parallel tangent 
planes on the tetrakaidecahedron. This average caliper 
dimension will be referred to as the grain size for a single 
grain. For any convex polyhedron, Mack" derived a general 
expression for D in terms of I :  

(2) 
1 

4rr 
D = - Z I ,  (z- - (I$) 

where is the angle (less than Z-) between the faces inter- 
secting at  the ith edges of length I < .  For a tetrakaidecahedron, 
all of the I ,  lengths are equal. The (z- - a,) values are com- 
puted for 24 edges of { 100) faces intersecting { 111) faces and 
for 12 edges of { l l l }  faces intersecting (111) faces. The 
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Fig. 3. Grain size distribution curves for VC sintered at 
2200°C for 1 h and for ThOz sintered at 1800°C for 3 h 
(Ref. ll), with normalized grain size plotted on a log scale. 

total calculation using Eq. (2) gives D = 31. Substituting 
this result for 1 into Eq. (1) yields 

( 3 )  
Dz 7.1025 ( D / E ) '  
D3 I> ( D / B )  

. ~- S V  = 7.1025 --=--- 

where 6 is a normalizing constant (defined as the averagegrain 
size of the size distribution). 

A distribution of grain sizes can be more conveniently ex- 
pressed as a function of a normalized grain size, rather than 
grain size per se. For example, the size distribution function 
f ( D ) ,  when plotted versus D, widens with time during 
isothermal grain growth." However, if D is normalized with 
respect to a, then f ( D )  remains constant with time during 
normal grain  growth."^" The probability for a number of 
grains to range between D / E  and (D + d D ) / D  is f ( D )  
d ( D / B ) / . f l f ( D )  d (  D / D )  for the unnormalized frequency 
function f ( D ) .  The total surface area per unit volume for all 
the grain sizes is the ratio of the second moment to the third 
moment of the size distribution, or Eq. ( 3 )  integrated over 
the complete distribution. Hence, 

where D,, is the maximum size. 
A frequency function was assumed from the data of Oel." 

From polished cross sections of sintered powder compacts, Oel 
measured the apparent spherical diameters of the grains with 
a Zeiss particle size analyzer and determined their frequency 
within a given size range for the total distribution." He 
plotted f ( D )  as a function of D', the spherical diameter. Since 
D' differs from D by a conversion constant, c,  where D' = CD 
and D = CE Oel's data can be used when f ( D )  is plotted as 
a function of In D' or In D / D ,  as shown in Fig. 3 for VC and 
Thoz. These distributions appeared to be log-normal. The 
hypothesis test for the log-normality of an experimental size 
distribution is determined by plotting the cumulative prob- 
ability of the frequency function against the normalized grain 
size on a logarithmic scale. A straight line passing through 
the most probable grain size, i.e. D / E  = 1 at 50%, confirms 
that the distribution is log-normal. From Fig. 3 the cumula- 
tive areas under the curves were integrated with a planimeter 
for increasing D / D  values and plotted on the log-probability 
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Fig. 4. Log-probability graph where uvc and U T L O ~  are the 

standard deviations for VC and Tho,, respectively. 

graph in Fig. 4. These data above about 15% closely ap- 
proximated straight lines, passing through DYE =: 1.02 and 
1.08 for VC and Tho,, respectively, a t  50% probability. These 
results satisfactorily agreed with the conditions for log- 
normality. Log-normal size distributions have also been de- 
termined for sintered MgO" and UOz.15 The author is unaware 
of size distribution data for other sintered ceramic materials. 
Due to the paucity of data, a log-normal distribution cannot 
be assumed to be general for all materials. Nevertheless, 
the known data for specific materials seem to favor a log- 
normal size distribution. 

From the above information, a log-normal distribution, 
symmetrical about D / E  = 1, is assumed. This relation is 
obtained by substituting In D/B for D / B  in a Gaussian dis- 
tribution function. Thus, 

(5) 

where K is a constant (pm-')and In u is the standard devia- 
tion of the log-normal distribution. When Eq. (5) is substi- 
tuted into Eq. (4), 

In the above expression the ratio of the second moment to 
the third moment of the log-normal distribution has previously 
been evaluated.iaJ7 Equation ( 6 )  becomes 

SV = E5- (exp - 2.5 In%) 
D 

(7) 

for noncontiguous grains. For a polycrystalline structure SV 
depends on both the average grain size and the shape of its 
log-normal distribution. During isothermal normal grain 
growth 6 increases with annealing time, whereas In u should 
remain constant. 

111. Average Grain Size Measurement 
The average intercept size can be measured by using the 

intercept analysis of Smith and Guttman' for contiguous grains: 
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Table I. B = k z  
~ 

Grain sha e and size Proportionality 
distrigution constant. k Refs. 

Tetrakaidecahedra, log-normal 
size distribution 

Tho, (ln~=0.487) 0.981 This work 
VC ( ln~=0.367)  1.268 This work 
Single size (Ino+O) 1.776 This work, 19 

Spheres, single size 1.5 3,4,19 
Cubes, single size 2.25 19 
Equiaxed grains, unknown 1.126 5 

shape and size distribution 

shape and size distribution, 
taken on transverse planar section 

Extruded, oriented grains, unknown 1.273 6 

Here G,, is the expected number of grain boundary inter- 
sections per unit line length of a test figure (straight line, 
circle, etc.), which is randomly applied to the plane of polish. 
Since the grains in a microstructure are contiguous, each 
boundary in Eq, (7) is shared by two grains, and fiL is equal 
to one-quarter of the surface area-to-volume ratio for non- 
contiguous grains. Hence, 

(9) 

where is the average intercept length over a large number 
of grains as measured on the plane of polish. By substituting 
Eq. (7) into Eq. (9) for Sv, a direct relation is obtained be- 
tween the average grain size and average intercept length: 

._ 
D = 1.7756 (exp - 2.5 In2u)'il (10) 

When an intercept analysis is used, In u must be determined 
to convert to 0. To obtain In (I, the size distribution must be 
experimentally determined. However, if the size distribution 
is determined, Td can be directly obtained from the 
without the use of Eq.( lo ) ,  but this is laborious. A general 
value of In u can be estimated without grain size distribution 
data, and this will be subsequently discussed. 

Equation (10) holds for a log-normal distribution whose 
standard deviation is confined within certain limits. For the 
lower limit the distribution disappears as In u -+ 0, and 
D = 1.7756L. This agrees with the result previously de- 
termined for tetrakaidecahedra of a single size." An intuitive 
upper limit can be estimated at  D/z 1. At D- = the 
plane of polish intersects the most probable dimension of the 
grains in the distribution. D is related to c by a propor- 
tionality constant k, where D = a. As the size distribution 
for tetrakaidecahedra increases, the proportionality constant 
decreases from 1.776 toward unity. As an example, the pro- 
portionality constants for VC and Tho, were obtained by es- 
timating In u from Fig. 4. The standard deviation occurs at  
about 68% probability, i.e. between 16% and 84% cumulative 
probabilities. When these In u values were substituted into 
Eq. ( l o ) ,  the values of k were calculated and compared to 
those from previous methods, as shown in Table I. For 
Tho,, k = 0.981, which is near the upper limit. Any value of 
k which is much less than unity can be due to abnormal grain 
growth." As expected, k varies with grain geometry. For 
example, by considering grains of a single size, k for 
tetrakaidecahedra (1.776) is between that for spheres (1.5) and 
cubes (2.25), and it is greater than the values for the poorly 
defined 
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Fig, 5. Plots of Hillert's distribution function (solid curue 
on u scale, Ref. 12) and the log-normal distribution func- 

tion (dotted curve on log scale, Ref. 13). 

A general proportionality constant can be estimated from 
both theoretical and experimental size distribution functions. 
Hillert" has quantitatively proposed an equilibrium, fixed size 
distribution during normal grain growth. This distribution 
is similar to a log-normal distribution but is skewed to the 
right and has a maximum relative grain size at 5 2 as shown 
in Fig. 5. By assuming Hillert's distribution function, the re- 
lation between D and t was calculated in the Appendix: 

- 
D = i.57Oi (11) 

On the other hand, Felthami3 used a log-normal distribution 
function to fit experimental grain growth data having a max- 
imum grain size of 2.5& or D,/E z 2.5. If this maximum 
grain size is assumed to occur at four standard deviations from 
the mean, giving a probability of 99.994% that D ,  is the 
largest occurring grain size, 

4 In u = In (Dm,/z) = In 2.5 

and 

In u = 0.2291 
When Eq. (12) is substituted into Eq. ( lo), 

- 
D = 1.558t (13) 

This result is very close to Eq.( 11) and is slightly higher than 
that for spheres of a single size. Because the experimental 
data for normal grain growth in metals seem to favor a log- 
normal distribution with D , / 5 ~ 2 . 5 , ~ ~  Eq. (13) can be used 
as a general estimate of the proportionality constant. This 
assumes that In u has a unique value. However, In u may dif- 
fer for different materials (as shown for Thoz and VC in 
Table I)  or may be dependent on their prior processing. Since 
this is not well understood, a proportionality constant of 1.56 
can be used as an estimate until more representative values 
are obtained for various materials with specific processing 
conditions. 

IV. Conclusion 
The grain structure of polycrystalline ceramics undergoing 

normal grain growth was characterized by nontextured grains 
of tetrakaidecahedral shape having a log-normal size distribu- 
tion. Based on the physical properties being correlated with the 
Sv parameter, the relation between the average grain size and 
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the average intercept size was determined by Eq. (10). The 
proportionality constant was a function of the standard devia- 
tion of the log-normal distribution. This constant could be ex- 
perimentally determined and was estimated as  1.56. 

APPENDIX 
Equation (4) must be changed to accommodate Hillert’s 

analysis. Instead of normalizing D with respect to D,  9/86 
(the critical grain size) is used; and a new parameter 
u = 8/9(D/D) is defined as the relative grain size. Making 
these alterations to Eq. (4), 

P U ” ,  I u ’ f ( u )  . du 
8 (7.1025) . J. s, = - g~ 

J” 
where u,?, is the maximum relative grain size < 2. Hillert, 
following the procedure of Lifshitz and Slyazov,’’ calculated 
a true three-dimensional distribution: 

- 

When this relation is substituted into Eq. (Al) and numerical- 
ly integrated (on a computer using the Runge-Kutta method*’) 
between the limits of 0 and 1.90, the result is 

(‘43) 
6.2787 s,, = 7 - 

D 
Substituting this result into Eq. (9) gives the final result: 

D = 1.570z (A41 
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Steam Oxidation Kinetics and Oxygen 
- __ 

Diffusion in UOz a t  High Temperatures 
J. T. BITTEL, L. H. SJODAHL, and J. F. WHITE 
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Results of steam oxidation measurements of UO, cylinders 
from 885O to 1835OC may be expressed by the equations: 

to-volume ratios from 2.34 to 18.74 cm-’. D, varied as  the 0.65 
power of the final average excess oxygen (x in UO,,.). The 
oxidation was accompanied by considerable grain growth. A 
bulk diffusion mechanism was verified by analyses of partially 
oxidized samples using both X-ray diffraction and analytical 
chemistry; an oxygen gradient was demonstrated by each 

-52,100 f 2800 K, = 2.44 X loh exp RT mg‘/cm4+s 

for the parabolic rate of oxidation and 

-56,900 2 1800 
RT cm2/s D, = 99 exp 

for the chemical oxygen diffusion coefficient. K,  and D,, ob- 

technique. 

tained from thermobalance measurements to 150OOC and from 
pre- and post-test weights for the higher temperatures, were 
independent of sample weight from 10 to 149 g and of surface- 
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