


Physical Constants
Gas Constant R
Boltzmann's Constant A
Plank's Constant h
Electronic charge c
Velocity of light c
Permittivity of free space CQ
Rest mass of electron mc

Avogadro's Constant /VA

Gravitational Acceleration g
Faraday's Constant F
Permeability of free space //,0

8.31467J/K-mol
1.381 x 10 - 2 3 J/atom K = 8.62 x 10 -5atom K
6.625 x 1 0 - 3 4 ( J - s )
1.6x 10-19C
2.998 x 108m/s
8.85 x 1 0 - 1 2 C 2 / J - m
9.11 x 10 - 3 l(kg)
6.022 x 1023 particles/mole
9.81 m/s2

96,487 C/equivalent
4 x vr x 1 0 - 7 W b / A - m

Conversions

Length
1m =
l m =
1 m =
1m =
l m =
1 mm
1 cm =
1 m =

Mass
1 Mg
l kg =
l kg =
1 g =

1010A
109 nm
10 j.im
103 mm
102 cm

= 0.0394 in
= 0.394 in
3.28 ft

= 103 kg

= 103 g
= 2.205 lbm

2.205 x 10 - 3 lbm

1 A=
1 nm
1 m =
1 mm
1 cm
lin =
1 in =
l ft =

1 kg -
1 a =
1 lbm

1 lbm

10 - 1 0 m
= 10 - 9 m
= 10 -6 m

= 10-3 m
= 10 - 2 m
= 25.4mm
= 2.54 cm
0.3048 m

= 10 -3 Mg
10 - 3 kg
= 0.4536 kg
= 453.6g

Area
1 m2 = 104 cm2

1 mm2 = 10-2 cm"
1 m2 = 10.76ft2

1 cm2 = 0.1550 in2

Volume
1m3 = 106cm3

1 mm3 = 1 0-3 cm3

1m3 = 35.32 ft3

1cm3 =0.06 10 in3

1L= 103cm3

1 gal (US) = 3.785L

1 cm2

1cm2

I f t 2 =
1 in" =

1 cm3

1 cm3

1 ft3 =
1 in =
1 cm3

1L =

= 10 -4m2

= 102 mm2

= 0.093 m2

= 6.452 cm2

= 10 -6m3

= 103 mm3

= 0.0283 m3

= 16.39cm3

= 10-3 L
0.264 gal

Density
lkg/m3 = 10 -3g/cm3

1 Mg/m3 = 1 g/cm3

1 kg/cm3 = 0.0624 lbm/ft3

lg/cm3 = 6 2 . 4 1 b m / f t 3 I g/cm3 = 0.03611bm/in3

lg/cm3 = 103kg/m3

1 g/m3 = 1 Mg/m3

11bm/ft3 = 16.02kg/m3

11bm/ft3 = 1.602 x 10 -2g/m3

11bm/in3 = 27.7 g/cm3

Force
1 N = CV/m = J/m
1N= 105 dynes
1 N = 0.2248 lbf

l dyne= 10 - 5N
11bf = 4.448 N

Energy
U = 6.24x 1018

leV = 3.83 x 10-26cal
U = l N - m = l W - s

eV
-26

U = 0.239cal l e V = 1.602 x 10 - 1 9 J U=10 - 7 e rgs
l Btu = 252.0 cal 1 cal = 2.61 x 1010eV 1 cal = 4.184 J

1 eV/particle = 96,500 J/mole
Photon energy: E = 1.24eV at A = 1 jim Thermal energy (@300 K) kT = 0.0258 eV

Power
1 W = 3.414 Btu/h
lBtu /h = 0.293 W

l cal/s= 14.29 Btu/h
1 Btu/h = 0.070 cal/s

l k W = 1.341hp
lhp = 0.7457 kW



Heat Capacity 
1 J / k g - K  = 2.39 x 10p4cal/g.K 
1 cal/g * -C = 1 .0 Btu/lb, * F 
1 Btu/lb, * "F = 41 84 J/kg * K 

Thermal Conductivity 
1 W/m - K = 2.39 x lo-' cal/cm 9 s - K 
1 cal/cm - s .  K = 241.8 Btu/Ft he F 
1 Btu/Ft .h-  F =  1.730W/m.K 

Pressure (or stress) 
1 torr = 130Pa 
1 MPa = 0.102 kg/mm2 
1 kg/mm' = 1422 psi 
1 atin = 1.013 x 105Pa = 0.lMPa 
I atni = 760 torr 
1 psi = 6.90 x IO-'MPa 
I dyne/cm' = 0.10 pa 
1 torr = 1.316 x 10p'atin 
1 Pa = bar 

1 J/kg. K = 2.39 x Btu/lb,, * F 
1 cal/g- C = 4184J/kg-K 
I Btu/lb, * F = 1 .O cal/g * K 

1 W/m * K = 0.578 Btu/Ft - h . F 
Ica l / cm-s .K  = 418.4W/in-K 
1 B t u / F t - h -  F = 4.136 x lK'caI /cm.s .K 

1 MPa =7 145psi 
1 Pa = lOdynes/cin' 
1 Pa = 1 N/m' 
I bar = 10' Pa 
1 torr = 1 mm Hg 
1 kg/mm2 = 9.806MPa 
1 psi = 7.03 x 

1 Pa = 9.869 x IO-'atm 
1 mm Hg = 1 torr 

kg/mm2 

Unit Abbreviations 
atm = atmosphere 
A = ampere 
A = angstrom 
C = Coulomb 
' C = degrees Celsius 
cal = calorie (gram) 
cm = centimeter 
eV = electron volt 
g = gram 

hr = hour 
J =joule 
K = degrees Kelvin 
kg = kilogram 
1 = liter 
m = meter 
Mg = megagram 
min =minute 
mni = millimeter 

SI Multiple and Submultiple Prefixes 

mol = mole 
MPa = megapascal 
N =newton 
nm = nanometer 

s = second 
T = temperature 
w 1 watt 
pin = micrometer (micron) 

Pa = pascal 

Multiplier Prefix Symbol Multiplier Prefix Symbol 

1 O l X  exa E 
l o i 5  peta P 
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10 nano n 
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Preface to Second Printing

The major difference between this printing and the first is in the number of
typos and other errors. The first printing, like most first printings, had its
fair share of mistakes; some more serious than others. Needless to say
these mistakes detracted from the mission at hand. I am certain that the
vast majority of typos and other errors have been taken care of. In addition
to correcting the mistakes, some of the figures have been redrawn to render
them clearer,

Michel W. Barsoum
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It is a mystery to me why, in a field as interesting, rich, and important as
ceramics, a basic fundamental text does not exist. My decision to write this
text was made almost simultaneously with my having to teach my first
introductory graduate class in ceramics at Drexel a decade ago. Naturally,
I assigned Kingery, Bowen, and Uhlmann's Introduction to Ceramics as the
textbook for the course. A few weeks into the quarter, however, it became
apparent that KBU's book was difficult to teach from and more importantly
to learn from. Looking at it from the student's point of view it was easy to
appreciate why — few equations are derived from first principles. Simply
writing down a relationship, in my opinion, does not constitute learning;
true understanding only comes when the trail that goes back to first
principles is made clear. However, to say that this book was influenced by
KBU's book would be an understatement — the better word would be
inspired by it, and for good reason — it remains an authoritative, albeit
slightly dated, text in the field.

In writing this book I had a few guiding principles. First, nearly all
equations are derived, usually from first principles, with the emphasis
being on the physics of the problem, sometimes at the expense of mathema-
tical rigor. However, whenever that trade-off is made, which is not often, it is
clearly noted in the text. I have kept the math quite simple, nothing more
complicated than differentiation and integration. The aim in every case
was to cover enough of the fundamentals, up to a level deep enough to
allow the reader to continue his or her education by delving, without too
much difficulty, into the most recent literature. In today's fast-paced
world, it is more important than ever to understand the fundamentals.

Second, I wanted to write a book that more or less "stood alone" in the
sense that it did not assume much prior knowledge of the subject from the
reader. Basic chemistry, physics, mathematics, and an introductory course
in materials science or engineering are the only prerequisites. In that respect,
I believe this book will appeal to, and could be used as a textbook in, other

xv
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xvi Preface to First Printing

than material science and engineering departments, such as chemistry or
physics.

Pedagogically I have found that students in general understand concepts
and ideas best if they are given concrete examples rather than generalized
treatments. Thus maybe, at the expense of elegance and brevity, I have
opted for that approach. It is hoped that once the concepts are well under-
stood, for at least one system, the reader will be able to follow more advanced
and generalized treatments that can be found in many of the references that I
have included at the end of every chapter.

Successive drafts of this book have been described by some reviewers as
being arid, a criticism that I believe has some validity and that I have tried to
address. Unfortunately, it was simply impossible to cover the range of topics,
at the depth I wanted to, and be flowery and descriptive at the same time (the
book is already over 650 pages long).

Another area where I think this book falls short is in its lack of what I
would term a healthy skepticism (a la Feynman lectures, for instance).
Nature is too complicated, and ceramics in particular, to be neatly packaged
into monosize dispersed spheres and their corresponding models, for
example.

I thus sincerely hope that these two gaps will be filled in by the reader
and especially the instructor. First, a little bit of "fat" should make the
book much more appetizing — examples from the literature or the
instructor's own experience would be just what is required. Second, a dose
of skepticism concerning some of the models and their limitation is required.
Being an experimentalist, I facetiously tell my students that when theory and
experiment converge one of them is probably wrong.

This book is aimed at junior, senior, and first-year graduate students
in any materials science and engineering program. The sequence of
chapters makes it easy to select material for a one-semester course. This
might include much of the material in Chapters 1 to 8, with additional
topics from the later chapters. The book is also ideally suited to a two-
quarter sequence, and I believe there may even be enough material for a
two-semester sequence.

The book can be roughly divided into two parts. The first nine
chapters deal with bonding, structure, and the physical and chemical
properties that are influenced mostly by the type of bonding rather than
the microstructure, such as defect structure and the atomic and electronic
transport in ceramics. The coverage of the second part. Chaps. 11 to 16,
deals with properties that are more microstructure dependent, such as
fracture toughness, optical, magnetic, and dielectric properties. In between
the two parts lies Chap. 10, which deals with the science of sintering and
microstructural development. The technological aspects of processing have
been deliberately omitted for two reasons. The first is that there are a
number of good undergraduate texts that deal with the topic. Second, it is
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simply not possible to discuss that topic and do it justice in a section of a
chapter.

Chapter 8 on phase diagrams was deliberately pushed back until the
notions of defects and nonstoichiometry (Chap. 6) and atom mobility
(Chap. 7) were introduced. The chapter on glasses (Chap. 9) follows Chap.
8 since once again the notions introduced in Chaps. 6, 7, and 8 had to be
developed in order to explain crystallization.

And while this is clearly not a ceramics handbook, I have included many
important properties of binary and ternary ceramics collected over 10 years
from numerous sources. In most chapters I also include, in addition to a
number of well-tested problem sets with their numerical answers, worked
examples to help the student through some of the trickier concepts. Whenever
a property or phenomenon is introduced, a section clearly labeled experimen-
tal details has been included. It has been my experience that many students
lacked a knowledge of how certain physical properties or phenomena are
measured experimentally, which needless to say makes it rather fruitless to
even try to attempt to explain them. These sections are not intended, by any
stretch of the imagination, to be laboratory guides or procedures.

Finally, it should also be pointed out that Chaps. 2, 5, and 8 are by no
means intended to be comprehensive — but are rather included for the sake
of completion, and to highlight aspects that are referred to later in the book
as well as to refresh the reader's memory. It is simply impossible to cover
inorganic chemistry, thermodynamics, and phase equilibria in three chapters.
It is in these chapters that a certain amount of prior knowledge by the reader
is assumed.

I would like to thank Dr. Joachim Maier for hosting me, and the
Max-Planck Institute fur Festkorperforchung in Stuttgart for its financial
support during my sabbatical year, when considerable progress was made
on the text. The critical readings of some of the chapters by C. Schwandt,
H. Naefe, N. Nicoloso, and G. Schaefer is also gratefully acknowledged. I
would especially like to thank Dr. Rowland M. Cannon for helping me
sort out, with the right spirit I may add, Chaps. 10 through 12 — his insight,
as usual, was invaluable.

I would also like to thank my colleagues in the Department of Materials
Engineering and Drexel University for their continual support during
the many years it took to finish this work. I am especially indebted to
Profs. Roger Doherty and Antonious Zavaliangos with whom I had many
fruitful and illuminating discussions. Finally I would like to take this
opportunity to thank all those who have, over the many years I was a
student, first at the American University in Cairo, Egypt, followed by the
ones at the University of Missouri-Rolla and, last but not least, MIT,
taught and inspired me. One has only to leaf through the book to appreciate
the influence Profs. H. Anderson, R. Coble, D. Kingery, N. Kreidl, H. Tuller,
D. Uhlmann, B. Wuench, and many others had on this book.
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Comments, criticisms, suggestions, and corrections, from all readers,
especially students, for whom this book was written, are most welcome.
Please send them to me at the Department of Materials Engineering.
Drexel University, Philadelphia, PA 19104, or by e-mail at Barsoumw
@ drexel.edu.

Finally, I would like to thank my friends and family, who have been a
continuous source of encouragement and support.

Michel W. Barsoum



Chapter 1

Introduction

All that is, at all
Lasts ever, past recall,
Earth changes,
But thy soul and God stand sure,
Time's wheel runs back or stops:
Potter and clay endure.

Robert Browning

1.1 Introduction

The universe is made up of elements that in turn consist of neutrons, protons,
and electrons. There are roughly 100 elements, each possessing a unique
electronic configuration determined by its atomic number Z, and the spatial
distribution and energies of their electrons. What determines the latter
requires some understanding of quantum mechanics and is discussed in
greater detail in the next chapter.

One of the major triumphs of quantum theory was a rational explana-
tion of the periodic table (see inside front cover) of the elements that had
been determined from experimental observation long before the advent of
quantum mechanics. The periodic table places the elements in horizontal
rows of increasing atomic number and vertical columns or groups, so that
all elements in a group display similar chemical properties. For instance,
all the elements of group VII B, referred to as halides, exist as diatomic
gases characterized by a very high reactivity. Conversely, the elements of
group VIII, the noble gases, are monoatomic and are chemically extremely
inert.

A large majority of the elements are solids at room temperature, and
because they are shiny, ductile, and good electrical and thermal conductors,
they are considered metals. A fraction of the elements — most notably, N, O,
H, the halides, and the noble gases — are gases at room temperature. The
remaining elements are covalently bonded solids that, at room temperature,
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2 Fundamentals of Ceramics

are either insulators (B, P, S, C1) or semiconductors (Si, Ge). These elements.
for reasons that will become apparent very shortly, will be referred to as
nonmetallic elemental solids (NMESs).

Very few elements are used in their pure form; most often they are
alloyed with other elements to form engineering materials. The latter can
be broadly classified as metals, polymers, semiconductors, or ceramics,
with each class having distinctive properties that reflect the differences in
the nature of their bonding.

In metals, the bonding is predominantly metallic, where delocalized
electrons provide the "glue" that holds the positive ion cores together.
This delocalization of the bonding electrons has far-reaching ramifications
since it is responsible for properties most associated with metals: ductility,
thermal and electrical conductivity, reflectivity, and other distinctive
properties.

Polymers consist of very long, for the most part, C-based chains to
which other organic atoms (for example; C, H, N, Cl, F) and molecules
are attached. The bonding within the chains is strong, directional, and cova-
lent, while the bonding between chains is relatively weak. Thus, the proper-
ties of polymers as a class are dictated by the weaker bonds, and
consequently they possess lower melting points, higher thermal expansion
coefficients, and lower stiffnesses than most metals or ceramics.

Semiconductors are covalently bonded solids that, in addition to Si and
Ge already mentioned, include GaAs, CdTe, and InP, among others. The
usually strong covalent bonds holding semiconductors together make their
mechanical properties quite similar to those of ceramics (i.e.: brittle and
hard).

Now that these distinctions have been made, it is possible to answer the
non-trivial question: What is a ceramic?

1.2 Definition of Ceramics

Ceramics can be defined as solid compounds that are formed by the application
of heat, and sometimes heat and pressure, comprising at least two elements
provided one of them is a non-metal or a nonmetallic elemental solid. The
other element(s) may be a metal(s) or another nonmetallic elemental
solid(s). A somewhat simpler definition was given by Kingery who defined
ceramics as, "the art and science of making and using solid articles, which
have, as their essential component, and are composed in large part of.
inorganic nonmetallic materials". In other words, what is neither a metal,
a semiconductor or a polymer is a ceramic.

1 In the form of diamond. It is worth noting that although graphite is a good electrical conduc-
tor, it is not a metal since it is neither shiny nor ductile.



Introduction 3

To illustrate, consider the following examples: Magnesia,2 or MgO, is a
ceramic since it is a solid compound of a metal bonded to the nonmetal O2.
Silica is also a ceramic since it combines an NMES and a nonmetal. Simi-
larly, TiC and ZrB2 are ceramics since they combine metals (Ti,Zr) and the
NMES (C,B)- SiC is a ceramic because it combines two NMESs. Also note
ceramics are not limited to binary compounds: BaTiO3, YBa2Cu3O3, and
Ti3SiC2 are all perfectly respectable class members.

It follows that the oxides, nitrides, borides, carbides, and silicides (not to
be confused with silicates) of all metals and NMESs are ceramics; which,
needless to say, leads to a vast number of compounds. This number becomes
even more daunting when it is appreciated that the silicates are also, by
definition, ceramics. Because of the abundance of oxygen and silicon in
nature, silicates are ubiquitous; rocks, dust, clay, mud, mountains, sand —
in short, the vast majority of the earth's crust — are composed of silicate-
based minerals. When it is also appreciated that even cement, bricks, and
concrete are essentially silicates, the case could be made that we live in a
ceramic world.

In addition to their ubiquitousness, silicates were singled out above for
another reason, namely, as the distinguishing chemistry between traditional
and modern ceramics. Before that distinction is made clear, however, it is
important to explore how atoms are arranged in three dimensions.

1.2.1 Crystalline Versus Amorphous Solids

The arrangement of atoms in solids, in general, and ceramics, in particular,
will exhibit long-range order, only short-range order, or a combination of
both.3 Solids that exhibit long-range order4 are referred to as crystalline
solids, while those in which that periodicity is lacking are known as amor-
phous, glassy, or noncrystalline solids.

The difference between the two is best illustrated schematically, as
shown in Fig. 1.1. From the figure it is obvious that a solid possesses long-
range order when the atoms repeat with a periodicity that is much greater

A note on nomenclature: The addition of the letter a to the end of an element name implies that
one is referring to the oxide of that element. For example, while silicon refers to the element,
silica is SiO2 or the oxide of silicon. Similarly, alumina is the oxide of aluminum or A12O3;
magnesium; magnesia; etc.
Strictly speaking, only solids in which grain boundaries are absent, i.e., single crystals, can be
considered to possess only long-range order. As discussed below, the vast majority of crystal-
line solids possess grain boundaries that are areas in which the long-range order breaks down,
and thus should be considered as a combination of amorphous and crystalline areas. However,
given that in most cases the volume fraction of the grain boundary regions is much less than
0.01, it is customary to describe polycrystalline materials as possessing only long-range order.
Any solid that exhibits long-range order must also exhibit short-range order, but not vice
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(a) (b)

Figure 1.1 (a) Long-range order; (b) short-range order.

than the bond lengths. Most metals and ceramics, with the exception of
glasses and glass-ceramics (see Chap. 9), are crystalline.

Since, as discussed throughout this book, the details of the lattice
patterns strongly influence the macroscopic properties of ceramics, it is
imperative to understand the rudiments of crystallography.

1.3 Elementary Crystallography

As noted above, long-range order requires that atoms be arrayed in a three-
dimensional pattern that repeats. The simplest way to describe a pattern is to
describe a unit cell within that pattern. A unit cell is defined as the smallest
region in space that, when repeated, completely describes the three-
dimensional pattern of the atoms of a crystal. Geometrically, it can be
shown that there are only seven unit cell shapes, or crystal systems, that
can be stacked together to fill three-dimensional space. The seven systems,
shown in Fig. 1.2, are cubic, tetragonal, orthorhombic, rhombohedral, hexa-
gonal, monoclinic, and triclinic. The various systems are distinguished from
one another by the lengths of the unit cell edges and the angles between the
edges, collectively known as the lattice parameters or lattice constants (a, b, c,
a, 0, and 7 in Fig. 1.2).

It is useful to think of the crystal systems as the shape of the "bricks"
that make up a solid. For example, the bricks can be cubes, hexagons,
parallelepipeds, etc. And while the shape of the bricks is a very important
descriptor of a crystal structure, it is insufficient. In addition to the shape
of the brick, it is important to know the symmetry of the lattice pattern
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within each brick as well as the actual location of the atoms on these lattice
sites. Only then would the description be complete.

It turns out that if one considers only the symmetry within each unit cell,
the number of possible permutations is limited to 14. The 14 arrangements,
shown in Fig. 1.2, are also known as the Bravais lattices. A lattice can be

Figure 1.2 Geometric characteristics of the 7 crystal systems and 14 Bravais lattices.
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defined as an indefinitely extending arrangement of points, each of which is
surrounded by an identical grouping of neighboring points. To carry the
brick analogy a little further, the Bravais lattice represents the symmetry of
the pattern found on the bricks

Finally, to describe the atomic arrangement, one must describe the
symmetry of the basis, defined as the atom or grouping of atoms located at
each lattice site. When the basis is added to the lattices, the total number
of possibilities increases to 32 point groups.5

1.4 Ceramic Microstructures

Crystalline solids exist as either single crystals or polycrystalline solids. A
single crystal is a solid in which the periodic and repeated arrangement of
atoms is perfect and extends throughout the entirety of the specimen without
interruption. A polycrystalline solid, Fig. 1.3, is comprised of a collection of
many single crystals, termed grains, separated from one another by areas of
disorder known as grain boundaries (see Chap. 6 for more details).

Typically, in ceramics the grains are in the range of 1 to 50 |im and are
visible only under a microscope. The shape and size of the grains, together
with the presence of porosity, second phases, etc., and their distribution
describe what is termed the microstructure. As discussed in later chapters,
many of the properties of ceramics are microstructure-dependent.

Figure 1.3 (a) Schematic of a polycrystalline sample. A polycrystal is made up of many
grains separated from one another by regions of disorder known as grain boundaries.
(b) typical microstructure as seen through an optical microscope.

5 For more information, see. e.g.. A. Kelly and G. W. Groves. Crystallography and Crystal
Defects. Longmans. London. 1970.
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1.5 Traditional Versus Advanced Ceramics

Most people associate the word ceramics with pottery, sculpture, sanitary
ware, tiles, etc. And whereas this view is not incorrect, it is incomplete
because it considers only the traditional, or silicate-based, ceramics. Today
the field of ceramic science or engineering encompasses much more than
silicates and can be divided into traditional and modern ceramics. Before
the distinction is made, however, it is worthwhile to trace the history of
ceramics and people's association with them.

It has long been appreciated by our ancestors that some muds, when
wet, were easily moldable into shapes that upon heating became rigid. The
formation of useful articles from fired mud must constitute one of the
oldest and more fascinating of human endeavors. Fired-clay articles have
been traced to the dawn of civilization. The usefulness of these new materials,
however, was limited by the fact that when fired, they were porous and thus
could not be used to carry liquids. Later the serendipitous discovery was
made that when heated and slowly cooled, some sands tended to form a
transparent, water-impervious solid, known today as glass. From that
point on, it was simply a matter of time before glazes were developed that
rendered clay objects not only watertight, but also quite beautiful.

With the advent of the industrial revolution, structural clay products,
such as bricks and heat-resistant refractory materials for the large-scale
smelting of metals were developed. And with the discovery of electricity
and the need to distribute it, a market was developed for electrically insulat-
ing silicate-based ceramics.

Traditional ceramics are characterized by mostly silicate-based porous
microstructures that are quite coarse, nonuniform, and multiphase. They
are typically formed by mixing clays and feldspars, followed by forming
either by slip casting or on a potter's wheel, firing in a flame kiln to sinter
them, and finally glazing.

In a much later stage of development, other ceramics that were not clay-
or silicate-based depended on much more sophisticated raw materials, such
as binary oxides, carbides, perovskites, and even completely synthetic
materials for which there are no natural equivalents. The microstructures
of these modern ceramics were at least an order of magnitude finer and
more homogeneous and much less porous than those of their traditional
counterparts. It is the latter — the modern or technical ceramics — with
which this book is mainly concerned.

1.6 General Characteristics of Ceramics

As a class, ceramics are hard, wear-resistant, brittle, prone to thermal shock,
refractory, electrically and thermally insulative, intrinsically transparent.
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nonmagnetic, chemically stable, and oxidation-resistant. As with all
generalizations, there will be exceptions; some ceramics are electrically and
thermally quite conductive, while others are even superconducting. An
entire industry is based on the fact that some ceramics are magnetic.

One of the main purposes of this book is to answer the question of
why ceramics exhibit the properties they do. And while this goal will have
to wait until later chapters, at this point it is worthwhile to list some of the
applications for which ceramics have been or are being developed.

1.7 Applications

Traditional ceramics are quite common, from sanitary ware to fine chinas
and porcelains to glass products. Currently ceramics are being considered
for uses that a few decades ago were inconceivable; applications ranging
from ceramic engines to optical communications, electrooptic applications
to laser materials, and substrates in electronic circuits to electrodes in
photoelectrochemical devices. Some of the recent applications for which
ceramics are used and/or are prime candidates are listed in Table 1.1.

Historically, ceramics were mostly exploited for their electrical insula-
tive properties, for which electrical porcelains and aluminas are prime
examples. Today, so-called electrical and electronic ceramics play a pivotal
role in any modern technological society. For example, their insulative
properties together with their low-loss factors and excellent thermal and
environmental stability make them the materials of choice for substrate
materials in electronic packages. The development of the perovskite
family with exceedingly large dielectric constants holds a significant
market share of capacitors produced. Similarly, the development of
magnetic ceramics based on the spinel ferrites is today a mature technology.
Other electronic/electrical properties of ceramics that are being commer-
cially exploited include piezoelectric ceramics for sensors and actuators,
nonlinear I-V characteristics for circuit protection, and ionically conduct-
ing ceramics for use as solid electrolytes in high-temperature fuel cells
and as chemical sensors.

These applications do not even include superconducting ceramics,
currently being developed for myriad applications.

Mechanical applications of ceramics at room temperature usually
exploit hardness, wear, and corrosion resistance. The applications include
cutting tools, nozzles, valves, and ball bearings in aggressive environments.
However, it is the refractoriness of ceramics and their ability to sustain
high loads at high temperatures, together with their low densities, that has
created the most interest. Applications in this area include all ceramic engines
for transportation and turbines for energy production. In principle, the
advantages of an all-ceramic engine are several and include lower weight.
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Table 1.1. Properties and applications of advanced ceramics.

Property

Thermal
Insulation

Refractoriness

Thermal conductivity

Electrical and dielectric
Conductivity
Ferroelectricity
Low-voltage insulators
Insulators in electronic

applications
Insulators in hostile

environments
Ion-conducting
Semiconducting
Nonlinear I-V

characteristics
Gas-sensitive conduct

Magnetic and superconductive
Hard magnets
Soft magnets

Superconductivity

Optical
Transparency

Translucency and
chemical inertness

Nonlinearity
IR transparency

Nuclear applications
Fission

Fusion

Chemical
Catalysis
Anticorrosion

Biocompatibility

Mechanical
Hardness
High-temperature strength

retention
Wear resistance

Applications (examples)

High-temperature furnace linings for insulation (oxide
fibers such as SiO2, A12O3, and ZrO2)
High-temperature furnace linings for insulation and
containment of molten metals and slags
Heat sinks for electronic packages (A1N)

Heating elements for furnaces (SiC, ZrO2, MoSi2)
Capacitors (Ba-titanate-based materials)
Ceramic insulation (porcelain, steatite, forsterite)
Substrates for electronic packaging and electrical
insulators in general (Al2O3, A1N)
Spark plugs (Al2O3)

Sensor and fuel cells (ZrO2, A12O3, etc.)
Thermistors and heating elements (oxides of Fe, Co, Mn)
Current surge protectors (Bi-doped ZnO, SiC)

Gas sensors (SnO2, ZnO)

Ferrite magnets [(Ba, Sr)O6Fe2O3]
Transformer cores [(Zn, M)Fe2O3, with M = Mn, Co,
Mg]; magnetic tapes (rare-earth garnets)
Wires and SQUID magnetometers (YBa2Cu3O7)

Windows (soda-lime glasses), cables for optical
communication (ultra-pure silica)
Heat- and corrosion-resistant materials, usually for Na
lamps Al2O3MgO)
Switching devices for optical computing (LiNbO3)
Infrared laser windows (CaF2, SrF2, NaCl)

Nuclear fuel (UO2, UC), fuel cladding (C, SiC), neutron
moderators (C, BeO)
Tritium breeder materials (zirconates and silicates of Li,
Li2O); fusion reactor lining (C, SiC, Si3N4)

Filters (zeolites); purification of exhaust gases
Heat exchangers (SiC), chemical equipment in corrosive
environments
Artificial joint prostheses (Al2O3)

Cutting tools (SiC whisker-reinforced A12O3, Si3N4)
Stators and turbine blades, ceramic engines (Si3N4)

Bearings (Si3N4)
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higher operating temperatures which translates to higher efficiencies, and less
pollution. It is also envisioned that such engines would not require cooling
and maybe not even any lubrication, which once more would simplify the
design of the engine, reducing the number of moving parts and lowering
the overall weight of the vehicle.

1.8 The Future

Paradoxically, because interest in modern ceramics came later than interest
in metals and polymers, ceramics are simultaneously our oldest and newest
solids. Consequently, working in the field of ceramics, while sometimes
frustrating, can ultimately be quite rewarding and exciting. There are a
multitude of compounds that have never been synthesized, let alone
characterized. Amazing discoveries are always around the corner, as the
following two examples illustrate.

In 1986, the highest temperature at which any material became super-
conducting, i.e., the ability to conduct electricity with virtually no loss, was
around — 250 °C, or 23 K. In that year a breakthrough came when Bednorz
and Muller,6 shattered the record by demonstrating that a layered lantha-
num, strontium copper oxide became superconducting at the relatively
balmy temperature of 46 K. This discovery provoked a worldwide interest
in the subject, and a few months later the record was again almost doubled,
to about 90 K. The record today is in excess of 120 K.

Toward the end of 1995, we identified a new class of solids best described
as machinable, thermodynamically stable polycrystalline nanolaminates 8

(Fig. 1.4a). These solids are ternary layered hexagonal carbides and nitrides
with the general formula, Mn+1 AXn, where n — 1 to 3, M is an early transi-
tion metal, A is an A-group element (mostly IIIA and IVA) and X is C and or
N. To date we identified more than 50 of these compounds.

Thermally, elastically, chemically and electrically they share many of the
advantageous attributes of their respective stoichiometric binary transition
metal carbides or nitrides: they are electrically and thermally conductive,
chemically stable. Mechanically they cannot be more different, however:
they are most readily machinable (Fig. 1.4b) and relatively soft. It is the
ability of the basal planes to readily delaminate from each other, instead
of fracturing, that renders them unique and why they have been labeled
nanolaminates (Fig. 1.4a).

T. G. Bednorz and K. A. Muller, Z. Phys. B, 64, 189 (1986).
M. W. Barsoum, Progress in Solid State Chemistry, 28, 201–281 (2000).
M. W. Barsoum and T. El-Raghy, American Scientist. 89. 336-345 (2001).
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Figure 1.4 (a) Example of delaminations possible in Ti3SiC2. (b) Despite being quite stiff
and lightweight, Ti3SiC2 is still readily machinable.

Furthermore, some of these compounds (e.g. Ti3SiC2) combine many of
the best attributes of metals and ceramics. Like metals, they are excellent electri-
cal and thermal conductors, are not susceptible to thermal shock, and behave
plastically at higher temperatures. Like ceramics, they are have high specific
stiffnesses (Ti3SiC2 is roughly three times as stiff as Ti metal, with the same
density) and yet as noted above are machinable with nothing more sophisticated
than a manual hack-saw. They also have good creep and fatigue properties.

Traditional ceramics have served humanity well for at least the past
10 millennia. However, the nature of modern technology, with its ever-
mounting demands on materials, has prompted researchers to take a
second look at these stone-age materials, and it now appears that our
oldest material is shaping up to be a material of the future. It is my sincerest
hope that this book will inspire a new generation of talented and dedicated
researchers to embark on a voyage of discovery in this most exciting of fields.

Problems

1.1. (a) According to the definition of a ceramic given in the text, would
you consider Si3N4 a ceramic? How about CC14, SiCl4, or SiF4?
Explain.

(b) Would you consider TiAl3 a ceramic? How about A13C4, BN, CN,
or SiB6? Explain.

1.2. (a) How many crystal systems would you expect in two dimensions?
Draw them and characterize them by their lattice parameters.

Answer: 4

How many Bravais lattices are there in two dimensions?

Answer: 5
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All things are Atoms: Earth and Water, Air and Fire, all
Democritus foretold. Swiss Paracelsus, in alchemic lair
Saw sulfur, salt and mercury unfold Amid Millennial
hopes of faking Gold. Lavoisier dethroned
Phlogiston; then molecules analysis made bold
Forays into the gases: Hydrogen
Stood naked in the dazzled sight of Learned Men.

John Updike; The Dance of the Solids^

2.1 Introduction

The properties of any solid and the way its atoms are arranged are
determined primarily by the nature and directionality of the interatomic
bonds holding the solid together. Consequently, to understand variations
in properties, it is imperative to appreciate how and why a solid is "glued"
together.

This glue can be strong, which gives rise to primary bonds, which can be
ionic, covalent, or metallic. Usually van der Waals and hydrogen bonds are
referred to as secondary bonds and are weaker. In all cases, however, it is the
attractive electrostatic interaction between the positive charges of the nuclei
and the negative charges of the electrons that is responsible for the cohesion
of solids.

Very broadly speaking, ceramics can be classified as being either
ionically or covalently bonded and, for the sake of simplicity, this notion is
maintained throughout this chapter. However, that this simple view needs
some modification will become apparent in Chap. 4; bonding in ceramics
is neither purely covalent nor purely ionic, but a mixture of both.

Before the intricacies of bonding are described, a brief review of
the shape of atomic orbitals is presented in Sec. 2.2. The concept of

f J. Updike, Midpoint and other Poems, A. Knopf, Inc., New York, New York, 1969. Reprinted
with permission.
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Chapter 2

Bonding in Ceramics
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electronegativity and how it determines the nature of bonding in a ceramic is
introduced in Sec. 2.3. In Sees. 2.4 and 2.5, respectively; the ionic bond is
treated by a simple electrostatic model, and how such bonds lead to the
formation of ionic solids is discussed.

The more complex covalent bond, which occurs by the overlap of elec-
tronic wave functions, is discussed in Sees. 2.6 and 2.7. In Sec. 2.8, how the
interaction of wave functions of more than one atom results in the formation
of energy bands in crystalline solids is elucidated.

It is important to point out, at the outset, that much of this chapter is
only intended to be a review of what the reader is assumed to be familiar
with from basic chemistry. Most of the material in this chapter is covered
in college-level chemistry textbooks.

2.2 Structure of Atoms

Before bonding between atoms is discussed; it is essential to appreciate
the energetics and shapes of single atoms. Furthermore, since bonding
involves electrons which obey the laws of quantum mechanics, it is
worthwhile to review the major conclusions, as they apply to bonding, of
quantum theory.

1. The confinement of a particle results in the quantization of its energy
levels. Said otherwise, whenever a particle is attracted to or confined
in space to a certain region, its energy levels are necessarily quantized.
As discussed shortly, this follows directly from Schrodinger's wave
equation.

2. A given quantum level cannot accept more than two electrons, which is
Pauli's exclusion principle.

3. It is impossible to simultaneously know with certainty both the
momentum and the position of a moving particle, which is the
Heisenberg uncertainty principle.

The first conclusion explains the shape of the orbitals; the second why
higher energy orbitals are stable and populated; and the third elucidates,
among other things, why an electron does not spiral continually and fall
into the nucleus.

In principle, the procedure for determining the shape of an atomic or
molecular orbital is quite simple and involves solving Schrodinger's equation
with the appropriate boundary conditions, from which one obtains the all-
important wave function of the electron, which leads in turn to the
probability of finding the electron in a given volume. To illustrate, consider
the simplest possible case, that of the hydrogen atom, which consists of a
proton and an electron.
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2.2.1 The Hydrogen Atom

Schrodinger's time-independent equation in one dimension is given by:

~ ^ ? ' T T V-^tol •'-'pot)V ^ (^-- * )

where me is the mass of the electron, 9.1 1 x 10 -31 kg; h is Planck's constant,
6.625 x 10-34J - s, and Etot is the total (kinetic + potential) energy of the
electron. The potential energy of the electron Epot is nothing but the
coulombic attraction between the electron and the proton,9 given by:

2 2ZiZif? €p —~

where z1 and z2 are the charges on the electron and nucleus, —1 and +1,
respectively; e is the elementary electronic charge 1.6 x 10-19C; £0 is the

10 9
permittivity of free space, 8.85 x 10-12 C2(J « m); and r is the distance
between the electron and the nucleus.

Now ^ is the wave function of the electron and by itself has no physical
meaning, but \ i j j ( x , y , z ; t ) | 2 dx dy dz gives the probability of finding an
electron at any time t in a volume element dx dy dz. The higher t/?2 is in
some volume in space, the more likely the electron is to be found there.

For the simplest possible case of the hydrogen atom, the orbital is
spherically symmetric; and so it is easier to work in spherical coordinates.
Thus instead of Eq. (2.1), the differential equation to solve is

f)r I ' I "I0t ' * -- ' r " (^••'J

where Epot was replaced by the value given in Eq. (2.2). The solution of this
equation yields the functional dependence of ip on r, and it can be easily
shown that (see Prob. 2.1)

^ - exp(-t0r) (2.4)

satisfies Eq. (2.3), provided the energy of the electron is given by

p
-"tr\t

For the hydrogen atom z1 and z2 are both unity. In general, however, the attraction between
an electron and a nucleus has to reflect the total charge on the nucleus, i.e., the atomic number
of the element involved.
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( a )

Figure 2.1 (a) Radial distribution function of 1s state electron. The crosshatched strip has
a volume 4ardr2 which, when multiplied by |ii>|2, gives the probability of finding the
electron between r and r + dr. The probability of finding the electron very near or very
far from the nucleus approaches zero. The most probable position for the electron is at
a distance rB = 1/c0. (b) Radial distribution function for an electron in the 2s level.
Energy of this electron is one-fourth that of the 1s state.

and

c0h2
(2.6)

As mentioned above, tp by itself has no physical significance, but W is the
probability of finding an electron in a given volume element. It follows
that the probability distribution function W of finding the electron in a
thin spherical shell between r and r + dr is obtained by multiplying |t/.|2 by
the volume of that shell (see hatched area in Fig. 2. 1a), or

W = 4?rr2M2 dr (2.7)

In other words, the y axis is simply a measure of the probability of finding the
electron at any distance r. Figure 2.1a indicates that the probabilities of find-
ing an electron at the nucleus or very far from the nucleus are negligible, but
that somewhere in between that probability is at a maximum. This distance is
known as the Bohr radius rB (see Fig. 2. 1a). The importance of this result lies
in appreciating that (1) while the electron spends most of its time at a distance
rB, its spatial extent is clearly not limited to that value and (2) the best one can
hope for when discussing the location of an electron is to talk about the
probability of finding it in some volume. It is worth noting here that by
combining Eqs. (2.4) to (2.7) and finding the location of the maximum, it
can be easily shown that rB = 1/r0.
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WORKED EXAMPLE 2.1

Calculate the ground state energy level of the electron in the hydrogen atom, and
compare the result with the experimentally derived value of — 13.6eV.

Answer10

Using Eq. (2.5) gives

me4 (9.1 x 10 -31)(1.6 x 10 -19)4

8.85 x 10-12)2(6.63 x 10 - 3 4)2 (2.8)

= -2.165 x 10-18J = -13.6eV

This value is the lowest energy level of a hydrogen electron, a fact which was
experimentally known well before the advent of quantum mechanics. This
result was one of the first and greatest successes of quantum theory. It is
important to note that the energy of the electron is a negative number, which
means that the electron energy in the vicinity of the proton is lower than at an
infinite distance away (which corresponds to zero energy).11

Equation (2.4) is but one of many possible solutions. For example, it can

also be shown that

(2.9)

is another perfectly legitimate solution to Eq. (2.3), provided that Eq. (2.5) is

divided by 4. The corresponding radial distribution function is plotted in

Fig. 2.1b. It follows that the energy of this electron is —13.6/4 and it will

spend most of its time at a distance given by the second maximum.
To generalize, for a spherically symmetric wave function, the solution

(given here without proof) is

In all problems and throughout this book, SI units are used almost exclusively.
An interesting question had troubled physicists as they were developing the theories of quan-
tum mechanics: what prevented the electron from continually losing energy, spiraling into the
nucleus, and releasing an infinite amount of energy? Originally the classical explanation was
that the angular momentum of the electron gives rise to the apparent repulsion — this
explanation is invalid in this case, however, because s electrons have no angular momentum
(see Chap. 15). The actual reason is related to the Heisenberg uncertainty principle and goes
something like this: if an electron is confined to a smaller and smaller volume, the uncertainty
in its position A x decreases. But since A .x A p = h is a constant, it follows that its momentum
p, or, equivalently, its kinetic energy, will have to increase as A x decreases. Given that the
kinetic energy scales with r-2 but the potential energy scales only as r-1, an energy minimum
has to be established at a given equilibrium distance.
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where Ln is a polynomial. The corresponding energies are given by

-me4 _ 13.6eV

where n is known as the principal quantum number. As n increases, the energy
of the electron increases (i.e., becomes less negative) and its spatial extent
increases.

2.2.2 Orbital Shape and Quantum Numbers

Equations (2.4) and (2.9) were restricted to spherical symmetry. An even
more generalized solution is

where Yl depends on 0 and TT. Consequently, the size and shape of the orbital
will depend on the specific solution considered. It can be shown that each
orbital will have associated with it three characteristic interrelated quantum
numbers, labeled n, l, and ml, known as the principal, angular, and magnetic
quantum numbers, respectively.

The principal quantum number n determines the spatial extent and energy
of the orbital. The angular momentum quantum number12 /, however, deter-
mines the shape of the orbital for any given value of n and can only
assume the values 0, 1, 2, 3, . . . n — 1. For example, for n = 3. the possible
values of l are 0, 1, and 2.

The magnetic quantum number m1 is related to the orientation of the
orbital in space. For a given value of l, ml can take on values from —l to
+/. For example, for / = 2, ml can be —2, — 1, 0, +1. or +2. Thus for any
value of / there are 2l + 1 values of ml. All orbitals with / = 0 are called s
orbitals and are spherically symmetric (Fig. 2.1). When / = 1, the orbital is
called a.p orbital, and there are three of these (Fig. 2.2a), each corresponding
to a different value of ml associated with / = 1, that is, ml = -1.0. + 1. These
three orbitals are labeled px, Py and p. because their lobes of maximum
probability lie along the x, y, and z axes, respectively. It is worth noting
that although each of the three p orbitals is nonspherically symmetric,
their sum gives a spherically symmetric distribution of v~.

When / = 2, there are five possible values of ml; and the d orbitals.
shown schematically in Fig. 2.2b, result. Table 2.1 summarizes orbital
notation up to n = 3. The physical significance of / and ml and their
relationships to the angular momenta of atoms are discussed in greater
detail in Chap. 15.

12 Sometimes / is referred to as the orbital-shape quantum number.
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(a)

(b)

Figure 2.2 (a) Shape of p orbitals (top three) and (b) d orbitals (lower five).

Table 2.1 Summary of orbitals and their notation

/ Orbital name No. of m1 orbitals Full designation of orbitals

2s
~>n

3s
1 3/7
2 3d

l.v

?v
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One final note: The conclusions arrived at so far tend to indicate that all
sublevels with the same n have exactly the same energy, when in reality they
have slightly different energies. Also a fourth quantum number, the spin
quantum number ms, which denotes the direction of electron spin, was not
mentioned. Both of these omissions are a direct result of ignoring relativistic
effects which, when taken into account, are fully accounted for.

2.2.3 Polyelectronic Atoms and the Periodic Table

Up to now the discussion has been limited to the simplest possible case,
namely, that of the hydrogen atom — the only case for which an exact
solution to the Schrodinger equation exists. The solution for a polyelectronic
atom is similar to that of the hydrogen atom except that the former
are inexact and are much more difficult to obtain. Fortunately, the basic
shapes of the orbitals do not change, the concept of quantum numbers
remains useful, and, with some modifications, the hydrogen-like orbitals
can account for the electronic structure of atoms having many electrons.

The major modification involves the energy of the electrons. As the
nuclear charge or atomic number Z increases, the potential energy of the elec-
tron has to decrease accordingly, since a large positive nuclear charge now
attracts the electron more strongly. This can be accounted for, as a first and
quite crude approximation, by assuming that the electrons are noninteracting.
in which case it can be shown that the energy of an electron is given by

tr

The actual situation is more complicated, however, due to electron-
electron repulsions and electron screening — with both effects contributing
to an increase in En. Conceptually this is taken into account by introducing
the effective nuclear charge Zeff which takes into account the notion that the
actual nuclear charge experienced by an electron is always less than or equal
to the actual charge on the nucleus. This can be easily grasped by comparing
the actual first ionization energy (IE) of helium (He), that is; -24.59eV (see
Table 2.2), for which Z = 2 and n = 1 , to what one would expect had there
been no electron -electron interaction, or 22 x (— 13.6)/12, or -54.4eV. This
brief example illustrates the dramatic effect of electron-electron interactions
on the ionization energy of He and the importance of the concept of effective
charge. Note that the measured second ionization energy for He listed in
Table 2.2 is exactly -54.4 eV!

As the number of electrons increases, they are forced by virtue of Pauli's
exclusion principle to occupy higher and higher energy levels, i.e., higher
n values. This in turn leads to the aufbau principle, the periodic table
(see inside front cover), and a unique electronic configuration for each
element as summarized in Table 2.2.
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Table 2.2 Electronic configuration and first and second ionization energies of the
elements

z

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Atom

H
He
Li
Be
B
C
N
O
F
Ne
Na
Mg
Al
Si
P
S
Cl
Ar
K
Ca
Sc
Ti
V
Cr
Mn
Fe
Co
Ni
Cu
Zn
Ga
Ge
As
Se
Br
Kr
Rb
Sr
Y
Zr
Nb
Mo

Orbital electronic configuration

Is1

lS2

(He)2s1

(He)2s2

(He)2s22p
(He)2s22p2

(He)2s22p3

(He)2s22p4

(He)2s22p5

(He)2s22p6

(Ne)3s1

(Ne)3s2

(Ne)3s23p1

(Ne)3s23p2

(Ne)3s23p3

(Ne)3s23p4

(Ne)3s23p5

(Ne)3s23p6

(Ar)4s1

(Ar)4s2

(Ar)4s23d1

(Ar)4s23d2

(Ar)4s23d3

(Ar)4s l3d5

(Ar)4s23d5

(Ar)4s23d6

(Ar)4s23d7

(Ar)4s23d8

(Ar)4s13d10

(Ar)4s23d10

(Ar)4s23d104p1

(Ar)4s23d104p2

(Ar)4s23d104p3

(Ar)4s23d104p
(Ar)4s23d104p5

(Ar)4s23d104p6

(Kr)5s1

(Kr)5s2

(Kr)5s24dl

(Kr)5s24d2

(Kr)5s l4d4

(Kr)5s14d5

First IE, eV

13.598
24.587

5.392
9.322
8.298

11.260
14.534
13.618
17.422
21.564

5.139
7.646
5.986
8.151

10.486
10.360
12.967
15.759
4.340
6.113
6.540
6.820
6.740
6.766
7.435
7.870
7.860
7.635
7.726
9.394
5.999
7.899
9.810
9.752

11.814
13.999
4.177
5.695
6.380
6.840
6.880
7.099

Second IE, eV

54.416
75.638
18.211
25.154
24.383
29.601
35.116
34.970
40.962
47.286
15.035
18.828
16.345
19.725
23.330
23.810
27.630
31.625
11.871
12.800
13.580
14.650
16.500
15.640
16.180
17.060
18.168
20.292
17.964
20.510
15.934
18.633
21.190
21.800
24.359
27.280
11.030
12.240
13.130
14.320
16.150
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Table 2.2 Continued

z

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83

Atom

Tc
Ru
Rh
Pd
Ag
Cd
In
Sn
Sb
Te
I
Xe
Cs
Ba
La
Ce
Pr
Nd
Pm
Sm
Eu
Gd
Tb
Dy
Ho
Er
Tm
Yb
Lu
Hf
Ta
W
Re
Os
Ir
Pt
Au
Hg
Tl
Pb
Bi

Orbital electronic configuration

(Kr)5s24d5

(Kr)5s14d7

(Kr)5s14d8

(Kr)4d10

(Kr)5s14d10

(Kr)5s24d10

(Kr)5s24d105p l

(Kr)5s24d105p2

(Kr)5s24d105p3

(Kr)5s24dl05p4

(Kr)5s24d105p5

(Kr)5s24d105p6

(Xe)6s1

(Xe)6s2

(Xe)6s25dl

(Xe)6s24 f l5d l

(Xe)6s24f3

(Xe)6s24f4

(Xe)6s24f5

(Xe)6s24f6

(Xe)6s24f7

(Xe)6s24f75d l

(Xe)6s24f9

(Xe)6s24f10

(Xe)6s24f11

(Xe)6s24f12

(Xe)6s24f13

(Xe)6s24f14

(Xe)6s24f145d1

(Xe)6s24f145d2

(Xe)6s24f145d3

(Xe)6s24f145d4

(Xe)6s24f145d5

(Xe)6s24f l45d6

(Xe)6s24f145d7

(Xe)6sl4f145d9

(Xe)6s14f145dl0

(Xe)6s24f145d10

(Xe)6s24f145d106p1

(Xe)6s24f145d106p2

(Xe)6s24f145d106p3

First IE. eV

7.280
7.370
7.460
8.340
7.576
8.993
5.786
7.344
8.641
9.009

10.451
12.130
3.894
5.212
5.577
5.470
5.420
5.490
5.550
5.630
5.670
5.426
5.850
5.930
6.020
6.100
6.180
6.254
5.426
7.000
7.890
7.980
7.880
8.700
9.100
9.000
9.225

10.437
6.108
7.416
7.289

Second IE. eV

15.260
16.760
18.080
19.430
21.490
16.908
18.869
14.632
16.530
18.600
19.131
21.210
25.100
10.004
11.060
10.850
10.560
10.720
10.900
11.070
11.250
13.900
11.520
11.670
11.800
11.930
12.050
12.170
13.900
14.900
—
—
—
—
—
—
—
18.756
20.428
15.032
16.600

Source: Adapted from J. Huheey. Inorganic Chemistry. 2d ed., Harper & Row. New York. 1978.
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WORKED EXAMPLE 2.2

(a) What are the electronic configurations of He, Li, and F? (b) Identify the first
transition metal series. What feature do these elements have in common?

Answer

(a) Helium (Z = 2) has two electrons, which can be accommodated in the 1s
state as long as their spins are opposite. Hence the configuration is 1s2. Since
this is a closed shell configuration, He is a very inert gas. Lithium (Z = 3) has
three electrons; two are accommodated in the 1s shell, and the third has to
occupy a higher energy state, namely, n = 2 and l = 0, giving rise to the
electronic configuration of Li: 1s22s1. Similarly, the nine electrons of fluorine
are distributed as follows: 1s22s22p5.
(b) The first series transition metals are Sc, Ti, V, Cr, Mn, Fe, Co, and Ni. They
all have partially filled d orbitals. Note that Cu and Zn, which have completely
filled d orbitals, are sometimes also considered to be transition metals, although
strictly speaking, they would not be since their d orbitals are filled (see
Table 2.2).

2.3 Ionic Versus Covalent Bonding

In the introduction to this chapter, it was stated that ceramics, very broadly
speaking, can be considered to be either ionically or covalently bonded.
The next logical question that this chapter attempts to address is. What
determines the nature of the bond?

Ionic compounds generally form between very active metallic elements
and active nonmetals. For reasons that will become clear shortly, the require-
ments for an AB ionic bond to form are that A be able to lose electrons easily
and B be able to accept electrons without too much energy input. This
restricts ionic bonding to mostly metals from groups IA, IIA, and part of
IIIA as well as some of the transition metals and the most active nonmetals
of groups VIIA and VIA (see the periodic table).

For covalent bonding to occur, however, ionic bonding must be unfavor-
able. This is tantamount to saying that the energies of the bonding electrons of
A and B must be comparable because if the electron energy on one of the
atoms is much lower than that on the other then electron transfer from one
to the other would occur and ionic bonds would tend to form instead.

These qualitative requirements for the formation of each type of
bonding, while shedding some light on the problem, do not have much
predictive capability as to the nature of the bond that will form. In an
attempt to semiquantify the answer, Pauling 13 established a scale of relative

13 L. Pauling, The Nature of the Chemical Bond, 3rd ed., Cornell University Press, Ithaca, NY,
1960.
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Table 2.3 Relative electronegativity scale of the elements

Element

1. H
2. He
3. Li
4. Be
5. B
6. C
7. N
8. O
9. F

10. Ne
11. Na (
12. Mg
13. Al
14. Si
15. P
16. S
17. Cl
18. Ar
19. K (
20. Ca
21. Sc
22. Ti(II)
23. V(II)
24. Cr(II)
25. Mn(II)
26. Fe(II)

Fe(III)
27. Co(II)
28. Ni(II)
29. Cu(I)

Cu(II) 2
30. Zn(II)
31. Ga(III)
32. Ge(IV) 2
33. As(III) :
34. Se 2
35. Br 1
36. Kr 2
37. Rb C
38. Sr C
39. Y 1
40. Zr(II) 1
41. Nb 1

Electronegativity

2.20

0.98
1.57
2.04
2.55
3.04
3.44
3.98

3.93
1.31
1.61
1.90
2.19
2.58
5.16

).82
.00
.36
.54
.63
.66
.55
.83
.96
.88
.91
.90
.00
.65
.81

2.01
2.18
2.55
.96
.90

0.82
.95
.22
.33
.60

Element Electronegativity

42. Mo(II) 2.16
Mo(III) 2.19

43. Tc 1.90
44. Ru 2.20
45. Rh 2.28
46. Pd 2.20
47. Ag 1.93
48. Cd 1.69
49. In 1.78
50. Sn(II) 1.80

Sn(IV) 1.96
51. Sb 2.05
52. Te 2.10
53. I 2.66
54. Xe 2.60
55. Cs 0.79
56. Ba 0.89
57. La .10
58. Ce .12
59. Pr .13
60. Nd .14
62. Sm .17
64. Gd .20
66. Dy .22
67. Ho .23
68. Er .24
69. Tm .25
71. Lu .27
72. Hf .30
73. Ta .50
74. W 2.36
75. Re 1.90
76. Os 2.20
77. Ir 2.20
78. Pt 2.28
79. Au 2.54
80. Hg 2.00
81. T1(I) 1.62
82. Pb(II) 1.87
83. Bi 2.02
90. Th 1.30
92. U 1.70
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electronegativity or "electron greed" of atoms and defined electronegativity
to be the power of an atom to attract electrons to itself. Pauling's electronega-
tivity scale is listed in Table 2.3 and was obtained by arbitrarily fixing the
value of H at 2.2. With this scale it becomes relatively simple to predict the
nature of a bond. If two elements forming a bond have similar electronega-
tivities, they will tend to share the electrons between them and will form cova-
lent bonds but if the electronegativity difference Ax between them is large
(indicating that one element is much greedier than the other), the electron
will be attracted to the more electronegative element, forming ions which
in turn attract each other. Needless to say, the transition between ionic
and covalent bonding is far from sharp and, except for homopolar bonds
that are purely covalent, all bonds will have both an ionic and a covalent
character (see Prob. 2.15). However, as a very rough guide, a bond is consid-
ered predominantly ionic when Ax > 1.7 and predominantly covalent if
AJC< 1.7.

Each type of bond and how it leads to the formation of a solid will be
discussed now separately, starting with the simpler, namely, the ionic bond.

2.4 Ionic Bonding

Ionically bonded solids are made up of charged particles — positively
charged ions, called cations, and negatively charged ions, called anions.
Their mutual attraction holds the solid together. As discussed at greater
length throughout this book, ionic compounds tend to have high melting
and boiling points because the bonds are usually quite strong and omnidir-
ectional. Ionic compounds are also hard and brittle and are poor electrical
and thermal conductors.

To illustrate the energetics of ionic bonding consider the bond formed
between Na and Cl. The electronic configuration of Cl (atomic number
Z= 17) is [1s22s22p6]3s23p5,while that of Na (Z = 11) is [1s22s22p6]3s1.
When an Na and a Cl atom are brought into close proximity, a bond will
form (the reason will become evident in a moment) by the transfer of an elec-
tron from the Na atom to the Cl atom, as shown schematically in Fig. 2.3.
The Na atom configuration becomes [1s22s22p6] and is now +1 positively
charged. The Cl atom, however, gains an electron, acquires a net negative
charge with an electronic structure [1s22s22p6]3s23p6, and is now an anion.
Note that after this transfer of charge, the configuration of each of the
ions corresponds to those of the noble gases, Ne and Ar, respectively.

The work done to bring the ions from infinity to a distance r apart is
once again given by Coulomb's law [Eq. (2.2)]:

— Z]Z2C ( 7 ] ] }
( j
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i « 4
VJflX

• *

Na atom Cl atom Na+ ion Cl ion

Figure 2.3 (a) Transfer of an electron from Na atom to Cl atom results in the formation
of (b) a cation and an anion. Note that the cation is smaller than the atom and vice versa
for the anion.

In this case, z\ and z2 are the net charges on the ions (+1 and — 1 for NaCl, —2
and +3 for A12O3, etc.). When z1 and z2 are of opposite signs, Epot is negative,
which is consistent with the fact that energy is released as the ions are brought
together from infinity. A plot of Eq. (2.11) is shown in Fig. 2.4a (lower
curve), from which it is clear that when the ions are infinitely separated,
the interaction energy vanishes, as one would expect. Equation (2.11) also
predicts that as the distance between the ions goes to zero, the ions should
fuse together and release an infinite amount of energy! That this does not
happen is obvious; NaCl does, and incidentally we also, exist.

It follows that for a stable lattice to result, a repulsive force must come
into play at short distances. As discussed above, the attraction occurs from
the net charges on the ions. These ions, however, are themselves made up
of positive and negative entities, namely, the nuclei of each ion, but more
importantly, the electron cloud surrounding each nucleus. As the ions
approach each other, these like charges repel and prevent the ions from
coming any closer.

The repulsive energy term is positive by definition and is usually given by
the empirical expression

Erep = 4 (2 '1 2>/

where B and n are empirical constants that depend on the material in
question. Sometimes referred to as the Born exponent, n usually lies between
6 and 12. Equation (2.12) is also plotted in Fig. 2Aa (top curve), from which
it is clear that the repulsive component dominates at small r. but decreases
very rapidly as r increases.

The net energy Enet of the system is the sum of the attractive and
repulsive terms, or

_ z\z->e~ B ,_ . _
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When Enet is plotted as a function of r (middle curve in Fig. 2Aa), it
goes through a minimum, at a distance denoted by r0. The minimum in the
curve corresponding to the equilibrium situation can be found readily from

z1z2e2 nBdEn

dr
0 = - (2.14)

Repulsive
Energy

Net
Energy

Attractive
Energy

Attractive
Force

Repulsive
Force

\
\

r0 equilibrium interatomic spacing

i.

Figure 2.4 (a) Energy versus distance curves for an ionic bond. The net energy is the sum
of attractive and repulsive energies, which gives rise to an energy well. (b) Corresponding
force versus distance curve. This curve is the derivative of the net energy curve shown in (a).
Note that when the energy is at a minimum, the net force is zero.
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By evaluating the constant B and removing it from Eq. (2.13), it can be easily
shown that (see Prob. 2.3) the depth of the energy well Ebond is given by

^bond (2.15)

where r0 is the equilibrium separation between the ions. The occurrence of
this minimum is of paramount importance since it defines a bond; i.e..
when two ions are brought closer together from infinity, they will attract
each up to an equilibrium distance r0 and liberate an amount of energy
given by Eq. (2.15). Conversely, Ebond can be thought of as the energy
required to pull the ions apart.

It is important to note that Eq. (2.14) is also an expression for the net
force between the ions, since by definition

(2.16)

Fnet is plotted in Fig. 2.46. For distances greater than r0 the net force on the
ions is attractive; and for distances less than r0; the net force is repulsive. At r0

the net force on the ions is zero [Eq. (2. 14)] which is why r0 is the equilibrium
interatomic spacing. Figure 2Aa and b illustrates a fundamental law of
nature, namely, that at equilibrium the energy is minimized and the net
force on a system is zero.

2.5 lonically Bonded Solids

The next logical question is, how do such bonds lead to the formation of
a solid? After all, an ionic solid is made up of roughly 1023 of these
bonds. The other related question of importance has to do with the
energy of the lattice. This energy is related to the stability of a given ionic struc-
ture and directly or indirectly determines such critical properties as melting
temperatures, thermal expansion, stiffness, and others, discussed in Chap. 4.
This section addresses how the lattice energy is calculated and experimentally
verified, starting with the simple electrostatic model that led to Eq. (2.15).

2.5.1 Lattice Energy Calculations

First, a structure or packing of the ions has to be assumed; and the various
interactions between the ions have to be taken into account. Begin with
NaCl, which has one of the simplest ionic structures known (Fig. 2.5a).

14 This topic is discussed in greater detail in the next chapter and depends on the size of the ions
involved, the nature of the bonding, etc.
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Figure 2.5 (a) Schematic of the NaCl structure. (b) The first 6 nearest neighbors are
attracted to the central cation, (c) the second 12 nearest neighbors at a distance \/2'"o
are repelled, (d) the third 8 nearest neighbors are attracted, etc.

wherein each Na ion is surrounded by 6 Cl ions and vice versa. The central
cation is attracted to 6 Cl anions at distance r0 (Fig. 2.5b), repelled by
12Na+ cations at distance \/2r0 (Fig. 2.5c), attracted to 8 Cl~ anions at
\/3ro (Fig. 2.5d), etc. Summing up the electrostatic interactions,15 one
obtains

, _ 4-

4^01-0 V «Al v/2 v/3

(2.17)

The second term in parentheses is an alternating series that converges to
some value a, known as the Madelung constant. Evaluation of this constant,

15 Strictly speaking, this is not exact, since in Eq. (2.17) the repulsive component of the ions that
were not nearest neighbors was neglected. If that interaction is taken into account, an exact
expression for Esumis given by

F - - 2sum "

where (3 is another infinite series. It is important to note that such a refinement does not in any
way alter the final result, namely, Eq. (2.18).
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Table 2.4 Madelung constants for some common ceramic crystal structures (see Chap. 3)

Structure Coordination number o f «,.„_. *

NaCl
CsCl
Zinc blende
Wurtzite
Fluorite
Rutile
Corundum

6:6
8:8
4:4
4:4
8:4
6:3
6:4

1.7475
1.7626
1.6381
1.6410
2.5190
2.4080§
4.1719$

1.7475
1.7626
1.6381
1.6410
5.0387
4.1860$

25.03 12§

f Does not include charges on ions; i.e., assumes structure is made of isocharged ions that factor
out.
The problem of structures with more than one charge, such as AKOj. can be addressed by
making use of the relationship

E =a (^±]rP-l

where Z± is the highest common factor of :\ and ri, i.e.. 1 for NaCl, CaF2. and Al2O3. 2 for
MgO, TiO2, ReO3, etc.

§ Exact value depends on c a ratio.

though straightforward, is tedious because the series converges quite slowly.
The Madelung constants for a number of ceramic crystal structures are listed
in Table 2.4.

The total electrostatic attraction for 1 mole of NaCl in which there are
twice Avogadro's number NAv of ions but only NAv bonds is

,

According to this equation, sometimes referred to as the Born-Lande
equation, the information required to calculate Elatt is the crystal structure,
which determines a, the equilibrium interionic spacing, both easily obtain-
able from X-ray diffraction, and n which is obtainable from compressibility
data. Note that the lattice energy is not greatly affected by small errors in n.

In deriving Eq. (2.18), a few terms were ignored. A more exact
expression for the lattice energy is

A_ B_ /£ D\ 9
laU ~ rQ '0 Vo rl) 4 7"maX

The first two terms, which have been discussed in detail up to this point,
dominate. Note the term z1z2e

2/47r£0 in Eq. (2.13) is a constant replaced
by A in Eq. (2.19). The term in parentheses represents dipole—dipole and
dipole—quadrapole interactions between the ions. The last term represents
the zero-point correction, with vmax being the highest frequency of the lattice
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vibration mode. Finally in this section it is worth noting that this ionic model
is a poor approximation for crystals containing large anions and small
cations where the covalent contribution to the bonding becomes significant
(see Chap. 3).

WORKED EXAMPLE 2.3

Calculate the lattice energy of NaCl given that n = 8.

Answer

To calculate the lattice energy, r0, n, and the structure of NaCl all are needed.
The structure of NaCl is the rock salt structure and hence its Madelung constant
is 1.748 (Table 2.4).
The equilibrium interionic distance is simply the sum of the radii of the Na+ and
Cl~ ions. The values are listed at the end of Chap. 3 in Appendix 3A. Looking up
the values the equilibrium interionic distance, r0 = 167 + 116 = 283pm.

F - - . . 1
£|att = - 4^(8.85 x 10-")(283 x 10-") ~ V ~ *

2.5.2 Born-Haber Cycle

So far, a rather simple model has been introduced in which it was assumed
that an ionic solid is made up of ions attracted to each other by coulombic
attractions. How can such a model be tested? The simplest thing to do
would be to compare the results of the model, say Elatt, to experimental
data. This is easier said than done, however, given that Elatt is the energy
released when 1 mol of cations and anions condenses into a solid — an experi-
ment that, needless to say, is not easy to perform.

An alternate method is to make use of the first law of thermodynamics,
namely, that energy can be neither created nor destroyed. If a cycle can be
devised where all the energies are known except Elatt, then it can be easily
calculated. For such a cycle, known as the Born—Haber cycle, shown in
Fig. 2.6, it is necessary that

= Elatt(exo) + Eion(endo) + EEA(endo or exo)

+ Ediss(endo) + Evap(endo)

Each of these terms is discussed in greater detail below with respect to NaCl.

Enthalpy of formation or reaction

When the reaction

Na(s)+iCl2(g)-»NaCl(s)
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M ( g )

EEA

f
M (5 ) + ±-X2 (g ) ^^ - MX (5 )

Figure 2.6 The Born-Haber cycle.

occurs, A7/form is the thermal energy liberated. For NaCl at 298 K, this reac-
tion is accompanied by the release of —411 kJ/mol. Enthalpies of formation
of most compounds are exothermic.

Dissociation energy

Energy Ediss is needed to break up the stable C12 molecule into two atoms,
i.e., the energy change for the reaction

This energy is always endothermic and for the reaction as written equals
121 kJ/mol.

Heat of vaporization

The energy required for the reaction

Na(s) -> Nafe)

is the latent heat of vaporization Evap, which is 107.3 kJ/mol for Na and is
always endothermic.

Values of A//form, Ediss, and Evap can be found in various sources16 and
are well documented for most elements and compounds.

lonization energy

The ionization energy Eion is the energy required to completely remove an
electron from an isolated atom in the gas phase. lonization energies are
always endothermic since in all cases work has to done to remove an electron
from its nucleus. Table 2.2 lists the first and second ionization potentials for
selected elements of the periodic table. For Na that value is 495.8 kJ/'mol.

16 A reliable source for thermodynamic data is JANAF Thermochemical Tables. 3d ed.. which
lists the thermodynamic data of over 1800 substances.
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Table 2.5 Electron affinities^ of selected nonmetals at 0 K

33

Element

0-

F-
S-

Cl-

-> 0
O -» O2

-> F

> S ~
S~ -* S2~"

-cr

EA (kJ/mol)

141 (exo)
780 (endo)
322 (exo)
200 (exo)
590 (endo)
348.7 (exo)

Element

Se-

Br
!->
Te

-*Se~
Se~ — > Se2"~

-> Br
I

-»Te~

EA (kJ/mol)

195 (exo)
420 (endo)
324.5 (exo)
295 (exo)
190.1 (exo)

f Electron affinity is usually defined as the energy released when an electron is added to the
valence shell of an atom. This can be quite confusing. To avoid any confusion, the values
listed in this table clearly indicate whether the addition of the electron is endo- or exothermic.
Adapted from J. Huheey, Inorganic Chemistry, 2d ed., Harper & Row, New York, 1978.

Electron affinity

Electron affinity (EA) is a measure of the energy change that occurs when an
electron is added to the valence shell of an atom. Some selected values of EEA

for nonmetals are listed in Table 2.5. The addition of the first electron is
usually exothermic (e.g., oxygen, sulfur); further additions, when they
occur, are by necessity endothermic since the second electron is now
approaching a negatively charged entity. The electron affinity of Cl is
-348.7 kJ/mol.

The lattice energy of NaCl was calculated (see Worked Example 2.3) to
be — 750kJ/mol. If we put all the pieces together, the Born—Haber summa-
tion for NaCl yields

(endo) + EEA= EIatt(exo) + Eion

+ Ediss(endo) + Evap(endo)

= -750 + 495.8–348.7+121 + 107.3 = -374.6 kJ/mol

which compares favorably with the experimentally determined value of
–411 kJ/mol. If Eq. (2.19) is used, even better agreement is obtained.

This is an important result for two reasons. First; it confirms that our
simple model for the interaction between ions in a solid is, for the most
part, correct. Second, it supports the notion that NaCl can be considered
an ionically bonded solid.

2.6 Covalent Bond Formation

The second important type of primary bond is the covalent bond. Whereas
ionic bonds involve electron transfer to produce oppositely charged species,
covalent bonds arise as a result of electron sharing. In principle, the
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energetics of the covalent bond can be understood if it is recognized that elec-
trons spend more time in the area between the nuclei than anywhere else. The
mutual attraction between the electrons and the nuclei lowers the potential
energy of the system forming a bond. Several theories and models have
been proposed to explain the formation of covalent bonds. Of these the mole-
cular orbital theory has been particularly successful and is the one discussed
in some detail below. As the name implies, molecular orbital (MO) theory
treats a molecule as a single entity and assigns orbitals to the molecule as a
whole. In principle, the idea is similar to that used to determine the energy
levels of isolated atoms, except that now the wave functions have to satisfy
Schrodinger's equation with the appropriate expression for the potential
energy, which has to include all the charges making up the molecule. The
solutions in turn give rise to various molecular orbitals, with the number of
filled orbitals determined by the number of electrons needed to balance the
nuclear charge of the molecule as a whole subject to Pauli's exclusion
principle.

To illustrate, consider the simplest possible molecule, namely, the H2

molecule, which has one electron but two nuclei. This molecule is chosen
in order to avoid the complications arising from electron—electron repulsions
already alluded to earlier.

2.6.1 Hydrogen Ion Molecule

The procedure is similar to that used to solve for the electronic wave function
of the H atom [i.e.; the wave functions have to satisfy Eq. (2.1)] except that
the potential energy term has to account for the presence of two positively
charged nuclei rather than one. The Schrodinger equation for the H2

molecule thus reads

= 0 (2.20,

where the distances, ra, rb, and R are defined in Fig. 2.1 a. If it is assumed that
the distance R between the two nuclei is fixed, then an exact solution exists,
which is quite similar to that of the H atom, except that now two solutions or
wave functions emerge. One solution results in an increase in the electron
density between the nuclei (Fig. 2.7c) whereas the second solution decreases
it (Fig. 2.1d). In the first case, both nuclei are attracted to the electron
between them, which results in the lowering of the energy of the system
relative to the isolated-atom case and is thus known as a bonding orbital
(Fig. 2.1b). The second case results in an increase in energy relative to the
isolated atoms, because now the unsheathed or partially bared nuclei repel
one another. This is known as the antibonding orbital, shown in Fig. 2.1b.

The solution for the H2 molecule is quite similar, except that now an
extra potential energy term for the repulsion between the two electrons
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Antibonding Molecular Orbital

c Atomic orbital Atomic orbital

Bonding Molecular Orbital

( d )

Figure 2.7 (a) Coordinates for the H2 molecule used in Eq. (2.20). (b) Interaction of the
two atomic orbitals results in bonding and antibonding orbitals. (c) Probability function
for the bonding case in which electron density between the nuclei is enhanced, (d) Prob-
ability function for antibonding case, where the probability of finding the electron is
decreased in the volume between the nuclei, resulting in a higher-energy orbital.

has to be included in Schrodinger's equation. This is nontrivial, but fortu-
nately the end result is similar to that of the H2 case; the individual energy
levels split into a bonding and an antibonding orbital. The atomic orbital
overlap results in an increased probability of finding the electron between
the nuclei. Note that in the case of the H2 molecule, the two electrons are
accommodated in the bonding orbital. A third electron, i.e., H2, would
have to go into the antibonding orbital because of Pauli's exclusion
principle.

2.6.2 HF Molecule

In the preceding section, the electronegativities of the two atoms and the
shapes (both spherical) of the interacting orbitals making up the bond
were identical. The situation becomes more complicated when one considers
bonding between dissimilar atoms. A good example is provided by the HF
molecule. The electron configuration of H is Is1, and that of F is (He)
2s22p5. The valence orbitals of the F atom are shown in Fig. 2.8a (the
inner core electrons are ignored since they are not involved in bonding).
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Figure 2.8 (a) The F atomic orbitals. (b) The HF molecular orbitals. (c) The H atomic
orbital. (d) Interaction of H ls orbital with one of the fluorine p orbitals. The overlap of
these two orbitals results in a lowering of the energy of the system. The dotted lines joining
(b) to (d) emphasize that it is only the fluorine p orbital which overlaps with the H orbital
that has a lower energy. The two pairs of unpaired electrons (unshaded lobes) have the
same energy in the molecule that they did on the F atom, since these so-called lone pairs
are unperturbed by the presence of the hydrogen atom.

The atoms are held at the distance that separates them, which can either be
calculated or obtained experimentally, and the molecular orbitals of HF are
calculated. The calculations are nontrivial and beyond the scope of this book;
the result, however, is shown schematically in Fig. 2.8b. The total number of
electrons that have to be accommodated in the molecular orbitals is eight
(seven from F and one from H). Placing two in each orbital fills the first
four orbitals and results in an energy for the molecule that is lower (more
negative) than that of the sum of the two noninteracting atoms, which in
turn renders the HF molecule more stable relative to the isolated atoms.

Figure 2.8 can also be interpreted as follows: the F 25 electrons, by virtue
of being at a much lower energy than hydrogen (because of the higher charge
on the F nucleus) remain unperturbed by the hydrogen atom.17 The ls elec-
tron wave function of the H atom and one of the 2p orbitals on the fluorine
will overlap to form a primary a bond (Fig. 2.8d). The remaining electrons on
the F atom (the so-called lone pairs) remain unperturbed in energy and in
space.

As mentioned above, the calculation for Fig. 2.8 was made for a given
interatomic distance. The same calculation can be repeated for various
interatomic separations. At infinite separation, the atoms do not interact,
and the energy of the system is just the sum of the energies of the electrons

17 For orbitals to overlap, they must be relatively close to each other in energy.
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on the separate atoms. As the atoms are brought closer together; the attrac-
tive potential energy due to the mutual attraction between the electrons and
the nuclei decreases the energy of the system up to a point, beyond which a
repulsive component comes into play and the energy starts increasing again.
In other words, at some interatomic distance, a minimum in the energy
occurs, and a plot of energy versus interatomic distance results in an
energy well that is not unlike the one shown in Fig. 2.4a.

2.7 Covalently Bonded Solids

Up to this point the discussion has focused on the energetics of a single
covalent bond between two atoms. Such a bond, however, will not lead to
the formation of a strong solid, i.e., one in which all the bonds are primary.
To form such a solid, each atom has to be simultaneously bonded to at least
two other atoms. For example, HF cannot form such a solid because once an
HF bond is formed, both atoms attain their most stable configuration — He
for H and Ne for F, which in turn implies that there are no electrons available
to form covalent bonds with other atoms. It follows that HF is a gas at room
temperature, despite the fact that the HF bond is quite strong.18

As discussed in greater detail in the next chapter, many predominantly
covalently bonded ceramics, especially the Si-based ones such as silicon
carbide, silicon nitride, and the silicates, are composed of Si atoms simulta-
neously bonded to four other atoms in a tetrahedral arrangement. Examining
the ground state configuration of Si, that is, (Ne) 3s23p2 (Fig. 2.9a), one
would naturally expect only two primary bonds to form. This apparent
contradiction has been explained by postulating that hybridization between
the s and p wave functions occurs. Hybridization consists of a mixing or
linear combination of s and p orbitals in an atom in such a way as to form
new hybrid orbitals. This hybridization can occur between one s orbital
and one p orbital (forming an sp orbital), or one s and two p orbitals (forming
an sp2 trigonal orbital). In the case of Si, the s orbital hybridizes with all three
p orbitals to form what is known as sp3 hybrid orbitals. The hybrid orbital
possesses both s and p character and directionally reaches out in space as
lobes in a tetrahedral arrangement with a bond angle of 109°, as shown in
Fig. 2.9c. Each of these orbitals is populated by one electron (Fig. 2.9b);
consequently each Si atom can now bond to four other Si atoms, or any
other four atoms for that matter, which in turn can lead to three-dimensional
structures. Promotion of the electron from the s to the hybrid orbital requires
some energy, which is more than compensated for by the formation of four
primary bonds.

If sufficiently cooled, however, HF will form a solid as a result of secondary bonds.
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Figure 2.9 (a) Ground state of Si atom. (b) Electronic configuration after hybridization,
(c) Directionality of sp3 bonds. Note that each bond lobe contains one electron, and thus

2.8 Band Theory of Solids

One of the more successful theories developed to explain a wide variety of
electrical and optical properties in solids is the band theory of solids. In this
model, the electrons are consigned to bands that are separated from each
other by energy gaps. Bands that are incompletely filled (Fig. 2.10a) are
termed conduction bands, while those that are full are called valence bands.
The electrons occupying the highest energy in a conduction band can rapidly
adjust to an applied electric or electromagnetic field and give rise to the
properties characteristic of metals, such as high electrical and thermal
conductivity, ductility, and reflectivity. Solids where the valence bands are
completely filled (Fig. 2.106), on the other hand, are poor conductors of
electricity and at OK are perfect insulators. It follows that understanding

Figure 2.10 Band structure of (a) a metal with an incompletely filled conduction band and
(b) an insulator or semiconductor. At 0 K such a solid is an insulator because the valence band
is completely filled and the conduction band is completely empty. As the temperature is raised,
some electrons are promoted into the conduction band, and the material starts to conduct.
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this model of the solid state is of paramount importance if the electrical and
optical properties of ceramics are to be understood.

The next three subsections address the not-so-transparent concept of
how and why bands form in solids. Three approaches are discussed. The
first is a simple qualitative model. The second is slightly more quantitative
and sheds some light on the relationship between the properties of the
atoms making up a solid and its band gap. The last model is included because
it is physically the most tangible and because it relates the formation of bands
to the total internal reflection of electrons by the periodically arranged
atoms.

1,

2.8.1 Introductory Band Theory

In the same way as the interaction between two hydrogen atoms gave rise to
two orbitals, the interaction or overlap of the wave functions of wl023 atoms
in a solid gives rise to energy bands. To illustrate, consider 1023 atoms of Si in
their ground state (Fig. 2.1 la). The band model is constructed as follows:

Assign four localized tetrahedral sp3 hybrid orbitals to each Si atom, for
a total of 4 x 1023 hybrid orbitals (Fig. 2.11b).
The overlap of each of two neighboring sp3 lobes forms one bonding and
one antibonding orbital, as shown in Fig. 2.11d,
The two electrons associated with these two lobes are accommodated in
the bonding orbitals (Fig. 2.l1d).
As the crystal grows, every new atom added brings one orbital to the
bonding and one to the antibonding orbital set. As the orbitals or electron
wave functions overlap, they must broaden as shown in Fig. 2.11c,
because of the Pauli exclusion principle.

3xl0233p
atomic orbitals Antibonding orbital o*

(b) (c)

Bonding orbital o

(d )

Figure 2.11 (a) Ground state of Si atoms, (b) The sp3 hybrid orbitals. (c) Interaction of sp3

orbitals to form energy bands, (d) Localized orbital energy levels between two Si atoms to
form an Si2 molecule. Note that the energy bands are centered on the energy of the
diatomic bonds.
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Thus in the solid a spread of orbital energies develops within each
orbital set, and the separation between the highest occupied molecular
orbital (or HOMO), and the lowest unoccupied molecular orbital (or
LUMO) in the molecule becomes the band gap (Fig. 2.11c). It is worth
noting that the new orbitals are created near the original diatomic bond-
ing a and antibonding a* energies (Fig. 2.11d) and move toward the
band edges as the size of the crystal increases.

5. In the case of Si, each atom starts with 4 valence electrons, and the total
number of electrons that has to be accommodated in the valence band is
4 x 1023. But since there are 2 x 1023 levels in that band and each level
can accommodate 2 electrons, it follows that the valence band is comple-
tely filled and the conduction band is empty.19

This last statement has far-reaching implications. If the band gap,
usually denoted by Eg, lies somewhere between 0.02 and 3 eV, the material
is considered to be a semiconductor. For higher values of Eg, the solid is
considered an insulator. Said otherwise, if all the electrons are used in bond-
ing, none is left to move freely and conduct electricity. Table 2.6, in which the
band gaps of a number of binary and ternary ceramics are listed, clearly indi-
cates that most ceramics are insulators.

Note that the degree of interaction between the orbitals depends on the
interatomic distance or the spatial delocalization of the interacting electrons
(the two are not unrelated). For example, the band gaps of C (diamond). Si,
and Ge are, respectively, 5.33, 1.12, and 0.74 eV. In C, the interaction is
between the n = 2 electrons, whereas for Si and Ge one is dealing with the
n = 3 and n = 4 electrons, respectively. As the interacting atoms become
larger, the interaction of their orbitals increases, rendering the bands wider
and consequently reducing the band gap.20

Orbital overlap, while important, is not the only determinant of band
gap width. Another important factor is how tightly the lattice binds the
electron. This is dealt with in the following model.

2.8.2 Tight Binding Approximation21

In this approach, not unlike the one used to explain the formation of a
covalent bond, Schrodinger's equation

+ ̂  fcot - *pot(*)ty = 0 (2.21)

19 As discussed later, this is only true at 0K. As the temperature is raised, the thermal energy will
promote some of the electrons into the conduction band.

20 Interestingly enough, a semiconducting crystal can be made conductive by subjecting it to
enormous pressures which increase the level of interaction of the orbitals to such a degree
that the bands widen and eventually overlap.

21 Also known as the Kronig—Penney model.
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Table 2.6 Summary of band gaps for various ceramics.

Material

AgBr

BaF2

CaF2

KBr
KC1
LiF

A1N
A12O3 parallel

A12O3 perpendicular

BN
C (diamond)

CdO

Binaries

CoO

CrO3

Cr2O3

CuO
Cu2O

FeO
Fe203

MnO
MoO3

Nb2O5

NiO
Ta2O5

TiO2 (rutile)
V2O5

WO3

Y2O3

ZnO

Band gap, eV Material

Halides

2.80

8.85

12.00

7.4
7.00

12.00

MgF2

MnF2

NaCl

NaF
SrF2

TIBr

Binary oxides, carbides, and nitrides

6.2
8.8
8.85

4.8
5.33

2.1

Ga2O3

MgO (periclase)

SiC (a)
SiO2 (fused silica)

UO2

Transition metal oxides

4.0

2.0
3.3
1.4
2.1
2.4
3.1
3.6
3.0
3.9
4.2
4.2
3.0-3.4
2.2
2.6
5.5
3.2

Ternaries

BaTiO3

KNbO3

LiNbO3

LiTaO3

MgTiO3

NaTaO3

SrTiO,
SrZrO3

Y3Fe5O12

Band gap, eV

11.00

15.50

7.30

6.70

9.50

2.50

4.60

7.7
2.60-3.20
8.3
5.20

2.8-3.2

3.3
3.8
3.8
3.7
3.8
3.4
5.4
3.0
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is solved by assuming that the electrons are subject to a periodic potential
Epot which has the same periodicity as the lattice. By simplifying the problem
to one dimension with interatomic spacing a and assuming that Epot(x) = 0
for regions near the nuclei and Epot = E0 for regions in between, and further
assuming that the width of the barrier is w (see Fig. 2.12a), Eq. (2.21) can be
solved. Despite these simplifications, the mathematics of this problem is still

Figure 2.12 (a) Approximation of periodic potential that an electron is subjected to in a
one-dimensional crystal of periodicity a. Here w is the width of the barrier, and E0 is the
depth of the energy well, (b) A plot of the right-hand side of Eq. (2.22) versus oa. The A
axis is proportional to the energy of the electron, and the crosshatched areas denote ener-
gies that are permissible, whereas the energies between the crosshatched areas are not
permissible.



Bonding in Ceramics 43

too complex to be discussed here, and only the final results are presented.22 It
turns out that solutions are possible only if the following restricting condi-
tions are satisfied:

(2.22)

where

h2

and
_ 27T r-

(D — r**~ \/ ^ifiJ2ttr\t \Z**2«^t\

k is the wave number, defined as:

k = y (2.25)

where A is the wavelength of the electron.
Since the left-hand side of Eq. (2.22) can take only values between +1

and — 1, the easiest way to find possible solutions to this equation is to
do it graphically by plotting the right-hand side of Eq. (2.22) as a function
of (pa, as shown in Fig. 2.12b. Whenever that function lies between +1
and —1 (shaded areas in Fig. 2.12b), that represents a solution. Given
that (p is proportional to the energy of the electron [Eq. (2.24)], what is
immediately apparent from Fig. 2.12b is that there are regions of energy
that are permissible (crosshatched areas in Fig. 2.126) and regions of
forbidden energy (uncrosshatched areas). This implies that an electron
moving in a periodic potential can only move in so-called allowed energy
bands that are separated from each other by forbidden energy zones. Further-
more, the solution clearly indicates that the energy Etot of the electron is a
periodic function of k.

The advantage of using this model over others is that a semiquantitative
relationship between the bonding of an electron to its lattice and the size of
the band gap can be accounted for. This is reflected in the term P — for

22The method of solving this problem lies in finding the solution for the case when E = 0, that
is.

with o — v/27rmEtot//2. And the solution for the case where E = E0 that is,

)/',/ = C exp/ix + D exp(—/to)

where fi = 27ry/27rm(E0 — Elot)/h. By using the appropriate boundary conditions, namely,
continuity of the wave function at the boundaries, and ensuring that the solution is periodic,
A,B,C, and D can be solved for. If further it is assumed that the barrier area, i.e., the product
of wE0, is a constant, Eqs. (2.22) and (2.23) follow. See R. Bube, Electrons in Solids, 2d ed.;
Academic Press, New York; 1988, for more details.
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Figure 2.13 Empirical correlation between the electronegativities of the atoms making up a
solid and its band gap; XA and XB are the electronegativities of the constituent atoms or ions.

atoms that are very electronegative, E0, and consequently P, is large. As P
increases, the right-hand side of Eq. (2.22) becomes steeper, and the bands
narrow and the regions of forbidden energy widen. It follows that if this
model is correct, an empirical relationship between the electronegativities
of the atoms or ions making up a solid and its band gap should exist. That
such a relationship, namely.

Eg (eV) « -15 17.5|

does exist is illustrated nicely in Fig. 2.13. Here XA and XB represent the
electronegativities of the atoms making up the solid.

Before moving on to the next section, it is instructive to look at two
limits of the solution arrived at above:

1. When the interaction between the electrons and the lattice vanishes; i.e.,
as E0 or P approaches 0. From Eq. (2.22), for P = 0, it follows that
coska — cos&0, that is; k = $>, which when substituted in Eq. (2.24)
and upon rearranging yields

h2k2

Sirm
(2.26)

which is nothing but the well-known relationship for the energy of a free
electron (see App. 2A).

2. At the boundary of an allowed band, i.e., when coska = ±1 or
n TT

k = where n = 1.2.3 (2.27)
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Band gap
Parabolic
dependence-^

Figure 2.14 Functional dependence of Etot on k. The discontinuities occur at k = mr/a,
n= 1 . 2 , 3 , . . . .

This implies that discontinuities in the energy occur whenever this
condition is fulfilled. When this result is combined with Eq. (2.26) and
the energy is plotted versus k, Fig. 2.14 results. The essence of this
figure lies in appreciating that at the bottom of the bands the electron
dependence on k is parabolic; in other words, the electrons are behaving
as if they were free. However, as their k values increase, periodically,
Eq. (2.27) will be satisfied and a band gap develops. The reason for
the formation of such a gap is discussed in the next section.

2.8.3 Nearly Free Electron Approximation

The physical origin of the band gap predicated by the previous model can be
understood as follows: as a totally empty band is filled with electrons, they
have to populate levels of higher energies or wave numbers. Consequently,
at some point the condition k = mr/a will be fulfilled, which is another
way of saying that a pattern of standing waves is set up, and the electrons
can no longer propagate freely through the crystal because as the waves
propagate to the right, they are reflected to the left, and vice versa.23

23 The condition k = mr/a is nothing but the well-known Bragg reflection condition,
«A = 2rtcosf9, for 6 — 0. See Chap. 3 for more details.
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High-energy configuration — probability of finding electrons is lowest where cores are located.
Bottom of conduction band

Position of ion cores — ^B — — ^B — —

Low-energy configuration — probability of finding electrons is highest where cores are located.
Bottom of conduction band

Figure 2.15 Probability of finding electrons relative to location of the cores for the two
standing waves that form when k = nn/a. In the bottom case, the standing waves distribute
the charge over the ion cores, and the attraction between the negative electrons and the
positive cores reduces the energy of the system relative to the top situation, where the
electrons spend most of their time between the ion cores.

It can be shown further that24 these standing waves occur with
amplitude maxima either at the positions of the lattice points, that is
T/;2 = (const) cos2(mrx/a) (bottom curve in Fig. 2.15), or in between the
lattice points, that is ilf = (const) sin2(mrx/a) (top curve in Fig. 2.15). In
the former case, the attraction of the electrons to the cores reduces the
energy of the system — an energy that corresponds to the top of the valence
band. In the latter case, the energy is higher and corresponds to that at the
bottom of the conduction band. The difference in energy between the two
constitutes the energy gap.

It is important to emphasize that the band model of solids, while
extremely successful, is simply one approach among several that can be
used in describing the properties of solids. It is an approach that is elegant,
powerful, and amenable to quantification. However, the same conclusions
can be deduced by starting from other assumptions. For instance, the
band gap can be viewed simply as the energy required to break the covalent
bond in a covalently bonded solid, or to ionize the anions in an ionic solid. At
absolute zero, there are no atomic vibrations, the electrons are trapped, and

24 See. e.g.; L. Solymar and D. Walsh, Lectures on the Electrical Properties of Materials. 4th ed..
Oxford University Press. New York. 1988. p. 130.
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the solid is an insulator. At finite temperatures, the lattice atoms will vibrate
randomly, and occasionally the amplitude of vibration can be such as to
break the bond and release an electron. The higher the temperature, the
greater the probability of breaking the bond and the more likely the electron
is to escape.

2.9 Summary

1. The confinement of an electron to a nucleus results in the quantization
of its energy. The probability of finding the position of an electron then
becomes a function of its energy and the orbital it has to populate. The
shapes of the orbitals differ and depend on the quantum number of the
electron. The s orbitals are spherically symmetric while p orbitals are
lobed and orthogonal to each other.

2. Ionic bonds are formed by the transfer of electrons from an electro-
positive to an electronegative atom. The long-range coulombic attraction
of these charged species for each other, together with a short-range
repulsive energy component, results in the formation of an ionic bond
at an equilibrium interatomic distance.

3. Covalent bonds form by the overlap of atomic wave functions. For two
wave functions to overlap, they must be close to each other in energy
and be able to overlap in space as well.

4. The sp3 hybridization results in the formation of four energetically
degenerate bonds arranged tetrahedrally with each containing one elec-
tron. This allows an atom to bond to four other atoms simultaneously.

5. The interactions and overlap of the wave functions of many atoms or
ions in a solid give rise to energy bands. If the outermost bands are
not filled, the electrons are said to be delocalized and the solid is consid-
ered to be a metal. If the bands are separated from each other by a band
gap, the solid is considered a semiconductor or insulator depending on
the size of that gap.

Appendix 2A

Kinetic Energy of Free Electrons

The total energy of a free electron , i.e., one for which Epot = 0, is simply its
kinetic energy or
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where p is its momentum, and v its velocity, p in turn is related to the de
Broglie wavelength A of the electron by

/> = T (2A.2)

Combining this equation with Eq. (2.25), it follows that

(2A.3)
n

In other words, the wave number of an electron is directly proportional to
its momentum. Combining these three equations, it follows that for a free
electron

h2k2

tot = r-r- (2A.4)
87TW

Note that in the presence of a periodic field, the electron's energy can have
nonzero values despite that fact that its velocity could be zero.

Problems

2.1. (a) Show that Eq. (2.4) is indeed a solution to Eq. (2.3), provided Etot

is given by Eq. (2.5) and C 0 i s given by Eq. (2.6).
(b) Calculate the radius of the first Bohr orbit.

Answer. 0.0528 nm
(c) Consider two hydrogen atoms. The electron in the first is in the

n = 1 state, whereas in the second the electron is in the n = 3
state, (i) Which atom is in the ground state configuration? Why?
(ii) Which orbit has the larger radius? (iii) Which electron is
moving faster? (iv) Which electron has the lower potential
energy? (v) Which atom has the higher ionization energy?

2.2. (a) Show that

is also a solution to the Schrodinger equation [i.e., Eq. (2.5)]. and
find an expression for c1.

(b) Show that the energy of this level is equal to –3.4eV.
(c) Determine the value of A. Hint: The total probability of finding an

electron somewhere must be unity.

2.3. Starting with Eq. (2.13), derive Eq. (2.15).
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2.4. Calculate the third ionization of Li. Explain why this calculation can
be carried out exactly with no approximations required.

Answer: –122.4eV

2.5. Given 1 mol of Na+ and 1 mol of Cl, calculate the energy released
when the Na and Cl ions condense as

(a) Noninteracting ion pairs; i.e., consider only one pairwise inter-
actions.

Answer: — 490kJ/mol

(b) Noninteracting ion squares; i.e., every four ions, 2Na and 2C1
interact with each other, but not with others.

Answer: —633kJ/mol

(c) 1/8 unit cell of NaCl; i.e., 8 atoms interact.

Answer: —713kJ/mol

(d) Compare with —755 kJ/mol for solid NaCl lattice.

Hint: Make sure you include all pairwise attractions and repulsions.
You can assume the Born exponent n = oo.

2.6. Assuming NeCl crystallizes in the NaCl structure and, using the Born
Haber cycle, show why NeCl does not exist. Make any necessary
assumptions.

2.7. (a) Plot the attractive, repulsive, and net energy between Mg2+ and
O2" from 0.18 and 0.24 nm in increments of 0.01 nm. The follow-
ing information may be useful: n = 9, B = 0.4 x 10–105 J • m9.

(b) Assuming that Mg+O~ and Mg2+O2 both crystallize in the rock
salt structure and that the ionic radii are not a strong function of
ionization and taking n = oo, calculate the difference in the
enthalpies of formation AHform of Mg2+O2– and Mg+O–.
Which is more stable?

Answer: Difference = 1200kJ/mol.

(c) Why is MgO not written as Mg3+O3–?

2.8. Calculate the Madelung constant for an infinite chain of alternating
positive and negative ions H + + and so on.
Answer: 2 In 2

2.9. Write the first three terms of the Madelung constant for the NaCl and
the CsCl structures. How does the sum of these terms compare to the
numbers listed in Table 2.4? What are the implications, if any, if the
Madulung constant comes out negative?
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2.10. (a) He does not form He2. Why do you think this is the case?
What does this statement imply about the energies of the bonding
and antibonding orbitals relative to those of the isolated
atoms?

(b) Explain in terms of molecular orbital theory why He2 is unstable
and does not occur while He2 has a bond energy (relative to the
isolated atoms) ^ H2.

2.11. (a) Boron reacts with oxygen to form B2O3. (i) How many oxygens
are bonded to each B, and vice versa? (ii) Given the electronic
ground states of B and O, propose a hybridization scheme that
would explain the resulting bonding arrangement.

(b) Repeat part (a) for BN.

2.12. The total energy (electronic) of an atom or a molecule is the sum of the
energies of the individual electrons. Convince yourself that the sum of
the energies of the electrons in the HF molecule shown in Fig. 2.8a is
indeed lower (more negative) than the sum of the energies of the two
isolated atoms.

2.13. (a) Which has the higher ionization energy — Li or Cs. Li or F. F or
I? Explain.

(b) Which has the higher electron affinity — Cl or Br, O or S. S or Se?
Explain.

2.14. The symbol n has been used in this chapter to represent two completely
distinct quantities. Name them and clearly differentiate between them
by discussing each.

2.15. (a) To what inert gases do the ions Ca2+ and O2– correspond?
(b) Estimate the equilibrium interionic spacing of the C a 2 — O2–

bond.
(c) Calculate the force of attraction between a Ca2+ ion and an

O2– ion if the ion centers are separated by 1 nm. State all
assumptions.

2.16. The fraction ionic character of a bond between elements A and B can
be approximated by

Fraction ionic character = 1 — e–(XA–XB)–/4

where XA and XB are the electronegativities of the respective elements.

(a) Using this expression, compute the fractional ionic character
for the following compounds: NaCl MgO, FeO, SiO2. and
LiF.

(b) Explain what is meant by saying that the bonding in a solid is 50
percent ionic and 50 percent covalent.
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Chapter 3

Structure of Ceramics

The Solid State, however, kept its grains
of microstructure coarsely veiled until
X-ray diffraction pierced the Crystal Planes
That roofed the giddy Dance, the taut Quadrille
Where Silicon and Carbon Atoms will
Link Valencies, four-figured, hand in hand
With common Ions and Rare Earths to fill
The lattices of Matter, Glass or Sand
With tiny Excitations, quantitatively grand.

John Updike; The Dance of the Solids*

3.1 Introduction

The previous chapter dealt with how atoms form bonds with one another. This
chapter is devoted to the next level of structure, namely, the arrangement of
ions and atoms in crystalline ceramics. This topic is of vital importance
because many properties, including thermal, electrical, dielectric, optical,
and magnetic ones, are quite sensitive to crystal structures.

Ceramics, by definition, are composed of at least two elements, and conse-
quently their structures are, in general, more complicated than those of metals.
While most metals are face-centered cubic (FCC), body-centered cubic (BCC),
or hexagonal close-packed (HCP), ceramics exhibit a much wider variety of
structures. Furthermore, and in contrast to metals where the structure is
descriptive of the atomic arrangement, ceramic structures are named after
the mineral for which the structure was first decoded. For example, compounds
where the anions and cations are arranged as they are in the rock salt structure,
such as NiO and FeO, are described to have the rock salt structure. Similarly,
any compound that crystallizes in the arrangement shown by corundum (the
mineral name for Al2O3) has the corundum structure, and so forth.

J. Updike, Midpoint and other Poems. A. Knopf, Inc.. New York. New York. 1969. Reprinted
with permission.
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Figure 3.1 illustrates a number of common ceramic crystal structures
with varying anion-to-cation radius ratios. These can be further categorized
into the following:

• AX-type structures which include the rock salt structure, CsCl, zinc blende,
and wurtzite structures. The rock salt structure (Fig. 3.la), named after

Figure 3.1. Some common ceramic structures: (a) rock salt, (b) cesium chloride, (c) zinc
blende, (d) wurtzite, (e) calcium fluorite, (f) rutile.
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NaCl, is the most common of the binary structures, with over one-half of
the 400 compounds so far investigated having this structure. In this
structure, the coordination number (defined as the number of nearest neigh-
bors) for both cations and anions is 6. In the CsCl structure (Fig. 3.1b), the
coordination number for both ions is 8. ZnS exists in two polymorphs,
namely, the zinc blende and the wurtzite structures shown in Fig. 3.1e
and d, respectively. In these structures the coordination number is 4: that
is, all ions are tetrahedrally coordinated.

• AX2-type structures. Calcium fluorite (CaF2) and rutile (TiO2), shown,
respectively, in Fig. 3.1e and f, are two examples of this type of structure.

• A m E n X p structures in which more than one cation, A and B (or the same
cation with differing valences), are incorporated in an anion sublattice.
Spinels (Fig. 3.10) and perovskites (Fig. 3.9) are two of the more ubiquitous
ones.

Note at the end of this brief introduction that the structures shown in
Fig. 3.1 represent but a few of a much larger number of possible ones.
Since a comprehensive survey of ceramic structures would be impossible
within the scope of this book, instead some of the underlying principles
which govern the way atoms and ions arrange themselves in crystals,
which in turn can aid in understanding the multitude of structures that
exist are outlined. This chapter is structured as follows: the next section
outlines some of the more important and obvious factors that determine
local atomic structure (i.e., the coordination number of the cations and
anions) and how these factors can be used to predict the type of structure
a certain compound will assume. In Sec. 3.3, the binary ionic structures are
dealt with from the perspective of ion packing. In Sec. 3.4. the more complex
ternary structures are briefly described. Sections 3.5 and 3.6 deal with Si-
based covalently bonded ceramics such as SiC and Si3N4 and the silicates.
The structure of glasses will be dealt with separately in Chap. 9. The last
section deals with lattice parameters and density.

3.2 Ceramic Structures

3.2.1 Factors Affecting Structure

Three factors are critical in determining the structure of ceramic compounds:
crystal stoichiometry, the radius ratio, and the propensity for covalency and
tetrahedral coordination.

Crystal stoichiometry

Any crystal has to be electrically neutral; i.e., the sum of the positive charges
must be balanced by an equal number of negative charges, a fact that is
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reflected in its chemical formula. For example, in alumina, every two A13+

cations have to be balanced by three O2- anions, hence the chemical formula
Al2O3. This requirement places severe limitations on the type of structure the
ions can assume. For instance, an AX2 compound cannot crystallize in the
rock salt structure because the stoichiometry of the latter is AX, and vice
versa.

Radius ratio25

To achieve the state of lowest energy, the cations and anions will tend to
maximize attractions and minimize repulsions. Attractions are maximized
when each cation surrounds itself with as many anions as possible, with
the proviso that neither the cations nor the anions "touch." To illustrate,
consider the four anions surrounding cations of increasing radii as shown
in Fig. 3.2. The atomic arrangement in Fig. 3.2a is not stable because of
the obvious anion—anion repulsions. Figure 3.2e, however, is stabilized by
the mutual attraction of the cation and the anions. When the anions are
just touching (Fig. 3.2b), the configuration is termed critically stable and is
used to calculate the critical radii at which one structure becomes unstable
with respect to another (Worked Example 3.1).

Since cations are usually smaller than anions, the crystal structure is
usually determined by the maximum number of anions that it is possible
to pack around the cations, which, for a given anion size, will increase as
the size of the cation increases. Geometrically, this can be expressed in
terms of the radius ratio r e /r a , where re and ra are the cation and anion
radii, respectively. The critical radius ratios for various coordination
numbers are shown in Fig. 3.3. Even the smallest cation can be surrounded
by two anions and results in a linear arrangement (not shown in Fig. 3.3). As
the size of the cation increases, i.e., as re/ra increases, the number of anions
that can be accommodated around a given cation increases to 3 and a
triangular arrangement becomes stable (top of Fig. 3.3). r e /ra > 0.225, the
tetrahedral arrangement becomes stable, and so forth.

(a ) (b ) (c )

Figure 3.2. Stability criteria used to determine critical radius ratios.

25 This radius ratio scheme was first proposed by L. Pauling. See, e.g., The Nature of the Chemi-
cal Bond, 3d ed., Cornell University Press, Ithaca, New York, 1960.
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Figure 3.3. Critical radius ratios for various coordination numbers. The most stable
structure is usually the one with the maximum coordination allowed by the radius ratio.

Propensity for covalency and tetrahedral coordination

In many compounds, tetrahedral coordination is observed despite the fact
that the radius ratio would predict otherwise. For example, many
compounds with radius ratios greater than 0.414 still crystallize with
tetrahedral arrangements such as zinc blende and wurtzite. This situation
typically arises when the covalent character of the bond is enhanced, such
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as when

• Cations with high polarizing power (for example, Cu2+, A13+, Zn2+, Hg2+)
are bonded to anions that are readily polarizable26 ( I - , S2 - , Se2-). As
discussed in greater detail in Chap. 4, this combination tends to increase
the covalent character of the bond and favor tetrahedral coordination.

• Atoms that favor sp3 hybridization, such as Si, C, and Ge, tend to stabilize
the tetrahedral coordination for obvious reasons.

WORKED EXAMPLE 3.1

Derive the critical radius ratio for the tetrahedral arrangement (second from top
in Fig. 3.3).

Answer

The easiest way to derive this ratio is to appreciate that when the radius ratio is
critical, the cations just touch the anions, while the latter in turn are just touch-
ing one another (i.e., the anions are closely packed). Since the coordinates of the
tetrahedral position in a close-packed arrangement (Fig. 3.4b) are 1/4, 1/4, 1/4, it
follows that the distance between anion and cation centers is

r • -4- r • —rcation + ranion

where a is the lattice parameter. Referring to Fig. 3.4b, the critical condition
implies that the anions are just touching along the face diagonal, thus
4ranion = V2a. Combining these two equations yields rcation/ranion = 0.225.

3.2.2 Predicting Structures

It follows from the foregoing discussion that, at least in principle, it should be
possible to predict the local arrangement of ions in a crystal if the ratio r e / r a

is known. To illustrate the general validity of this statement, consider the
oxides of group IVA elements. The results are summarized in Table 3.1,
and in all cases the observed structures are what one would predict based
on the radius ratios.

This is not to say that the radius ratio should be taken absolutely; there
are notable exceptions. For instance, according to the radius ratios, the Cs in
CsCl should be octahedrally coordinated, when in fact it is not. Why that is
the case is not entirely understood, to this date.

Clearly one of the more important parameters needed for understanding
crystal structures and carrying out lattice energy calculations, etc., is the radii

26 Polarizing power and polarizability are discussed in Chap. 4.
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Table 3.1. Comparison of predicted and observed structures based on radius ratio r e /ra

Compound Radius ratio* Prediction Observed structure

CO2

SiO2

GeO2
:

SnO2

PbO2

ThO2

0.23
0.32
0.42
0.55
0.63
0.86

Linear coordination
Tetrahedral coordination
Tetrahedral coordination
Octahedral coordination
Octahedral coordination
Cubic arrangement

CO2 linear molecule
Quartz —
Quartz —
Rutile —
Rutile —
Fluorite -

tetrahedral
tetrahedral

octahedral
octahedral
- cubic

The radii used are the ones listed in App. 3A.
* Here the ratio is slightly greater than 0.414. but the tetrahedral coordination is still favored

because of sp3 hybridization of Ge.

of the ions. Over the years there have been a number of compilations of ionic
radii, probably the most notable among them being the one by Pauling.27

More recently, however, Shannon and Prewitt28 (SP) compiled a comprehen-
sive set of radii that are about 14 pm larger for cations and 14 pm smaller for
anions than the more traditional set of radii (see Table 3.2).

From X-ray diffraction the distance between ions (that is, re + ra) can be
measured with great precision. However, knowing where one ion ends and
where the other begins is a more difficult matter. When careful X-ray diffrac-
tion measurements have been used to map out the electron density between
ions and the point at which the electron density is a minimum is taken as the
operational definition of the limits of the ions involved, and the results are

Table 3.2. Comparison of ionic radii with those measured from X-ray diffraction

Crystal rM—X Distance of minimum electron Pauling Shannon and
density from X-ray, pm radii, pm Prewitt radii, pm

LiF

NaCl

KC1

KBr

201

281

314

330

rLi =
rF =
rNa =
rcl =
rk =
rcl =
rk =
rBr =

92
109
117
164
144
170
157
173

rLi =
rF =
''Na =

I'd =

r& =
'Cl =

^K =

rBr =

60
136
95
181
133
181
133
195

,-L, = 90
rF = 119
'•Na = H6
rc, = 167
.. i <">
^K — * ̂ —

/-n = 167
rK = 152
rBr = 182

f Source: Adapted from J. Huheey. Inorganic Chemistry. 2d ed.. Harper & Row, New York.
1978, p. 86.

27 L. Pauling, The Nature of the Chemical Bond, 3d ed., Cornell University Press. Ithaca.
New York, 1960, pp. 537-540.

2 8 R . D. Shannon and C. T. Prewitt, Ada Crstallogr.. B25:925(1969).
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compared with the SP radii, the match is quite good, as shown in Table 3.2.
For this reason the SP radii are considered to be closer to representing the
real size of ions in crystals than those of other compilations. A comprehen-
sive set of SP radii is listed at the end of this chapter in App. 3A.

3.3 Binary Ionic Compounds

The close packing of spheres occurs in one of two stacking sequences:
ABABAB or ABCABC. The first stacking results in a hexagonal close-
packed (HCP) arrangement, while the latter results in the a cubic close-
packed or face-centered cubic (FCC) arrangement. Geometrically, and
regardless of the stacking sequence, both arrangements create two types of
interstitial sites: octahedral and tetrahedral, with coordination numbers 6
and 4, respectively (Fig. 3.4a29). The locations of these interstitial sites rela-
tive to the position of the atoms are shown in Fig. 3.4b for the FCC and in
Fig. 3.4c and d for the HCP arrangements.

The importance of this aspect of packing lies in the fact that a majority
of ceramic structures can be succinctly described by characterizing the anion
packing together with the fractional occupancy of each of the interstitial sites
that are defined by that anion packing. Table 3.3 summarizes the structure
of the most prevalent ceramic materials according to that scheme. When
grouped in this manner, it becomes immediately obvious that for most
structures the anions are in a close-packed arrangement (second column),
with the cations (fourth column) occupying varying fractions of the
interstitial sites defined by the anion packing. How this results in the various
ceramic structures is described in the remainder of this chapter. Before we
tackle that subject, however, it is useful to examine one of the simplest
ionic structures: CsCl.

3.3.1 CsCI Structure

In this structure, shown in Fig. 3.1b, the anions are in a simple cubic arrange-
ment, and the cations occupy the centers of each unit cell.30 Note that this is
not a BCC structure because two different kinds of ions are involved.

3.3.2 Binary Structures Based on Close Packing of Anions

Cubic close-packed

The structures in which the anions are in an FCC arrangement are many
and include rock salt, rutile, zinc blende, antifluorite (Fig. 3.5), perovskite

29 The sites are named for the number of faces of the shapes that form around the interstitial site.
30 Unit cells and lattice parameters are discussed in Chap. 1 and Sec. 3.7.
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(Fig. 3.9), and spinel (Fig. 3.10). To see how this scheme works, consider the
rock salt structure in which, according to Table 3.1, the anions are in FCC
arrangement. It should be obvious at this point that placing cations on
each of the octahedral sites in Fig. 3.4b results in the rock salt structure

Figure 3.4. (a) When two close-packed planes of spheres are stacked, one on top of the
other, they define the octahedral (B) and tetrahedral (A) sites between them. (b) Location
of tetrahedral and octahedral interstitial sites within the cubic close-packed arrangement.
The number of octahedral sites is always equal to the number of atoms, while the number
of tetrahedral sites is always double the number of atoms. (c) Location of octahedral sites
in the hexagonal close-packed arrangement. (d) Location of tetrahedral sites.
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Table 3.3. Ionic structures grouped according to anion packing

61

Structure
name

Anion
packing

Coordination
no. of M
and X

Sites
occupied
by cations

Examples

Binary compounds
Rock salt

Rutile

Zinc blende

Antifluorite

Wurtzite

Nickel
arsenide
Cadmium
iodide
Corundum

CsCl
Fluorite

Silica types

Cubic close-
packed

Distorted cubic
close-packed

Cubic close-
packed
Cubic close-
packed
Hexagonal
close-packed
Hexagonal
close-packed
Hexagonal
close-packed
Hexagonal
close-packed

Simple cubic
Simple cubic

Connected
tetrahedra

6: 6 MX

6 : 3 MX2

4 : 4 MX

4 : 8 M2X

4:4 MX

6 : 6 MX

6 : 3 MX2

6 : 4 M2X3

8 : 8 MX
8 : 4 MX2

4 : 2 MO2

All oct.

1/2 oct.

1/2 tet.

All tet.

1/2 tet.

All oct.

1/2 oct.

2/3 oct.

All cubic
1/2 cubic

NaCl, KC1, LiF, KBr,
MgO, CaO, SrO, BaO,
CdO, VO, MnO, FeO,
CoO, NiO
TiO2, GeO2, SnO2,
PbO2, VO2, NbO2,
TeO2, MnO2, RuO2,
OsO2, IrO2

ZnS, BeO, SiC

Li2O, Na2O, K2O,
Rb2O, sulfides
ZnS, ZnO, SiC, ZnTe

NiAs, FeS, FeSe, CoSe

CdI2,TiS2,ZrS2,MgI2,
VBr2

A12O3, Fe2O3, Cr2O3,
Ti2O3, V2O3, Ga2O3,
Rh2O3

CsCl, CsBr, Csl
ThO2, CeO2, UO2,
ZrO2, HfO2, NpO2,
PuO2, AmO2, PrO2

SiO2, GeO2

Complex structures
Perovskite

Spinel
(normal)
Spinel
(inverse)
Illmenite

Olivine

Cubic close-
packed

Cubic close-
packed
Cubic close-
packed
Hexagonal
close-packed
Hexagonal
close-packed

12 : 6 : 6 ABO3

4 : 6 : 4 AB2O4

4 :6 :4
B(AB)O4

6 : 6 : 4 ABO3

6 : 4 : 4 AB2O4

1/4 oct. (B)

1/8 tet. (A) 1/2
oct. (B)
1/8 tet. (B)l/2
oct. (A, B)
2/3 oct. (A, B)

1/2 oct. (A)
1/8 tet. (B)

CaTiO3, SrTiO3,
SrSnO3, SrZrO3,
SrHfO3, BaTiO3

FeAl2O4, ZnAl2O4,
MgAl2O4

FeMgFeO4,
MgTiMgO4

FeTiO3, NiTiO3,
CoTiO3

Mg2SiO4, Fe2SiO4

Source: Adapted from W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, Introduction to
Ceramics, 2d ed.. Wiley, New York, 1976.
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Cations -»
> Antifluorite

Anions >

Cation
Fluorite

Anion

Figure 3.5. Relationship between fluorite and antifluorite structures. Note that in the
fluorite structure the coordination number of the cations is 8. and the anions are in a
simple cubic arrangement. Both these structures can be viewed as two interlaced structures.
an FCC and a simple cubic.

shown in Fig. 3. la. Similarly, the zinc blende (Fig. 3.1c) structure is one in
which half the tetrahedral sites are filled.

Hexagonal close-packed

Wurtzite, nickel arsenide, cadmium iodide, corundum, illmenite, and olivine
are all structures in which the anion arrangement is HCP. For example, in
corundum (A12O3) the oxygen ions are hexagonally close-packed, and the
Al ions fill two-thirds of the available octahedral sites. In contrast, if one-
half the tetrahedral sites are filled, the resulting structure is wurtzite (Fig.

Fluorite and antifluorite structures

The antifluorite structure is best visualized by placing the anions in an FCC
arrangement and filling all the tetrahedral sites with cations, as shown in
Fig. 3.5. The resulting stoichiometry is M2X with the oxides and chalco-
genides of the alkali metals, for example, Li2O, Na2O, Li2S. Li2Se,
crystallizing in this structure.

In the fluorite structure, also shown in Fig. 3.5, the situation is reversed
with the anions filling all the tetrahedral interstices of the close-packed cation
sublattice. The resulting compound is MX2. The oxides of large quadrivalent
cations (Zr, Hf, Th) and the fluorides of large divalent cations (Ca. Sr. Ba.
Cd, Hg, Pb) both crystallize in that structure. Another way to view this struc-
ture is to focus on the anions, which are in a simple cubic arrangement (see
Fig. 3.5) with alternate cubic body centers occupied by cations. If viewed
from this perspective, the eightfold coordination of the cations becomes
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obvious, which is not surprising since rc/ra now approaches 1, which
according to Fig. 3.3 renders the cubic arrangement stable.

3.3.3 Rutile Structure

An idealized version of the rutile structure, shown in Fig. 3.6, can be viewed
as consisting of TiO6 octahedra that share corners and faces in such a way
that each oxygen is shared by three octahedra. The structure also can be
viewed as rectilinear ribbons of edge-shared TiO6 octahedra joined together
by similar ribbons, with the orientations of the adjacent ribbons differing by
90°. The relationship between the unit cell (Fig. 3.6b) and the stacking of the
octahedra is shown in Fig. 3.6c. It should be noted that the actual structure
comprises distorted octahedra rather than the regular ones shown here.

3.3.4 Other Structures

Table 3.3 does not include all binary oxides. However, for the most part,
those not listed in the table are derivatives of the ones that are. To illustrate,
consider the structure of yttria, shown in Fig. 3.7. Each cation is surrounded
by six anions located at six of the eight corners of a cube. In half the cubes,
the missing oxygens lie at the end of a face diagonal, and for the remaining
half the missing oxygen falls on a body diagonal. The unit cell contains 48
oxygen ions and 32 yttrium ions; i.e., the full unit cell contains four layers
of these minicubes, of which only the first row is shown here for clarity's
sake. The structure shown in Fig. 3.7 is an idealized version; the actual posi-
tions of the oxygen atoms are shifted from the cube corners so that each
yttrium atom occupies a strongly distorted octahedral site. This structure
may appear quite complicated at first sight, but upon closer inspection its
relationship to the fluorite structure becomes obvious.

WORKED EXAMPLE 3.2

Consider two hypothetical compounds MX and MX2with rc/ravalues of 0.3 and
0.5, respectively. What possible structures can either of them adopt?

Answer

For the MX compound, the radius ratio predicts that the tetrahedral arrange-
ment is the most stable. From Table 3.3, the only structure that would simulta-
neously satisfy the radius ratio requirements and the chemistry is zinc blende or
wurtzite; all others would be eliminated. Which of these two structures is more
stable is a more difficult question to answer and is a topic of ongoing research
that depends subtly on the interactions between ions.

By using similar arguments, the case can be made that the only possible
structures for the MX2 compound are rutile and cadmium iodide.
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Figure 3.6. (a) Idealized stacking of TiO6 octahedra in rutile. (b) Unit cell of rutile
showing Ti-O bonds. (c) Stacking of TiO6 octahedra and their relationship to the unit
cell. Two unit cells are shown by dotted lines.
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vv Oxygen

W Yttrium in "irregular" octahedral site

© Yttrium in "regular" octahedral site

Figure 3.7. Idealized crystal structure of Y2O3. Note two types of octahedral cation sites
in alternating layers.

3.4 Composite Crystal Structures

In the preceding section, the structures of binary ceramics were discussed.
As the number of elements in a compound increases, however, the
structures naturally become more complex since the size and charge
requirements of each ion differ. And while it is possible to describe the
structures of ternary compounds by the scheme shown in Table 3.1, an
alternative approach, which is sometimes more illustrative of the co-
ordination number of the cations, is to imagine the structure to be made
of the various building blocks shown in Fig. 3.3. In other words, the
structure can be viewed as a three-dimensional jigsaw puzzle. Examples
of such composite crystal structures are shown in Fig. 3.8. Two of the
more important complex structures are spinels and perovskites; described
below.
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Figure 3.8. Examples of composite crystal structures. (a) Antifluorite structure, provided
the octahedra are not occupied. (b) Perovskite structure (CaTiO3). At the center of each
cuboctahedron is a Ca ion. Each Ca cuboctahedron is surrounded by eight titania octa-
hedra. Also see Fig. 3.9.

3.4.1 Perovskite Structure

Perovskite is a naturally occurring mineral with composition CaTiO3. It was
named after a 19th-century Russian mineralogist, Count Perovski. The
general formula is ABX3; and its idealized cubic structure is shown in
Figs. 3.8b and 3.9, where the larger A cations, Ca in this case, are surrounded
by 12 oxygens, and the smaller B (Ti4+) ions are coordinated by 6 oxygens.

Perovskites, like the spinels discussed in the next subsection, are able to
accommodate a large number of cationic combinations as long as the overall
crystal is neutral. For instance; NaWO3, CaSnO3, and YA1O3 all crystallize
in that structure or modified versions of it. The modified versions usually
occur when the larger cation is small, which tends to tilt the axis of the B
octahedra with respect to their neighbors. This results in puckered networks
of linked B octahedra which are the basis for one of the unusual electrical
properties of perovskites, namely, piezoelectricity, discussed in greater
detail in Chap. 15.

Also note that several AB3 structures can be easily derived from the
perovskite structure (Fig. 3.9) by simply removing the atom in the body-
centered position. Several oxides and fluorides, such as ReO3, WO3, NbO3.
NbF3, and TaF3, and other oxyfluorides such as TiOF2 and MoOF2 crystallize
in that structure.

3.4.2 Spinel Structure

This structure is named after the naturally occurring mineral MgAl2O4, and
its general formula is AB2O4. where the A and B cations are in the +2 and +3
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Ti Ca2+

Figure 3.9. The perovskite structure centered on the Ti ion. See Fig. 3.8b for representa-
tion centered on a Ca ion.

oxidation states, respectively. The structure is shown in Fig. 3.10a, where
emphasis is on the FCC stacking31 of the oxygen ions; the cations, on the
other hand, occupy one-eighth of the tetrahedral sites and one-half of the
octahedral sites (see Table 3.3). The same structure, when viewed from a
unit cell perspective, is shown in Fig. 3.10b.

When the A2+ ions exclusively occupy the tetrahedral sites and the B3+

ions occupy the octahedral sites, the spinel is called a normal spinel. Usually
the larger cations tend to populate the larger octahedral sites, and vice
versa. In the inverse spinel, the A2+ ions and one-half the B3+ ions occupy
the octahedral sites, while the other half of the B3+ ions occupy the
tetrahedral sites.

As discussed in greater detail in Chap. 6, the oxidation states of the
cations in spinel need not be restricted to +2 and +3, but may be any combi-
nation as long as the crystal remains neutral. This important class of ceramics
is revisited in Chap. 15, when magnetic ceramics are dealt with.

3.5 Structure of Covalent Ceramics

The building block of silicon-based covalent ceramics, which include among
others the silicates (dealt with separately in the next section) SiC and Si3N4, is
in all cases the Si tetrahedron; SiO4 in the case of silicates, SiC4 for SiC, and
SiN4 for Si3N4. The reasons Si bonds tetrahedrally were discussed in the last
chapter.

Figure 3.10b illustrates nicely the ABCABC or FCC stacking sequence of the anions and how
that stacking defines two types of interstitial sites.
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• Metal ion in tetrahedral site

O Metal ion in octahedral site

O Oxygen ion

Fraction of
sites occupied

l — A
1/4 T
1/4 O
1/4 T
1 C

3/4

[ill]
3 / 4 O f

1 A

O O2' ions in cubic close-packing (ABC planes)
• Meb ions in octahedrally coordinated sites (O planes)

° Mea ions in tetrahedrally coordinated sites (T planes)

Figure 3.10. (a) Two octants of the spinel structure, (b) Spinel structure viewed by stack-
ing the oxygens in close packing.
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Figure 3.11. Structure of /3-Si3N4 is hexagonal and made up of puckered six-member
rings linked together at corners. The dark tetrahedra stick out of the plane of the paper
while the light ones are pointed into the plane of the paper. The unit cell is dashed.

Si3N4 exists in two polymorphs a and (3. The structure of the ft poly-
morph is shown in Fig. 3.11, where a fraction of the nitrogen atoms are
linked to two silicons and others to three silicons. The structure of SiC
also exists in many polymorphs, the simplest of which is cubic SiC, which
has the zinc blende structure and is shown in Fig. 3.12 and 3.1c.

Figure 3.12. Structure of hexagonal SiC which crystallizes in the wurtzite structure.
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3.6 Structure of Silicates

The earth's crust is about 48 percent by weight oxygen, 26 percent silicon.
8 percent aluminum, 5 percent iron, and 11 percent calcium, sodium, potas-
sium, and magnesium combined. Thus it is not surprising that the earth's
crust and mantle consist mainly of silicate minerals. The chemistry and struc-
ture of silicates can be quite complex indeed and cannot possibly be covered
in detail here. Instead, a few guidelines to understanding their structure are
given below.

Before proceeding much further, it is important to distinguish between
two types of oxygens that exist in silicate structures, namely, bridging and
nonbridging oxygens. An oxygen atom that is bonded to two Si atoms is a
bridging oxygen, whereas one that is bonded to only one Si atom is non-
bridging. Nonbridging oxygens (NBOs) are formed by the addition of. for
the most part, either alkali or alkali-earth metal oxides to silica according to

I I I M + I
0 0 0 O
1 I I "O. I

-0- Si -O- Si -O + M2O -> -0- Si. Si-O-
I I 1 0 1

O O O ..+ O
I I I M

where O" denotes a nonbridging oxygen. It is worth noting here that the
NBOs are negatively charged and that local charge neutrality is maintained
by having the cations end up adjacent to the NBOs. Furthermore, based on
this equation, the following salient points are noteworthy:

1. The number of NBOs is proportional to the number of moles of alkali or
alkali-earth metal oxide added (see Worked Example 3.3).

2. The addition of alkali or alkali-earth metal oxides to silica must
increase the overall O/Si ratio of the silicate.

3. Increasing the number of NBOs results in the progressive breakdown of
the silicate structure into smaller units.

It thus follows that a critical parameter that determines the structure of a
silicate is the number of NBOs per tetrahedron, which in turn is determined by
the O/Si ratio. How this ratio determines structure is discussed below; but
before addressing this point, it is important to appreciate that in general
the following principles also apply:

1. The basic building block is the SiO4 tetrahedron. The Si-O bond is
partly covalent and the tetrahedron satisfies both the bonding require-
ments of covalent directionality and the relative size ratio.

2. Because of the high charge on the Si4+ ion, the tetrahedral units are
rarely joined edge to edge and never face to face, but almost always
share corners, with no more than two tetrahedra sharing a corner.
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Figure 3.13. Effect of corner edge, and face sharing on cation—cation separation. The
distances S1 : S2 : S3 are in the ratio 1: 0.58 : 0.33; that is; cation—cation repulsion increases
on going from left to right, which tends to destabilizes the structure.

The reason behind this rule, first stated by Pauling, is demonstrated in
Fig. 3.13, where it is obvious that the cation separation distance
decreases in going from corner to edge to face sharing. This in turn
results in cation-cation repulsions and a decrease in the stability of
the structure.

The relationship between the O/Si ratio, which can only vary between 2
and 4, and the structure of a silicate is illustrated in Table 3.4.32 Depending
on the shape of the repeat units, these structures have been classified as three-
dimensional networks, infinite sheets, chains, and isolated tetrahedra. Each
of these structures is discussed in some detail below.

Silica

For a ratio of 2, that is, SiO2, each oxygen is linked to two silicons and each
silicon is linked to four oxygens, resulting in a three-dimensional network, as
shown at the top of Table 3.4. The resulting structures are all allotropes of
silicas which, depending on the exact arrangement of the tetrahedra, include
among others quartz, tridymite, and cristobalite. If, however, long-range
order is lacking, the resulting solid is labeled amorphous silica or fused
quartz (see Chap. 9 for more details concerning the structure of fused silica).

Sheet silicates

When three out of four oxygens are shared, i.e., for an O/Si ratio of 2.5, a
sheet structure results (Table 3.4). Clays, talcs Mg3(OH)2(Si2O5)2, and
micas KAl2(OH)2(AlSi3O10) are typical of that structure. Kaolinite clay

Implicit in Table 3.4 is that each O atom not shared between two Si tetrahedra, i.e., the
nonbridging oxygens, is negatively charged.



72 Fundamentals of Ceramics

Al2(OH)4(Si2O5), shown schematically in Fig. 3.14a, is composed of
(Si2O5)

2- sheets that are held together by positively charged sheets of
A1-O,OH octahehdra (Fig. 3.14b). This structure helps explain why
clays absorb water so readily; the polar water molecule is easily absorbed
between the top of the positive sheets and the bottom of the silicate sheets
(Fig. 3.14c).

Table 3.4. Relationship between silicate structure and the O/Si ratio

Structure O/Si No. of oxygens per Si Structure and
ratio examples

Bridg. Non-bridg.

A A A

2.00 4.0 0.0 Three-dimensional
network quartz,
tridymite.
cristabolite are all
polymorphs of
silica

2.50 3.0 1.0 Infinite sheets
Na2Si2O5 Clays
(kaolinite)

Repeat unit (Si4O10)
4

A A r/

V V iV
Repeat unit (Si4On)

6-

2.75 2.5 1.5 Double chains,
e.g.. asbestos

A ^N , ^K' 3.00 2.0
/*\ \jr\^v v v^ jv

Repeat unit (SiO3)
2-

1 * 4.00 0.0

/K A
Repeat unit (SiO4)

4-

2.0 Chains (SiO3);"~,
Na>SiO,. MgSiO,

4.0 Isolated SiOt~.
tetrahedra
Mg2SiO4 olivine,
Li4SiO4

The simplest way to determine the number of nonbridging oxygens per Si is to divide the
charge on the repeat unit by the number of Si atoms in the repeat unit.
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In mica, shown in Fig. 3.14d, aluminum ions substitute for one-fourth of
the Si atoms in the sheets, requiring an alkali ion such as K+ in order for the
structure to remain electrically neutral. The alkali ions fit in the "holes" of
the silicate sheets and bond the sheets together with an ionic bond that is

CS,205>- layer { AAAAAAAA

Al2(OH)riayer
OH~ otr OH" ofr OH*

3+ A,3+

AAAAAAAA
( a )

AAAAAAAA
K+ K+ K+ K+ K+ K+ K+ K+

vvvvvvvv

(AlSi2O10)5- layer

K+ K+ K+

wvvvvw

O O
®K
O Al/Si
® (OH)
• Al

( d )

Figure 3.14. (a) Structure of kaolinite clay (showing layered structure). (b) Same structure
as in (a) but emphasizing bonding of A13+ ions, (c) Same as (b) but hydrated. Note polar
water molecule easily absorbs in between the layers. (d) Structure of mica. (e) Same as (d)
but emphasizing nature of bonding between sheets.
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somewhat stronger than that in clays (Fig. 3.14d). Thus whereas mica does
not absorb water as readily as clays do, little effort is required to flake off
a very thin chip of the material.

Chain silicates

For O/Si ratios of 3.0, infinite chains or ring structures result. The most
notorious of this class is asbestos, in which the silicate chains are held
together by weak electrostatic forces that are easier to pull apart than the
bonds holding the chains together. This results in the stringy, fibrous struc-
tures that embed themselves in the human lung with devastating long-term
consequences.

Island silicates

When the O/Si ratio is 4, the structural units are the isolated (SiO4)
4- tetra-

hedra which cannot join to each other but are connected by the positive ions
in the crystal structure. The resulting structure is termed an island silicate
for which garnets (Mg, Fe2+,Mn,Ca)3(Cr,Al,Fe3+)2(SiO4)3 and olivines
(Mg, Fe2+)2(SiO4) are examples.33 Here the (SiO4)

4- tetrahedron behaves
as an anion and the resulting pseudobinary structure is ionically bonded.

Aluminosilicates

Aluminum plays an interesting role in silicates. Either the Al3+ ions can
substitute for the Si4+ ion in the network, in which case the charge has to
be compensated by an additional cation (e.g., mica), or it can occupy octa-
hedral and/or tetrahedral holes between the silicate network, as in the case
for clays.

When Al substitutes for Si in the network, the appropriate ratio for
determining the structure is the O/(A1 + Si) ratio. So, e.g., for albite
(NaAlSi3O8) anorthite (CaAl2Si2O8), eucryptite (LiAlSiO4), orthoclase
(KAlSi3O8), and spodune (LiAlSi2O6), the ratio O/(A1 + Si) is 2; and in all
cases a three-dimensional structure is expected and indeed observed. As a
result of this three-dimensionality, the melting points of some of these
silicates are among the highest known.

It should be obvious from the preceding discussion that with the notable
exception of silica and some of the aluminosilicates, most silicates exhibit
mixed bonding, with the bonding within the silicate network, i.e.. the
Si-O-Si bonds, being quite different from those bonds holding the units

Separating elements by a comma denotes that these elements can be found in various pro-
portions without changing the basic structure. For example, the end members Mg2(SiO4)
and Fe2(SiO4) and any combination in between denoted as (Mg, Fe)2(SiO4) would all exhibit
the same structure.
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together, which can be either ionic or weak secondary bonds depending on
the material.

WORKED EXAMPLE 3.3

(a) Derive a generalized expression relating the number of nonbridging oxygens
per Si atom present in a silicate structure to the mole fraction of metal oxide
added. (b) Calculate the number of bridging and nonbridging oxygens per Si
atom for Na2O • 2SiO2. What is the most likely structure for this compound?

Answer

(a) The simplest way to obtain the appropriate expression is to realize that in
order to maintain charge neutrality, the number of NBOs has to equal the
total cationic charge. Hence starting with a basis of y mol of SiO2, the addition
of 77 moles of M^O results in the formation of z(C,rf) NBOs, where z is the charge
on the modifying cation. Thus the number of nonbridging oxygens per Si atom is
simply:

y

The corresponding O/Si ratio, denoted by R, is

(b) For Na2O-2SiO2, 77 =1, C = 2, and y = 2. Consequently, NBO =
(2 x 1 x l)/2 = 1, and the number of bridging oxygens per Si atom is
4 — 1 = 3 . Furthermore, since R = 2.5, it follows that the most likely structure
of this silicate is a sheet structure (Table 3.4).

3.7 Lattice Parameters and Density

Lattice parameters

As noted in Chap. 1, every unit cell can be characterized by six lattice
parameters — three edge lengths a, b, and c and three interaxial angles a,
0, and 7. On this basis, there are seven possible combinations of a, b, and
c and o, [3, and 7 that correspond to seven crystal systems (see Fig. 1.2).
In order of decreasing symmetry, they are cubic, hexagonal, tetragonal,
rhombohedral, orthorhombic, monoclinic, and triclinic. In the remainder
of this section, for the sake of simplicity the discussion is restricted to the
cubic system for which a = b = c and a — /? = 7 = 90°. Consequently, this
system is characterized by only one parameter, usually denoted by a.

The lattice parameter is the length of the unit cell, which is defined to
be the smallest repeat unit that satisfies the symmetry of the crystal. For
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example, the rock salt unit cell shown in Fig. 3.la contains four cations and
four anions, because this is the smallest repeat unit that also satisfies the
requirements that the crystal possess a fourfold symmetry (in addition to
the threefold symmetry along the body diagonal). It is not difficult to
appreciate that if only one quadrant of the unit cell shown in Fig. 3.10 were
chosen as the unit cell, such a unit would not possess the required symmetry.
Similar arguments can be made as to why the unit cell of Y2O3 is the one
depicted in Fig. 3.7, or that of spinel is the one shown in Fig. 3.10, etc.

Density

One of the major attributes of ceramics is that as a class of materials, they are
less dense than metals and hence are attractive when specific (i.e., per unit
mass) properties are important. The main factors that determine density
are, first, the masses of the atoms that make up the solid. Clearly, the heavier
the atomic mass, the denser the solid, which is why NiO, for example, is
denser than NaCl. The second factor relates to the nature of the bonding
and its directionality. Covalently bonded ceramics are more "open"
structures and tend to be less dense, whereas the near-close-packed ionic
structures, such as NaCl, tend to be denser. For example, MgO and SiC
have very similar molecular weights («40 g) but the density of SiC is less
than that of MgO (see Worked Example 3.4, and Table 4.3).

WORKED EXAMPLE 3.4

Starting with the radii of the ions or atoms, calculate the theoretical densities of
MgO and SiC.

Answer

The density of any solid can be determined from a knowledge of the unit cell.
The density can be calculated from

weight of ions within unit cell w'(Y^ MC + 5Z ̂  \)
- — —-

volume of unit cell ^C^AV

where n' = number of formula units within the unit cell.
^ Mc — sum of atomic weights of all cations within unit cell
^ MA = sum of atomic weights of all anions within unit cell
Vc = unit cell volume
NAv = Avogadro's number

MgO has the rock salt structure which implies that the ions touch along the
side of the unit cell. Refer to Fig. 3.la. The lattice parameter = 2rMg + 2ro =
2(126 + 86) = 424 pm.

The atomic weight of Mg is 24.31 g/mol. whereas the atomic weight of O is
16g/mol. Since there are four magnesium and four oxygen ions within the unit
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cell, it follows that

4(16 + 24.31) ,n — ... v '. = 3 51 2 cm
(6.022 x 1023)(424 x 10 -10)3

To calculate the lattice parameter a for SiC (Fig. 3.1c) is a little trickier
since the atoms touch along the body diagonal with length \/3a. The Si-C
distance is thus equal to one-fourth the length of the body diagonal. The
atomic34 radius of Si is 118 pm, while that of C is 71 pm. It follows that

— a= 118 + 71
4

a = 436pm

Given that each unit cell contains four C and four Si atoms, with molecular
weights of 12 and 28.09, respectively, applying the formula for the density gives

4(12 + 28.09) 3p = ., -——-—-77—5- = 3.214gcm
(6.022 x 1023)(436 x l0 -10)3

Note that while the weights of the atoms in the unit cell are very
comparable, the lower density for SiC is a direct consequence of the larger
lattice parameter that reflects the more "open" structure of covalently bonded
solids.

Experimental Details: Determining Crystal Structures,
Lattice Parameters, and Density

Crystal Structures and Lattice Parameters

By far the most powerful technique to determine crystal structure employs
X-ray or neutron diffraction. The essentials of the technique are shown in
Fig. 3.15 where a collimated X-ray beam strikes a crystal. The electrons of
the crystal scatter the beam through a wide angle, and for the most part
the scattered rays will interfere with each other destructively and will
cancel. At various directions, however, the scattered X-rays will interfere
constructively and will give rise to a strong reflection.

The condition for constructive interference corresponds to that when the
scattered waves are in phase. In Fig. 3.l5a, the wavefront labeled 1 would
have to travel a distance AB + BC farther than the wavefront labeled 2.
Thus if and when AB + BC is a multiple of the wavelength of the incident
X-ray A, that is,

AB + BC = n\

The use of ionic radii listed in App. 3A is inappropriate in this case because the bonding is
almost purely covalent. (See periodic table printed on inside front cover.)
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Figure 3.15. (a) Scattering of waves by crystal planes. While the angle of the scattered
waves will depend only on d, the intensity will depend on the nature of the scatterers. as
is clear when one compares (b) and (c). They both have the same lattice type, but quite
different unit cells and crystal structures, which in turn would be reflected in the intensity
of the scattered waves.

coherent reflection will result. It is a trivial exercise in trigonometry to show
that

where 9 is the angle of incidence of the X-ray on the crystal surface defined in
Fig. 3.15a. Combining the two equations results in the diffraction condition,
also known as Bragg's law:

2dhklsin9 = n\. n=\.2,... (3.1)

where dhkl is the distance between adjacent planes in a crystal.
There are numerous X-ray diffraction techniques. The idea behind them

all, however, is similar: Either the beam is moved relative to the diffracting
crystals, and the intensity of the diffracted beam is measured as a function
of angle #; or the beam is fixed, the crystal is rotated, and the angles at
which the diffraction occurs are recorded.

Note that the angle at which diffraction occurs is only part of the
information that is needed and used to determine crystal structures — the
intensity of the diffracted beam is also an indispensable clue. This can be
easily grasped by comparing the two lattices in Fig. 3.15b and c. If the
only information available were the angle of diffraction, then these two
quite different structures would be indistinguishable. Constructive or
destructive interference between the atoms within the molecules, in
Fig. 3.15c, would clearly result in X-ray intensities that would be different
from the ones shown in Fig. 3.15b. for example. Thus while the angle at
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which scattering occurs depends on the lattice type, the intensity depends on
the nature of the scatterers.

Density

Measuring the density of a 100 percent dense ceramic is relatively straight-
forward. If the sample is uniform in shape, then the volume is calculated
from the dimensions, and the weight is accurately measured by using a
sensitive balance. The ratio of mass to volume is the density.

A more accurate method for measuring the volume of a sample is to
make use of Archimedes' principle, where the difference between the
sample weight in air wair and its weight in a fluid wfluid, divided by the density
of the fluid Afluid, gives the volume of the liquid displaced, which is identical to
the volume of the sample. The density of the sample is then simply

p —

Ceramics are not always fully dense, however, and open porosities can
create problems in measuring the density. Immersion of a porous body in
a fluid can result in the fluid penetrating the pores, reducing the volume of
fluid displaced, which consequently results in densities that appear higher
than actual. Several techniques can be used to overcome this problem. One
is to coat the sample with a very thin layer of molten paraffin wax, to seal
the pores prior to immersion in the fluid. Another is to carry out the
measurement as described above, remove the sample from the fluid, wipe
any excess liquid with a cloth saturated with the fluid, and then measure
the weight of the fluid-saturated sample. The difference in weight
Wsat — Wair is a measure of the weight of the liquid trapped in the pores,
which when divided by /fluid, yields the volume of the pores. For greater
detail it is best to refer to the ASTM test methods.

3.8 Summary

Ceramic structures can be quite complicated and diverse, and for the most
part depend on the type of bonding present. For ionically bonded
ceramics, the stoichiometry and the radius ratio of the cations to the
anions are critical determinants of structure. The former narrows the
possible structures, and the latter determines the local arrangement of the
anions around the cations. The structures can be best visualized by focusing
first on the anion arrangement which, for the vast majority of ceramics, is
FCC, HCP, or simple cubic. Once the anion sublattice is established, the
structures that arise will depend on the fractional cationic occupancy of
the various interstitial sites defined by the anion sublattice.
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The structures of covalent ceramics that are Si-based are based on the
SiX4 tetrahedron. These tetrahedra are usually linked to each other at the
corners. For silicates, the building block is the SiO4 tetrahedron. The most
important parameter in determining the structure of silicates is the O/Si
ratio. The minimum ratio is 2 and results in a three-dimensional network.
The addition of modifier oxides to silica increases that ratio and results in
both the formation of nonbridging oxygens and the progressive breakdown
of the structure. As the O/Si ratio increases; the structure changes to sheets,
chains, and finally island silicates, when the ratio is 4.

Appendix 3A

Ionic Radii

Table 3A.1 Effective ionic radii of the elements

Ion

Ac3-
Ag+

Ag2+

Ag2+

Ag3+

Al3"

Am2+

Am3+

Am4+

As3+

As5+

Coordi-
nation no.

4
2
4
4 SQ
5
6
7
8
4 SQ
6
4 SQ
6
4
5
6
7
8
9
6
8
6
8
6
4
6

pm

126.0
81.0

114.0
116.0
123.0
129.0
136.0
142.0
93.0

108.0
81.0
89.0
53.0
62.0
67.5

135.0
140.0
145.0
111.5
123.0
99.0

109.0
72.0
47.5
60.0

Ion

At7+

Au+

Au3+

Au5+

B3+

Ba2+

Be2+

Bi3+

Bi5+

Bk3+

Bk4+

Coordi-
nation no.

7
6
4 SQ
6
6
3
4
6
6
7
8
9

10
11
12
3
4
6
5
6
8
6
6
6
8

pm

76.0
151.0
82.0
99.0
71.0
15.0
25.0
41.0

149.0
152.0
156.0
161.0
166.0
171.0
175.0
30.0
41.0
59.0

110.0
117.0
131.0
90.0

110.0
97.0

107.0

Ion Coordi-
nation no.

Br~ 6
Br3+ 4 SQ
Br5+ 3 PY
Br7+ 4

6
C4* 3

4
6

Ca2+ 6
7
8
9

10
12

Cd2* 4
5
6
7
8

12
Ce-* 6

7
8
9

10

pm

182.0
73.0
45.0
39.0
53.0
6.0

29.0
30.0

114.0
120.0
126.0
132.0
137.0
148.0
92.0

101.0
109.0
117.0
124.0
145.0
115.0
121.0
128.3
133.6
139.0
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Table 3A.1 Continued

Ion

Ce3+

Ce4+

Cf3+

Cf4+

Cl
C15+

C17+

Cm3+

Cm4+

Co2+

Co3+

Co4+

Cr2+

Cr3t

Cr4+

Cr5+

Cr6+

Cs+

Cu+

Coordi-
nation no.

12
6
8

10
12
6
6
8
6
3PY
4
6
6
6
8
4 HS b
5
6 LS c

HS
8
6 LS

HS
4
6 HS
6 LS

HS
6
4
6
4
6
8
4
6
6
8
9

10
11
12
2
4
6

pm

148.0
101.0
111.0
121.0
128.0
109.0
96.1

106.0
167.0
26.0
22.0
41.0

111.0
99.0

109.0
72.0
81.0
79.0
88.5

104.0
68.5
75.0
54.0
67.0
87.0
94.0
75.5
55.0
69.0
48.5
63.0
71.0
40.0
58.0

181.0
188.0
192.0
195.0
199.0
202.0
60.0
74.0
91.0

Ion Coordi-
nation no.

Cu2+ 4
4 SQ
5
6

Cu3+ 6 LS
D+ 2
Dy2+ 6

7
8

Dy3+ 6
7
8
9

Er3+ 6
7
8
9

Eu2+ 6
7
8
9

10
Eu3+ 6

7
8
9

F- 2
3
4
6

F7+ 6
Fe2+ 4 HS

4 SQ HS
6 LS

HS
8 HS

Fe3+ 4 HS
5
6 LS

HS
8 HS

Fe4+ 6
Fe6+ 4

pm

71.0
71.0
79.0
87.0
68.0
4.0

121.0
127.0
133.0
105.2
111.0
116.7
123.5
103.0
108.5
114.4
120.2
131.0
134.0
139.0
144.0
149.0
108.7
115.0
120.6
126.0
114.0
116.0
117.0
119.0
22.0
77.0
78.0
75.0
92.0

106.0
63.0
72.0
69.0
78.5
92.0
72.5
39.0

Ion

Fr+

Ga3+

Gd3+

Ge2+

Ge4+

H+

Hf4+

Hg+

Hg2+

Ho3+

I
,5+

j7+

In3+

Ir3+

Ir4+

Ir5+

K+

Coordi-
nation no.

6
4
5
6
6
7
8
9
6
4
6
1
2
4
6
7
8
3
6
2
4
6
8
6
8
9

10
6
3PY
6
4
6
4
6
8
6
6
6
4
6
7
8
9

pm

194.0
61.0
69.0
76.0

107.8
114.0
119.3
124.7
87.0
53.0
67.0
24.0
4.0 +
4.0
85.0
90.0
97.0

111.0
133.0
83.0

110.0
116.0
128.0
104.1
115.5
121.2
126.0
206.0

58.0
109.0
56.0
67.0
76.0
94.0

106.0
82.0
76.5
71.0

151.0
152.0
160.0
165.0
269.0
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Table 3A.1 Continued

Ion

K"

La3+

Li"

Lu3+

Mg2+

Mn2+

Mn2+

Mn3+

Mn4+

Mn5+

Mn6+

Mn7+

Mo3+

Mo4"
Mo5-

Mo6"

N3-

N3+

N5+

Coordi-
nation no.

10
12
6
7
8
9

10
12
4
6
8
6
8
4
5
6
8
4 HS
5 HS
6 LS

HS
7 HS
8
5
6 LS

HS
4
6
4
4
4
6
6
6
4
6
4
5
6
7
4
6
3

pm

173.0
178.0
117.2
124.0
130.0
135.6
141.0
150.0
73.0
90.0

106.0
100.1
111.7
71.0
80.0
86.0

103.0
80.0
89.0
81.0
97.0

104.0
110.0
72.0
72.0
78.5
53.0
67.0
47.0
39.5
39.0
60.0
83.0
79.0
60.0
75.0
55.0
64.0
73.0
87.0

132.0
30.0
4.4

Ion

N5+

Na+

Nb3+

Mb4+

Mb5+

Nd2+

Nd3+

Ni2+

Ni3+

Ni4+

No2+

Np2+

Np3+

Np4+

Np5+

Np6+

Np7+

O2

OH

Coordi-
nation no.

6
4
5
6
7
8
9

12
6
6
8
4
6
7
8
8
9
6
8
9

12
4
4 SQ
5
6
6 LS

HS
6 LS
6
6
6
6
8
6
6
6
2

3
4
6
8
2
3

pm

27.0
113.0
114.0
116.0
126.0
132.0
138.0
153.0
86.0
82.0
93.0
62.0
78.0
83.0
88.0

143.0
149.0
112.3
124.9
130.3
141.0
69.0
63.0
77.0
83.0
70.0
74.0
62.0

124.0
124.0
115.0
101.0
112.0
89.0
86.0
85.0

121.0
122.0
124.0
126.0
128.0
118.0
120.0

Ion

OH-

Os4-
Os"
Os6-

Os7*
Os8-
P3-
P5-

Pa3-
Pa4-

Pa5-

Pb2+

Pb4+

Pd+
Pd2+

Pd3+

Pd4+

Pm3+

Po4-

Po2-
Pr3-

Coordi-
nation no.

4
6
6
6
5
6
6
4
6
4
5
6
6
6
8
6
8
9
4PY
6
7
8
9

10
11
12
4
5
6
8
2

4 SQ
6
6
6
6
8
9
6
8
6
6
8

pm

121.0
123.0
77.0
71.5
63.0
68.5
66.5
53.0
58.0
31.0
43.0
52.0

118.0
104.0
115.0
92.0

105.0
109.0
112.0
133.0
137.0
143.0
149.0
154.0
159.0
163.0
79.0
87.0
91.5

108.0
73.0
78.0

100.0
90.0
75.5

111.0
123.3
128.4
108.0
122.0
81.0

113.0
126.6
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Table 3A.1 Continued

Ion

Pr3+

Pr 4+

Pt2+

pt4+

Pt5+

Pu3+

Pu4+

Pu5+

Pu6+

Ra2+

Rb4

Re4+

Re5+

Re6+

Re7+

Rh3+

Rh44

Rh5+

Ru3+

Ru4+

Ru5+

Ru7+

RU8+

S2-

S44

§6+

Sb3+

Sb5+

Coordi-
nation no.

9
6
8
4 SQ
6
6
6
6
6
8
6
6
8

12
6
•7

8
9

10
1!
12
14
6
6
6
4
6
6
6
6
6
6
6
4
4
6
6
4
6
4 PY
5
6
6

pm

131.9
99.0

110.0
74.0
94.0
76.5
71.0

114.0
100.0
110.0
88.0
85.0

162.0
184.0
166.0
170.0
175.0
177.0
180.0
183.0
186.0
197.0
77.0
72.0
69.0
52.0
67.0
80.5
74.0
69.0
82.0
76.0
70.5
52.0
50.0

170.0
51.0
26.0
43.0
90.0
94.0
90.0
74.0

Ion

Sc3+

Se2-
Se4+

Se6+

Si4+

Sm2+

Sm3+

Sn4+

Sr2+

Ta3+

Ta4+

Ta5+

Tb3+

Tb4+

Tc4+

Tc5+

Tc7+

Tc7+

Te2

Coordi-
nation no.

6
8
6
6
4
6
4
6
7
8
9
6
7
8
9

12
4
5
6
7
8
6
7
8
9

10
12
6
6
6
7
8
6
7
8
9
6
8
6
6
4
6
6

pm

88.5
101.0
184.0
64.0
42.0
56.0
40.0
54.0

136.0
141.0
146.0
109.8
116.0
121.9
127.2
138.0
69.0
76.0
83.0
89.0
95.0

132.0
135.0
140.0
145.0
150.0
158.0
86.0
82.0
78.0
83.0
88.0

106.3
112.0
118.0
123.5
90.0

102.0
78.5
74.0
51.0
70.0

207.0

Ion Coordi-
nation no.

Te4+ 3
4
6

Te6+ 4
6

Th4+ 6
8
9

10
11
12

Ti2+ 6
Ti3+ 6
Ti4+ 4

5
6
8

Tl4 6
8

12
Tl34 4

6
8

Tm24 6
7

Tm34 6
8
9

U3" 6
U4+ 6

7
8
9

12
U54 6

7
U64 2

4
6
7
8

V2+ 6
V3" 6

pm

66.0
80.0

1 1 1 .0
57.0
70.0

108.0
119.0
123.0
127.0
1 32.0
135.0
100.0
81.0
56.0
65.0
74.5
88.0

164.0
173.0
184.0
89.0

102.5
112.0
117.0
123.0
102.0
113.4
119.2
116.5
103.0
109.0
114.0
119.0
131.0
90.0
98.0
59.0
66.0
87.0
95.0

100.0
93.0
78.0
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Table 3A.1 Continued

Ion Coordi-
nation no.

V4"1" 5
6
8

V5+ 4
5
6

W4+ 6
W5* 6
W6+ 4

5
6

pm

67.0
72.0
86.0
49.5
60.0
68.0
80.0
76.0
56.0
65.0
74.0

Ion Coordi-
nation no.

Xe8+ 4
6

Y3+ 6
7
8
9

Yb~ 6
7
8

Ybv 6
7

pm

54.0
62.0

104.0
110.0
115.9
121.5
116.0
122.0
128.0
100.8
106.5

Ion Coordi-
nation no.

Yb3' 8
9

Zn2" 4
5
6
8

Zr4~ 4
5
6
7
8
9

pm

112.5
118.2
74.0
82.0
88.0

104.0
73.0
80.0
86.0
92.0
98.0

103.0

HS = high spin, LS — low spin; SQ = square, PY = pyramid
Source: R. D. Shannon, Acta. Crystallogr., A32, 751, 1976.

Problems

3.1. (a) Show that the minimum cation/anion radius ratio for a coordina-
tion number of 6 is 0.414.

(b) Repeat part (a) for coordination number 3.
(c) Which interstitial site is larger; the tetrahedral or the octahedral?

Calculate the ratio of the sizes of the tetrahedral and octahedral
sites.

(d) When oxygen ions are in a hexagonal close-packed arrangement,
what is the ratio of the octahedral sites to oxygen ions? What is the
ratio of the tetrahedral sites to oxygen ions?

3.2. Starting with the cubic close packing of oxygen ions:
(a) How many tetrahedral and how many octahedral sites are there

per unit cell?
(b) What is the ratio of octahedral sites to oxygen ions? What is the

ratio of tetrahedral sites to oxygen ions?
(c) What oxide would you get if one-half of the octahedral sites are

filled? Two-thirds? All?
(d) Locate all the tetrahedral sites, and fill them up with cations.

What structure do you obtain? If the anions are oxygen, what
must be the charge on the cation for charge neutrality to be
maintained?
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(e) Locate all the octahedral sites, fill them with cations, and repeat
part (d). What structure results?

3.3. Given the information given in Table 3.3, draw the zinc blende struc-
ture. What, if anything, does this structure have in common with the
diamond cubic structure? Explain.

3.4. The structure of lithium oxide has anions in cubic close packing with Li
ions occupying all tetrahedral positions.

(a) Draw the structure and calculate the density of Li2O. Hint:
Oxygen ions do not touch, but O-Li-O ions do.

Answer: p= 1.99 gcm3

(b) What is the maximum radius of a cation which can be accom-
modated in the vacant interstice of the anion array in Li2O?

Answer. rc = 1.04 A

3.5. Look up the radii of Ti4+, Ba2+, and O2 listed in App. 3A, and
making use of Pauling's size criteria, choose the most suitable cage
for each cation. Based on your results, choose the appropriate
composite crystal structure and draw the unit cell of BaTiO3. How
many atoms of each element are there in each unit cell?

3.6. Garnets are semiprecious gems with the chemical composition
Ca3Al2Si3O12. The crystal structure is cubic and is made up of three
building blocks: tetrahedra, octahedra, and dodecahedra (distorted
cubes).

(a) Which ions do you think occupy which building block?
(b) In a given unit cell, what must the ratio of the number of blocks

be?

3.7. The oxygen content y for YBa2Cu3Oy has been found to vary
between 6 and 7. The loss of oxygen also leads to a tetragonal to
orthorhombic change in structure. Find and draw the unit cells of
YBa2Cu3O6 and YBa2Cu3O7. What structure do these compounds
most resemble?

3.8. Beryllium oxide (BeO) may form a structure in which the oxygen ions
are in an FCC arrangement. Look up the ionic radius of Be2+ and
determine which type of interstitial site it will occupy. What fraction
of the available interstitial sites will be occupied? Does your result
agree with that shown in Table 3.3? If not, explain possible reasons
for the discrepancy.

3.9. Cadmium sulfide has a density of 4.82 g cm3. Using the radii of the ions
show that: (a) a cubic unit cell is not possible, (b) Propose a likely struc-
ture(s) for CdS? How many Cd2+ and S2- ions are there per unit cell?
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3.10. The compound MX has a density of 2.1 g/cm3 and a cubic unit cell with
a lattice parameter of 0.57 nm. The atomic weights of M and X are.
respectively, 28.5 and 30 g/mol. Based on this information, which of
the following structures is (are) possible: NaCl, CsCl, or zinc blende?
Justify your choices.

3.11. What complex anions (i.e. sheets, chain, island, etc.) are expected in the
following compounds?

(a) Tremolite or Ca2Mg5(OH)2Si8O22

(b) Mica or CaAl2(OH)2(Si2Al2)O10

(c) Kaolinite Al2(OH)4Si2O5

3.12. Determine the expected crystal structure including the ion positions of
the hypothetical salt AB2, where the radius of A is 154 pm and that of B
is 49pm. Assume that A has a charge of +2.

3.13. (a) The electronic structure of N is 1s22s22p3. The structure of Si3N4

is based on the SiN4 tetrahedron. Propose a way by which these
tetrahedra can be joined together in three dimensions to form a
solid, maintaining the 3:4 ratio of Si to N, other than the one
shown in Fig. 3.11.

(b) Repeat part (a) for SiC. How many carbons are attached to each
Si, and vice versa? What relationship, if any, do you think this
structure has to the diamond cubic structure?

3.14. (a) Write an equation for the formation of a nonbridging oxygen.
Explain what is meant by a nonbridging oxygen. How does one
change their number? What do you expect would happen to the
properties of a glass as the number of nonbridging oxygens
increases?

(b) What happens to silicates as the O/Si ratio increases.

3.15. What would be the formulas (complete with negative charge) of the
silicate units shown in Fig. 3.16?

Figure 3.16 Silicate units.
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3.16. (a) Derive an expression relating the mole fractions of alkali earth
oxides to the number of nonbridging oxygens per Si atom present
in a silicate structure.

(b) Repeat Worked Example 3.3b for the composition Na2O •
0.5CaO-2SiO2.

Answer: 1.5

(c) Show that chains of infinite length would occur at a mole fraction
of Na2O of 0.5, balance SiO2. What do you think the structure
would be for a composition in between 0.33 and 0.5?

(d) Show that for any silicate structure the number of nonbridging
oxygens per Si is given by NBO = 2R — 4 and the number of
bridging oxygens is 8 — 2R, where R is the O/Si ratio.

3.17. (a) Talc, Mg3(OH)2(Si2O5)2, has a slippery feel that reflects its struc-
ture. Given that information, draw a schematic of its structure.

(b) Draw a schematic representation of the structure of A1(OH)3,
assuming the A13+ ions are octahedrally coordinated and that
the aluminum octahedra are from sheets which are joined to
each other by hydroxyl bonds.
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London, 1968.
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Chapter 4

Effect of Chemical Forces on Physical
Properties

Now how curiously our ideas expand by watching
these conditions of the attraction of cohesion! —
how many new phenomena it gives us beyond
those of the attraction of gravitation!
See how it gives us great strength.

Michael Faraday, On the Various Forces of Nature

4.1 Introduction

The forces of attraction between the various ions or atoms in solids deter-
mine many of their properties. Intuitively, it is not difficult to appreciate
that a strongly bonded material would have a high melting point and stiff-
ness. In addition, it can be shown, as is done below, that its theoretical
strength and surface energy will also increase, with a concomitant decrease
in thermal expansion. In this chapter, semiquantitative relationships between
these properties and the depth and shape of the energy well, described in
Chap. 2, are developed.

In Sec. 4.2, the importance of the bond strength on the melting point of
ceramics is elucidated. In Sec. 4.3, how strong bonds result in solids with low
coefficients of thermal expansion is discussed. In Sec. 4.4, the relationship
between bond strength, stiffness, and theoretical strength is developed.
Sec. 4.5 relates bond strength to surface energy.

4.2 Melting Points

Fusion, evaporation, and sublimation result when sufficient thermal energy is
supplied to a crystal to overcome the potential energy holding its atoms
together. Experience has shown that a pure substance at constant pressure
will melt at a fixed temperature, with the absorption of heat. The amount
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of heat absorbed is known as the heat of fusion AHf, and it is the heat
required for the reaction

Solid —» Liquid

AHf is a measure of the enthalpy difference between the solid and liquid
states at the melting point. Similarly, the entropy difference ASf between
the liquid and solid is defined by

A///
&Sf = —± (4.1)

-* m

where Tm is the melting point in Kelvin. The entropy difference ASf is a
direct measure of the degree of disorder that arises in the system during
the melting process and is by necessity positive, since the liquid state is
always more disordered than the solid. The melting points and ASf- values
for a number of ceramics are listed in Table 4.1, which reveals that in general
as a class, ceramics have higher melting temperatures than, say, metals or
polymers. Inspection of Table 4.1 also reveals that there is quite a bit of
variability in the melting points.35 To understand this variability, one
needs to understand the various factors that influence the melting point.

4.2.1 Factors Affecting Melting Points of Ceramics that are Predominantly
Ionically Bonded

Ionic charge

The most important factor determining the melting point of a ceramic is the
bond strength holding the ions in place. In Eq. (2.15), the strength of an ionic
bond Ebond was found to be proportional to the product of the ionic charges
z\ and z2 making up the solid. It follows that the greater the ionic charges,
the stronger the attraction between ions, and consequently the higher the
melting point. For example, both MgO and NaCl crystallize in the rock
salt structure, but their melting points are, respectively, 2852 and 800°C —
a difference directly attributable to the fact that MgO is made up of
doubly ionized ions, whereas in NaCl the ions are singly ionized. Said
otherwise, everything else being equal, the energy well of MgO is roughly 4
times deeper than that of NaCl. It is therefore not surprising that it requires
more thermal energy to melt MgO than it does to melt NaCl.

Interestingly enough, for most solids including metals, the entropy effusion per ion lies in the
narrow range between 10 and 12 J/(mol • deg). This is quite remarkable, given the large varia-
tions in the melting points observed, and strongly suggests that the structural changes on the
atomic scale due to melting are similar for most substances. This observation is even more
remarkable when the data for the noble-gas solids such as Ar are included — for Ar with a
melting point of 83 K, AS) = 14 J/mol • K,
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Table 4.1 Melting points and entropies of fusion for selected inorganic compounds

Compound

A12O3

BaO
BeO
Bi2O3

CaO
Cr2O3

Eu2O3

Fe2O3

Fe3O4

Li2O
Li2ZrO3

Ln2O3

MgO

AgBr
AgCl
CaF2

CsCl
KBr
KC1
KF

B2O3

CaSiO3

GeO2

MgSiO3

Mg2SiO4

B4C
HfB2

HfC
HfN
HfSi
MoSi2

NbC
NbN
SiC
Si3N4

TaB2

TaC
TaSi2
ThC

Melting
point,
C

2054 ± 6
2013
2780 ± 100

825
2927 ± 50
2330 ± 15
2175 ±25

Entropy
of fusion.
J/mol. C

Compound

Oxides
47.70
25.80
30.54

24.80
49.80

Decomposes at 1735 K to
Fe3O4 and
1597 ±2
1570
1610
2325 ±25
2852

434
455

1423
645
730
776
880

450 ±2
1544
1116
1577
1898

2470 ± 20
2900
3900
3390
2100
2030
3615
2204
2837

oxygen
73.80
32.00

25.80

Mullite
Na2O (o)
Nb2O5

Sc2O3

SrO
Ta2O5

ThO2

TiO2 (rutile)
UO2

V2O5

Y2O3

ZnO
ZrO2

Halides

22.17

25.20

LiBr
LiCl
LiF
Lil
NaCl
NaF
RbCl

Silicates and other glass-forming oxides

33.20
31.00

40.70
32.76

Na2Si2O5

Na2SiO3

p2O5
SiO2 (high
quartz)

Carbides, nitrides, borides, and silicides

38.00

At 2151 K partial pressure
of N2 over Si3N4 reaches 1 atm

3150
3985
2400
2625

ThN
TiB2

TiC
TIN
TiSi2
UC
UN
VB2

VC
VN
we
ZrB2

ZrC
ZrN
ZrSi2

Melting
point.
C

1850
1132
1512 ±30
2375 ± 25
2665 ± 20
1875 ±25
3275 ± 25
1857 ±20
2825 ± 25
2067 ± 20
2403
1975 ±25
2677

550
610
848
449
800
997
722

874
1088
569

1423 ± 50

2820
2897
3070
2947
1540
2525
2830
2450
2650
2177
2775
3038
3420
2980 ± 50
1700

Entropy
of fusion.
J mol • C

33.90
58.40

25.60

31.50

%38.70

29.50

22.60

25.90

23.85

31.00
38.50

4.60
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Idealized rutile CdI2 layered structure CO2 molecular lattice
M.P. = 1857°C M.P. = 387°C M.P. = -57°C

Figure 4.1 Effect of polarization on crystal structure and melting temperature.

Covalent character of the ionic bond

Based on Eq. (4.1), melting points are proportional to AHf, and con-
sequently whatever reduces one reduces the other. It turns out, as discussed
below, that increasing the covalent character of a bond tends to reduce AHf

by stabilizing discrete units in the melt, which in turn reduces the number of
bonds that have to be broken during melting, which is ultimately reflected in
lower melting points.

It is important to note that covalency per se does not necessarily favor
either higher or lower melting points. The important consideration depends
on the melt structure; if the strong covalent bonds have to be broken in
order for melting to occur, extremely high melting temperatures can result.
Conversely, if the strong bonds do not have to be broken for melting, the
situation can be quite different.36

The effect of covalency on the structures of three MX2 compounds is
shown graphically in Fig. 4.1. In the figure, the covalent character of the
bond increases in going from left to right, which results in changes in the
structure from three-dimensional in TiO2, to a layered structure for CdI2,
to a molecular lattice in the case of CO2. Also shown in Fig. 4.1 are the corre-
sponding melting points; the effect of the structural changes on the latter is
obvious.

It follows from this brief introduction that in order to understand the
subtleties in melting point trends, one needs to somewhat quantify the
extent of covalency present in an ionic bond. In Chap. 2, the bonds between
ions were assumed to be either predominantly covalent or ionic. As noted
then, and reiterated here, the reality of the situation is more complex —
ionic bonds possess covalent character and vice versa. Historically, this
complication has been addressed by means of one of two approaches. The

An extreme example of this phenomenon occurs in polymers, where the bonding is quite
strong within the chains and yet the melting points are quite low, because these bonds do
not have to be broken during melting.
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(a) (b)

Figure 4.2 Polarization effects: (a) idealized ion pair with no polarization; (b) polarized
ion pair; (c) polarization sufficient to form covalent bond.

first was to assume that the bond is purely covalent and then consider the
effect of shifting the electron cloud toward the more electronegative atom.
The second approach, discussed below, was to assume the bond is purely
ionic and then impart a covalent character to it.

The latter approach was championed by Fajans37 and is embodied in
Fajans' rules, whose basic premise is summarized in Fig. 4.2. In Fig. 4.2a
an idealized ion pair is shown for which the covalent character is nonexistent
(i.e., the ions are assumed to be hard spheres). In Fig. 4.2b some covalent
character is imparted by shifting the electron cloud of the more polarizable
anion toward the polarizing cation. In the extreme case that the cation is
totally embedded in the electron cloud of the anion (Fig. 4.2c) a strong
covalent bond is formed. The extent to which the electron cloud is distorted
and shared between the two ions is thus a measure of the covalent
character of that bond. The covalent character thus defined depends on
three factors:

Polarizing power of cation. High charge and small size increase the polarizing
power of cations. Over the years many functions have been proposed to
quantify the effect, and one of the simplest is to define the ionic potential
of a cation as:

where z+ is the charge on the cation and r its radius. The ionic powers of a
few selected cations are listed in Table 4.2, where it is clear that high
charge and small size greatly enhance e> and consequently the covalent
character of the bond.

To illustrate compare MgO and A12O3. On the basis of ionic charge
alone, one would expect the melting point of A12O3 (+3, —2) to be higher
than that of MgO (—2, +2), and yet the reverse is observed. However.
based on the relative polarizing power of A13+ and Mg2+. it is reasonable
to conclude that the covalent character of the Al—O bond is greater than

37 K. Fajans, Struct. Bonding, 2:88 (1967).
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Table 4.2 Ionic potential of selected cations, 1/nm

Li+

Na+

K+

17.0
10.5
7.0

Be2+

Mg2+

Ca2+

64.0
31.0
20.0

B3+

A13+

Sj4+

150.0
60.0

100.0

that of the Mg—O bond. This greater covalency appears to stabilize discrete
units in the liquid state and lower the melting point. Further evidence that the
A12O3 melt is more "structured" than MgO is reflected in the fact that
ASfusion per ion for A12O3 [9.54 J/(mol-K)] is smaller than that of MgO
[12.9J/(mol-K)].

Polarizability of anions. The polarizability of an ion is a measure of the ease
with which its electron cloud can be pulled away from the nucleus, which, as
discussed in greater detail in Chap. 14, scales with the cube of the radius of
the ion, i.e., its volume. Increasing polarizability of the anion increases the
covalent character of the bond, which once again results in lower melting
points. For example, the melting points of LiCl, LiBr, and Lil are, respec-
tively, 613, 547, and 446°C.38

Electron configuration of cation. The d electrons are less effective in shielding
the nuclear charge than the s or p electrons and are thus more polarizing.
Thus ions with d electrons tend to form more covalent bonds. For example,
Ca2+ and Hg2+ have very similar radii (114 and 116 pm, respectively); and yet
the salts of Hg have lower melting points than those of Ca — HgCl2 melts at
276°C, whereas CaCl2 melts at 782°C.

4.2.2 Covalent Ceramics

The discussion so far has focused on understanding the relationship between
the interatomic forces holding atoms together and the melting points of
mostly ionic ceramics. The melting points and general thermal stability of
covalent ceramics are quite high as a result of the very strong primary
bonds that form between Si and C, N, or O. Covalent ceramics are very
interesting materials in that some do not melt but rather decompose at
higher temperatures. For example, Si3N4 decomposes at temperatures in
excess of 2000°C, with the partial pressure of nitrogen reaching 1 atm at
those temperatures.

Another contributing factor to the lowering of the melting point that cannot be ignored is the
fact that increasing the radii of the anions decreases Ebond by increasing r0. This is a second-
order effect, however.
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4.2.3 Glass Forming Liquids

These include SiO2, many of the silicates, B2C3, GeO2, and P2O5. What is
remarkable about these oxides is that they possess anomalously low
entropies of fusion. For SiO2, ASf is 4.6J/(mol-K). This signifies that at
the melting point, the solid and liquid structures are quite similar. Given
that glasses can be considered supercooled liquids, it is not surprising that
these oxides, called network formers, are the basis of many inorganic glasses
(see Chap. 9 for more details).

4.3 Thermal Expansion

It is well known that solids expand upon heating. The extent of the
expansion is characterized by a coefficient of linear expansion a, defined as
the fractional change in length with change in temperature at constant
pressure, or

Q• = — (4.2)

where l0 is the original length.
The origin of thermal expansion can be traced to the anharmonicity or

asymmetry of the energy distance curve described in Chap. 2 and reproduced
in Fig. 4.3. The asymmetry of the curve expresses the fact that it is easier to
pull two atoms apart than to push them together. At 0 K, the total energy of
the atoms is potential, and the atoms are sitting at the bottom of the well

bo
w>
<u
c

Interatomic distance

a (OK)

Figure 4.3 Effect of heat on interatomic distance between atoms. Note that asymmetry of
well is responsible for thermal expansion. The average position of the atoms in a perfectly
symmetric well would not change with temperature.
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(point a). As the temperature is raised to, say T\, the average energy of the
system increases correspondingly. The atoms vibrate between positions x\
and x2, and their energy fluctuates between purely potential at x1 and x2

(i.e., zero kinetic energy) and speed up somewhere in between. In other
words, the atoms behave if they were attached to each other by springs.
The average location of the atoms at T1 will thus be midway between x1

and x2, that is, at xT1. If the temperature is raised to, say, T2, the average
position of the atoms will move to xT2, etc. It follows that with increasing
temperature, the average position of the atoms will move along line ab,
shown in Fig. 4.3, and consequently the dimensions of a crystal will also
increase.

In general, the asymmetry of the energy well increases with decreasing
bond strength, and consequently the thermal expansion of a solid scales
inversely with its bond strength or melting point. For example, the thermal
expansion coefficient of solid Ar is on the order of 10-3oC-1, whereas for
most metals and ceramics (see below) it is closer to 10-5 °C-1 .

Perusal of Table 4.3, in which the mean thermal expansion coefficients of
a number of ceramics are listed, makes it clear that a for most ceramics lies
between 3 and 10 x 10 - 6°C - 1 . The functional dependence of the fractional
increase in length on temperature for a number of ceramics and metals is
shown in Fig. 4.4. Given that the slope of these lines is a, one can make
the following generalizations:

1. Ceramics in general have lower a values than metals.
2. The coefficient a increases with increasing temperature. This reflects

the fact that the energy well becomes more asymmetric as one
moves up the well, i.e., with increasing temperature. Thus it is important
to specify the temperature range reported, since as the temperature
range is expanded, the mean thermal expansion coefficient will also
increase.

3. Covalently bonded ceramics, such as SiC and Si3N4, have lower a's than
more close-packed ceramic structures such as NaCl and MgO. This is a
reflection of the influence of atomic packing on a. In contradistinction
to close-packed structures, where all vibrations result in an increase in
the dimensions of the crystal, the more open structures of covalent
ceramics allow for other modes of vibration that do not necessarily
contribute to thermal expansion. In other words, the added thermal
energy can result in a change in the bond angles without significant
change in bond length. (Think of the atoms as vibrating into the
"open spaces" rather than against each other.)

One of most striking examples of the importance of atomic packing
on a is silica. Vitreous silica has an extremely low a, whereas quartz and
cristobalite have much higher thermal expansion coefficients, as shown
in Fig. 4.5.
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Table 4.3 Mean thermal expansion coefficients and theoretical densities of various
ceramics

Ceramic

a-Al2O3

BaO
BeO

Bi2O3 (a)

Bi2O3 (6)

CeO2

Cr2O3

Dy2O3

Gd2O3

Fe3O4

Fe2O3

HfO2

MgO
Na2O

A12O3 • TiO2

A12O3 • MgO
5A12O3 • 3Y2O3

BaO-TiO2

BaO • ZrO2

BeO • A12O3

CaO • HfO2

CaO-SiO2(,3)

CaO • SiO2 (a)

CaO • TiO2

CaO • ZrO2

2CaO • SiO2 (3)

Theo.
density,
g/cm3

3.98
5.72
3.01

8.90

8.90

7.20
5.22
7.80
7.41
5.24
5.18
9.70
3.60
2.27

3.58

5.80

3.69

Q(°C - 1 ) x 106 Ceramic

Binary Oxides
7.2-8.8
17.8
8.5-9.0
(25-1000)
14.0
(RT–730;C)
24.0
(650-825°C)

8.5
10.5

9.4-12.5
13.5

Nb2O5

SiO2(low
cristabolite)
SiO2(low
quartz)
ThO2

TiO2

UO2

WO2

Y2O3

ZnO

ZrO2

(monoclinic)
ZrO2

(tetragonal)

Mixed oxides
9.7 (average)
7.6
8.0
(25–1400)

8.5
(25-1000)
6.2-6.7
3.3
(25-1000)
5.9
(25-700)
11.2
(25-700)
14.1
10.5
14.4
(25-1000)

Cordierite
MgO • SiO2

2MgO • SiO2

MgO • TiO2

MgO • ZrO2

2SiO2 • 3A12O3

(mullite)
SiO2 • ZrO2

(zircon)
SrO • TiO2

SrO • ZrO2

TiO2 • ZrO2

Theo.
density,
g/cm3

4.47
2.32

2.65

9.86
4.25
10.96
7.16
5.03

5.61

5.83

6.10

2.51

3.20

4.20

n(°C - 1 ) x 106

9.2
8.5
10.0

9.3
(25-1000)
8.0 (c axis)
4.0 (a axis)
7.0

12.0

2.1
10.8
(25–1000)
11.0
(25–1000)
7.9
(25-1000)
12.0
(25-1000)
5.1
(25-1000)
4.5
(25-1000)
9.4
(25-1000)
9.6
7.9
(25-1000)
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Table 4.3 Continued

Ceramic Theo. a(°C-1) x 106

density,
g/cm3

Ceramic Theo. c
density,
g/cm3

i ( °C - l ) x 106

Borides, nitrides; carbides; and silicides
A1N

B4C
BN
Cr3C2

CrSi2

HfB2

HfC
HflSi2

MoSi2

0-Mo2C
NbC
Si3N4

SiC

3.26

2.52
2.27
6.68
4.40
11.20
12.60
7.98
6.24
9.20
7.78
3.20
3.20

5.6
(25-1000)
5.5
4.4
10.3

5.0
6.6

8.5
7.8
6.6
3.1-3.7
4.3–4.8

TaC
TiB2

TiC
TiN
TiSi2
Ti3SiC2

wc
ZrB2

ZrC

ZrSi2

ZrN

14.48
4.50
4.95
5.40
4.40
4.51
15.70
6.11
6.70

4.90

7.32

6.3
7.8
7.7-9.5
9.4
10.5
9.1

5.7-7.0
6.9
(25-1000)
7.6
(25–2700)
7.2

CaF2 3.20
LiF 2.63
LiBr 3.46
KI 3.13

Soda-lime glass
Pyrex

Halides

24.0
9.2
14.0

LiCl
Li I
MgF2

NaCl

Glasses
9.0
3.2

Fused silica

2.07
4.08

2.16

2.20

12.2
16.7
16.0
11.0

0.55

4. Although not explicitly stated, the discussion so far is only strictly true
for isotropic, e.g., cubic, polycrystalline materials. Crystals that are
noncubic and consequently are anisotropic in their thermal expansion
coefficients behave quite differently. In some cases, a crystal can actually
shrink in one direction as it expands in another. When a polycrystal is
made up of such crystals, the average thermal expansion can be very
small, indeed. Cordierite and lithium-aluminosilicate (LAS) (see
Fig. 4.4) are good examples of this class of materials. As discussed in
greater detail in Chap. 13, this anisotropy in thermal expansion,
which has been exploited to fabricate very low-a materials, can result
in the buildup of large thermal residual stresses that can be quite
detrimental to the strength and integrity of ceramic parts.
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1.8
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0.4
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MgO Be(XThO2

400 800 1200 1600
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Figure 4.4 AL/L0 (%) versus temperature for a number of ceramics. The slopes of
these lines at any temperature are a. For most ceramics, a is more or less constant with
temperature. For anisotropic solids, the c axis expansion is reported.39

200 400 600 800

Temperature (°C)

1000

Figure 4.5 A V/ VQ (%) versus temperature for cristobalite. quartz, zirconia, and vitreous
or amorphous SiO2.

40 The abrupt changes in behavior with temperature are a result of
phase transformations (see Chap. 8).

39 Adapted J. Chermant, Les Ceramiques Thermomechaniques, CNRS Presse. France. 1989.
40 Adapted from W. D. Kingery, H. K. Bowen. and D. R. Uhlmann. Introduction to Ceramics.

2d ed., Wilev. New York. 1976.
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4.4 Young's Modulus and the Strength of Perfect Solids

In addition to understanding the behavior of ceramics exposed to thermal
energy, it is important to understand their behavior when they are subjected
to an external load or stress. The objective of this section is to interrelate the
shape of the energy versus distance curve E(r), discussed in Chap. 2, to
the elastic modulus, which is a measure of the stiffness of a material and
the theoretical strength of that material. To accomplish this goal, one
needs to examine the forces F(r) that develop between atoms as a result of
externally applied stresses. As noted in Sec. 2.4, F(r) is defined as

(4.3)
dr

From the general shape of the E(r) curve, one can easily sketch the shape of a
typical force versus distance curve, as shown in Fig. 4.6. The following salient
features are noteworthy:

• The net force between the atoms or ions is zero at equilibrium, i.e., at r = r0.
• Pulling the atoms apart results in the development of an attractive restoring

force between them that tends to pull them back together. The opposite is
true if one tries to push the atoms together.

• In the region around r = r0 the response can be considered, to a very good
approximation, linear (inset in Fig. 4.6). In other words, the atoms act as if

Compressive
force

Linear elastic
region (Hooke's Law)

I

Tensile
force

Figure 4.6 Typical force—distance curve. Slope of line going through r0 is the stiffness of
the bond S0. It is assumed in this construction that the maximum force is related to the
stiffness as shown. This is quite approximate but serves to illustrate the relationship
between stiffness and theoretical strength i.e. Eq. (4.12).
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they are tied together by miniature springs. It is in this region that Hooke's
law (see below) applies.

• The force pulling the atoms apart cannot be increased indefinitely. Beyond
some separation rfail, the bond will fail. The force at which this occurs
represents the maximum force Fmax that the bond can withstand before
failing.

In the remainder of this section, the relationships between stiffness and
theoretical strength, on one hand, and E(r) and F(r), on the other hand, are
developed.

An atomic view of Young's modulus

Experience has shown that all solids will respond to small stresses a by
stretching in proportion to the stress applied, a phenomenon that is described
by Hooke's law:

a = Ye (4.4)

where Y is Young's modulus and e is the strain experienced by the material.
defined as

£ = (4.5)

Here L is the length under the applied stress, and L0 is the original length.
Refer once more to the force/distance curve shown in Fig. 4.6. In the

vicinity of r0, the following approximation can be made:

F = S0(r — r0) (4.6)

where S0 is the stiffness of the bond, defined as

Note that Eq. (4.6) is nothing but an expression for the extension of a linear
spring.

Dividing Eq. (4.6) by r$ and noting that F jr\ is approximately the stress
on the bond, while (r — r0)/r0 is the strain on the bond, and comparing the
resulting expression with Eq. (4.4), one can see immediately that

(4.8)

Combining this result with Eqs. (4.3) and (4.7), it is easy to show that

y = l(f) =i(^) («)
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This is an important result because it says that the stiffness of a solid is
directly related to the curvature of its energy/distance curve. Furthermore,
it implies that strong bonds will be stiffer than weak bonds; a result that is
not in the least surprising, and it explains why, in general, given their high
melting temperatures, ceramics are quite stiff solids.

Theoretical strengths of solids

The next task is to estimate the theoretical strength of a solid or the stress that
would be required to simultaneously break all the bonds across a fracture
plane. It can be shown (see Prob. 4.2) that typically most bonds will fail
when they are stretched by about 25%, i.e., when rfail « 1.25r0. It follows
from the geometric construction shown in Fig. 4.6 that

2F 0/7

(4.10)
" 125r

fail ~~ r
0
 J •^~)rO ~~ r()

Dividing both sides of this equation by r0 and noting that

(4-11)

i.e., the force divided by the area over which it operates, one obtains

«W«{ (4.12)

For a more exact calculation, one starts with the energy/interatomic
distance function in its most general form, i.e.,

Ebond=~-~ (4.13)

where C and D are constants and n > m. Assuming <rmax w Fmax/
r2

0, one can
show (see Prob. 4.2) that crmax is better approximated by

7 1 ,. .,

Substituting typical values for m and n, say, m — 1 and n = 9, for an ionic
bond yields crmax « 7/15.

Based on these results, one may conclude that the theoretical strength
of a solid should be roughly one-tenth of its Young's modulus. Experience
has shown, however, that the actual strengths of ceramics are much lower
and are closer to Y/100 to Y/1000. The reason for this state of affairs is
discussed in greater detail in Chap. 11, and reflects the fact that real solids
are not perfect, as assumed here, but contain many flaws and defects that
tend to locally concentrate the applied stress, which in turn significantly
weaken the material.
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4.5 Surface Energy

The surface energy 7 of a solid is the amount of energy needed to create a
unit area of new surface. The process can be pictured as shown in Fig. 4.7a.
where two new surfaces are created by cutting a solid in two. Given this
simple picture, the surface energy is simply the product of the number of
bonds Ns broken per unit area of crystal surface and the energy per bond

or

7 = 'bond (4.15)

For the sake of simplicity, only first-neighbor interactions will be considered
here, which implies that Ebond is given by Eq. (2.15). Also note that since Ns

is a function of crystallography, it follows that 7 is also a function of
crystallography.

To show how to calculate surface energies by starting with Eq. (4.15).
consider cleaving a rock salt crystal along its (100) plane.41 shown in

O O O O

o o o o
o o o o

o o o o
o o o c
o o ov

New surfaces \ (b)
o o o o
o o o o
0 0 0 0

o o 0'
o o o

o o o f
(a)

a; 2

(C)

Figure 4.7 (a) The creation of new surface entails the breaking of bonds across that
surface, (b) Structure of (100) plane in the rock salt structure. (c) Structure of (110)
plane in same structure. Note that the coordination number of ions in this plane is 2.
which implies that to create a (110) plane, only two bonds per ion would have to be broken.

41 It is assumed here that the reader is familiar with Miller indices, a topic that is covered in
almost all introductorv materials science or engineering textbooks.
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Table 4.4 Measured free surface energies of solids

Substance

Mica

MgO
KC1
Si
NaCl
CaF2

LiF
CaC03

Surface

(0001)

(100)

(100)

(111)
(100)

(111)

(100)

(1010)

Environment

Air
Vacuum
Air
Air
Liquid N2

Liquid N2

Liquid N2

Liquid N2

Liquid N2

Temp., K

298
298
298
298

77
77
77
77
77

Surface energy, J/nT

0.38
5.00

1.15

0.11

1.24

0.32

0.45
0.34

0.23

Fig. 4.7b. This plane contains two cations and two anions and has an area of
(2r0)

2, where r0 is the equilibrium interionic distance. Note, however, that the
total surface area created is twice that, or 2 x (2r0)2. Since four bonds have to
be broken, it follows that Ns = 4/[2 x (2r0)2]. Combining this result with
Eqs. (2.15) and (4.15) yields

Tioo^-^bondi-^l^-l^fl-1) (4.16)
L2(2r0)2] 87T£0rJV n)

The minus sign is introduced because energy has to be consumed to create a
surface. Calculations of surface energies based on Eq. (4.16) invariably yield
values that are substantially greater than the measured ones (see Table 4.4).
The reason for this discrepancy comes about because in the simple model,
surface relaxation and rearrangement of the atoms upon the formation of
the new surface were not allowed. When the surface is allowed to relax,
much of the energy needed to form it is recovered, and the theoretical predic-
tions do indeed approach the experimentally measured ones.

WORKED EXAMPLE 4.1

Estimate the surface energy of the (100) and (110) planes in NaCl, and compare
your results with those listed in Table 4.4.

Answer

For NaCl, r0 = 2.83 x 10-10 m, which when substituted in Eq. (4.16), assuming
n = 9 yields a value for the surface energy of «4.5 J/ m2. By comparing this value
with the experimentally measured value listed in Table 4.4, it is immediately
obvious that it is off by more than an order of magnitude, for reasons alluded
to above.
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The (110) plane (Fig. 4.7c) has an area of \/2(2r0)(2r0) but still contains
two Na and two Cl ions. However, the coordination number of each of the
atoms in the plane is now 2 instead of 4, which implies that each ion is co-
ordinated to two other ions above and below the plane (here, once again for
simplicity, all but first-neighbor interactions are considered). In other words,
to create the plane, one needs to break two bonds per ion. It follows that

2x4 K A ' i/V, = —•= r- bonds /m2

2v /2(2/o)2

and the corresponding surface energy is thus 6.36 J/m2.
Note that the easiest way to calculate Ns is to appreciate that:

TV, = (CN-CNp)/2

where CN is the coordination number, i.e. number of nearest neighbors of opposite
charge in the crystal and CNp is the coordination number of ions in surface
formed. For e.g. in Fig. 4.7 c, CN = 6 and CNp = 2. Thus the number of bonds
broken - (6 - 2)/2 = 2 Similarly, for a 111 surface, Ns - (6 - 0)/2 = 3, etc.

Experimental Details

Melting points

Several methods can be used to measure the melting point of solids. One of
the simplest is probably to use a differential thermal analyser (DTA for short).
The basic arrangement of a differential thermal analyser is simple and is
shown schematically in Fig. 4.8a. The sample and an inert reference (usually
alumina powder) are placed side by side in a furnace, and identical thermo-
couples are placed below each. The temperature of the furnace is then slowly
ramped, and the difference in temperature AT = Tsample ~ Tref is measured

Figure 4.8 (a) Schematic of DTA setup, (b) Typical DTA traces upon heating (bottom
curve) and cooling (top curve).
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as a function of the temperature of the furnace, which is measured by a third
thermocouple (thermocouple 3 in Fig. 4.8a). Typical results are shown in
Fig. 4.8& and are interpreted as follows. As long as both the sample and
the reference are inert, they should have the same temperature and
AT = 0. However, if for any reason the sample absorbs (endothermic
process) or gives off (exothermic process) heat, its temperature vis-a-vis the
reference thermocouple will change accordingly. For example, melting,
being an endothermic process, will appear as a trough upon heating. The
melting point is thus the temperature at which the trough appears. In
contrast, upon cooling, freezing, being an exothermic process, will appear
as a peak.

Thermal expansion coefficients

Thermal expansion coefficients are measured with a dilatometer, which
is essentially a high-temperature furnace from which a rod sticks out
(Fig. 4.9). One side of the rod is pushed against the sample for which the
thermal expansion is to be measured, and the other side is attached to a
device that can measure the displacement of the rod very accurately, such
as a linear variable differential transformer or LVDT. In a typical experi-
ment, the sample is placed inside the furnace and is heated at a constant
rate, while simultaneously the displacement of the push rod is measured.
Typical curves for a number of ceramics and metals are shown in Fig. 4.4.

Surface energies

A variety of methods can be used to measure the surface energy of ceramics.
One technique, of limited applicability (see below), is to measure the force
needed to cleave a crystal by starting with an atomically sharp notch of
length c. In Chap. 11, the following relationship between the surface
energy, Young's modulus, and the applied stress at fracture crapp is derived:

Figure 4.9 Schematic of a dilatometer.
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where A1 is a geometric factor that depends on the loading conditions and the
specimen geometry. Once crapp is measured for a given c, 7 is easily calculated
from Eq. (4.17) if the modulus is known. In deriving this equation, it is impli-
cit that all the mechanical energy supplied by the testing rig goes into creating
the new surfaces. Also implicit is that there were no energy-consuming
mechanisms occurring at the crack tip, such as dislocation movements; i.e..
the failure was a pure brittle failure. It is important to note that this condition
is only satisfied for a small number of ionic and covalent ceramics, some of
which are listed in Table 4.4.

4.6 Summary

1. The strengths of the bonds between atoms or ions in a solid, by and
large, determine many of its properties, such as its melting and boiling
points, stiffness, thermal expansion, and theoretical strength.

2. The stronger the bond, the higher the melting point. However, partial
covalency to an ionic bond will tend to stabilize discrete units in the
melt and lower the melting point.

3. Thermal expansion originates from the anharmonic vibrations of atoms
in a solid. The asymmetry of the energy well is a measure of the thermal
expansion coefficient a, with stronger bonds resulting in more
symmetric energy wells and consequently lower values of a. In addition,
the atomic arrangement can play an important role in determining a.

4. As a first approximation, the curvature of the energy/distance well is a
measure of the stiffness or Young's modulus of a solid. In general, the
stronger the bond, the stiffer the solid. Other factors such as atomic
arrangement are also important, however.

5. The theoretical strength of a bond is on the order of Y/10. The actual
strengths of ceramics, however, are much lower for reasons to be
discussed in Chap. 11.

6. The surface energy of a solid not only scales with the bond energy but
also depends on crystallographic orientation.

Problems

4.1. (a) The equilibrium interatomic spacings of the Na halides and their
melting points are listed below. Explain the trend observed.

NaF NaCl NaBr Nal

Spacing, nm 0.23 0.28 0.29 0.32
Melting point, C 988 801 740 660
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(b) Explain the melting point trends observed for the alkali metal
chlorides as one goes from HC1 (-115.8°C) to CsCl.

(c) Which of these pairs of compounds would you expect to have the
higher melting points; CaF2 versus ZrO2; UO2 versus CeO2; CaF2

versus CaI2? Explain.

4.2. Starting with Eq. (4.13) in text, do the following:

(a) Derive the following relationship:

c _ mD i \
^ — 3^+2 (n ~~ m>r()

Using this equation, calculate S0 for NaCl. Assume n = 9.
i

z 'Z~>c~
Hint: Show that for an ionic bond D = "'

47T£0

Answer: 81 N/m

(b) Derive the following expression for Young's modulus. State all
assumptions.

Y ~

(c) Show that the distance at which the bond will break rfail is given by

' «+ 1
'"fail = m+ 1

For ionic bonds, m = 1 and n « 9; for van der Waals bonds.
m — 6 and n = 12. Calculate the strain at failure for each bond.

(d) Derive Eq. (4.14) in the text, and show that for an ionic bond

4.3. (a) Show that for the rock salt structure 7(m)/7(100) = x/3.
(b) Calculate from first principles the surface energies of the (100) and

(111) planes of MgO. How do your values compare with those
shown in Table 4.4? Discuss all assumptions.

(c) It has been observed that NaCl crystals cleave more easily along
the (100) planes than along the (110) planes. Show, using calcula-
tions, why you think that is the case.

4.4. Calculate the number of broken bonds per square centimeter for Ge
(which has a diamond cubic structure identical to the one shown in
Fig. 3.1c except that all the atoms are identical) for the (100) and
(111) surfaces. Which surface do you think has the lower surface
energy? Why? The lattice constant of Ge is 0.565nm, and its density
is 5.32g/'cnr.

,4ns wr: For (100), 1.25 x 1015 bonds/cm2 for (111), 0.72 x 1015 bonds/
cm".
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4.5. Take the C-C bond energy to be 376kJ/mol. Calculate the surface
energy of the (111) plane in diamond. Repeat for the (100) plane.
Which plane do you think would cleave more easily? Information
you may find useful: density of diamond is 3.51 g/cm3 and its lattice
parameter is 0.356nm.

Answer. = 9.820Jm2

4.6. Would you expect the surface energies of the Noble-gas solids to be
greater than, about the same as, or smaller than those of ionic crystals?
Explain.

4.7. Estimate the thermal expansion coefficient of alumina from Fig. 4.4.
Does your answer depend on the temperature range over which you
carry out the calculation? Explain.

4.8. Estimate the order of magnitude of the maximum displacement of Na
and Cl ions in NaCl from their equilibrium position at 300 and at
900 K.

4.9. Prove that the linear expansion coefficient a, with very little loss
in accuracy, can be assumed to be one-third that of the volume coeffi-
cient for thermal expansion a,.. You can assume that / = /0(1 + a) and
v= v \ +a

4.10. (a) "A solid for which the energy distance curve is perfectly
symmetric would have a large thermal expansion coefficient."
Do you agree with this statement? Explain.

(b) The potential energy U(x) of a pair of atoms that are displaced by
A- from their equilibrium position can be written as
U(x) = ax2 — fix* — 7-x4, where the last two terms represent the
anharmonic part of the well. At any given temperature, the prob-
ability of displacement occurring relative to that it will not occur is
given by the Boltzmann factor e~

L^kT\ from which it follows that
the average displacement at this temperature is

rx = ^-V «-»

e-l-.KkT)

Show that at small displacements, the average displacement is

3/3kT

What does this final result imply about the effect of the strength of
the bond on thermal expansion?
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Chapter 5

Thermodynamic and Kinetic Considerations

S = k In ft

Boltzmann

5.1 Introduction

Most of the changes that occur in solids in general and ceramics in particular,
especially as a result of heating or cooling, come about because they lead to a
reduction in the free energy of the system. For any given temperature and
pressure, every system strives to attain its lowest possible free energy, kinetics
permitting. The beauty of thermodynamics lies in the fact that while it will
not predict what can happen, it most certainly will predict what cannot
happen. In other words, if the calculations show that a certain process
would increase the free energy of a system, then one can with utmost
confidence dismiss that process as impossible.

Unfortunately thermodynamics, for the most part, is made confusing
and very abstract. In reality, thermodynamics, while not being the easiest
of subjects, is not as difficult as generally perceived. As somebody once
noted, some people use thermodynamics as a drunk uses a lamppost —
not so much for illumination as for support. The purpose of this chapter is
to dispel some of the mystery surrounding thermodynamics and hopefully
illuminate and expose some of its beauty. It should be emphasized, however,
that one chapter cannot, by any stretch of the imagination, cover a subject as
complex and subtle as thermodynamics. This chapter, as noted in the
Preface, is included more for the sake of completion and a reminder of
what the reader should already be familiar with, than an attempt to cover
the subject in any but a cursory manner.

This chapter is structured as follows. In the next three subsections,
enthalpy, entropy, and free energy are defined and explained. Sec. 5.3 deals
with the conditions of equilibrium and the corresponding mass action expres-
sion. The chemical stability of ceramics is discussed in Sec. 5.4. In Sec. 5.5 the
concept of electrochemical potentials is presented, which is followed by the
closely related notion of charged interfaces and Debye length. In Sec. 5.7

110
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the Gibbs-Duhem relation for binary oxides is introduced and in the final
section a few remarks are made concerning the kinetics and driving forces
of various processes that occur in solids.

5.2 Free Energy

If the condition for equilibrium were simply that the energy content or
enthalpy of a system be minimized, one would be hard pressed to explain
many commonly occurring phenomena, least of all endothermic processes.
For example, during melting, the energy content of the melt is greater than
that of the solid it is replacing, and yet experience has shown that when
they are heated to sufficiently high temperatures, most solids will melt.
Gibbs was the first to appreciate that it was another function that had to
be minimized before equilibrium could be achieved. This function, called
the Gibbs free-energy function, is dealt with in this section and comprises
two terms, namely, enthalpy H and entropy S.

5.2.1 Enthalpy

When a substance absorbs a quantity of heat dq, its temperature will rise
accordingly by an amount dT. The ratio of the two is the heat capacity,
defined as

Since dq is not a state function, c will depend on the path. The problem
can be simplified by introducing the enthalpy function, defined as

H = E + PV (5.2)

where E, P, and V are, respectively, the internal energy, pressure, and volume
of the system. By differentiating Eq. (5.2) and noting that, from the first law
of thermodynamics, dE — dq + dw, where dw is the work done on the system,
it follows that

dH = d(E + PV) = dq + dw + P dV + V dP (5.3)

If the heat capacity measurement is carried out at constant pressure dP = 0,
and since by definition dw = —PdV, it follows from Eq. (5.3) that dH = dq\p.
In other words, the heat absorbed or released by any substance at constant
pressure is a measure of its enthalpy.

From this result it follows from Eq. (5.1) that
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where cp is the heat capacity measured at constant pressure. Integrating
Eq. (5.4) shows that the enthalpy content of a crystal is given by

)
T

cp.compdT (5.5)
298

Given that there is no absolute scale for energy, the best that can be
done is to arbitrarily define a standard state and relate all other changes
to that state — thermodynamics deals only with relative changes.
Consequently and by convention, the formation enthalpy of the elements
in their standard state at 298 K is assumed to be zero; i.e., for any element.
H298= 0.

Given that the heat liberated or consumed during the formation of a
compound from its elements can be determined experimentally, it follows
that the enthalpy of formation of compounds at 298 K, denoted by
A//fom, is known and tabulated. At any temperature other than 298 K. the
heat content of a compound AHT is given by

cp.compdT (5.6)
298

Finally it is worth noting that the heat capacity data are often expressed in
the empirical form

and the heat content of a solid at any temperature is thus simply determined
by substituting this expression in (5.5) or (5.6) and integrating.

WORKED EXAMPLE 5.1

Given that the cp of Al is given by cp = 20.7 + 0.01247 in the temperature range
of 298 to 932K and that cp of A12O3 is given by cp = 106.6 + 0.01787-
2,850,000r~2 in the temperature range of 298 to 1800 K. and its enthalpy of
formation from its elements at 298 K is — 1675.7kJ/mol. calculate the enthalpy
content of Al and A12O3 at 298 and 900 K.

Answer

The enthalpy content of Al at 298 is zero by definition. The heat content of Al at
900 K is thus

(-900

H**> - H298
 = (20.7 + 0.0124T)dT = 16.93 kJ/mol

J298
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At 298 K, the heat content of A12O3 is simply its enthalpy of formation from its
elements, or - 1675.7 kJ/mol. At 900 K,

-900j-
= (106.6 +

J298

#AI?O, = -1675.7 + 70.61 = -1605.0 kJ/mol

5.2.2 Entropy

Disorder constitutes entropy, macroscopically defined as

(5.7)(5.7)

where qrev is the heat absorbed in a reversible process. Boltzmann further
related entropy to the microscopic domain by the following expression:42

(5.8)

where k is Boltzmann's constant and f]/9 is the total number of different
configurations in which the system can be arranged at constant energy.
There are several forms of entropy, which include:

• Configurational, where the entropy is related to the number of configura-
tions in which the various atoms and/or defects can be arranged on a
given number of lattice sites,

• Thermal, where 0^ is the number of possible different configurations in
which the particles (e.g., atoms or ions) can be arranged over existing
energy levels

• Electronic
• Other forms of entropy, such as that arising from the randomization of

magnetic or dielectric moments

Each will be discussed in some detail in the following sections.

Configurational entropy

This contribution refers to the entropy associated with atomic disorder. To
illustrate, let's consider the entropy associated with the formation of n
point defects or vacancies (see Chap. 6 for more details). Combinatorially,
it can be shown that the number of ways of distributing n vacant sites and
N atoms on n + N sites is given by:43

42 This expression is inscribed on Boltzmann's tomb in Vienna.
43 See, e.g., C. Newey and G. Weaver, eds., Materials Principles and Practice, Butterworth,

London, 1990, p. 212.
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When Eq. (5.9) is substituted in Eq. (5.8) and Stirling's approximation44 is
applied, which for large .Y reduces to

In .x!w .Y In .Y - .Y

the following expression for the configuration entropy

(5.10)

is obtained (see Prob. 5.1).
It is worth noting here that a very similar expression, namely.

In .YA + .YB In .YB ) (5.11)

results for the mixing of two solids A and B that form an ideal solution. Here
A- A and .xB are the mole fractions of A and B, respectively. R is the universal
gas constant, where R = kN^..

WORKED EXAMPLE 5.2.

(a) Calculate the total number of possible configurations for eight atoms and
one vacancy. Draw the various configurations, (b) Calculate the entropy
change with introducing 1 x 1018 vacancies in a mole of a perfect crystal.
Does the entropy increase or decrease?

Figure 5.1 Various configurations for arranging eight atoms (circles) and one vacancy
(squares). Note that the exact same picture would have emerged had the circles been A
atoms and the squares B atoms.

44 In .Y! ̂  .Y In .Y - A + 1 /2 In 2?r .Y.
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(b) Applying Eq. (5.10) gives

ASconfig = (-1.38x 10 -23)

6.02 x 1023 + 1018 6.02 x 1023 + 1018

= 0.0002 J/K

Since the result is positive, it implies that the entropy of the defective crystal is
higher than that of the perfect crystal.

erma enropy

As the atoms or ions vibrate in a solid, the uncertainty in the exact value of
their energy constitutes thermal entropy, ST. Combining 5.4 and 5.7 it

from which it directly follows that for any substance45

fr CP&ST = -£dT (5.12)
Jo 1

Microscopically, to understand the concept of thermal entropy, or heat
capacity for that matter, one needs to appreciate that the vibrational energy
levels of atoms in a crystal are quantized. If the atoms are assumed to behave
as simple harmonic oscillators, i.e., miniature springs, it can be shown that
their energy will be quantized with a spacing between energy levels given by

where H = 0 , 1 , 2 , . . . (5.13)

where h, n, and v are, respectively, Planck's constant, an integer, and the
characteristic vibration frequency of the bond. The last is related to the
spring constant of the bond, (see Chap. 4), S0

 46 by

(5.14)
"•'red

where u>0 is the angular frequency in rads - 1 and Mred is the reduced mass of
the oscillator system, i.e., the oscillating atoms. For a two-body problem with
masses m1 and m2, Mred = m1m2 /(m1 +m2). By combining Eqs. (5.13) and

In contrast to energy, one can assign an absolute value for entropy if it is postulated that the
entropy of a perfect (i.e., defect-free) solid goes to zero at absolute zero (third law). One of the
implications of the third law is that every substance has a certain amount of "5"' associated
with it at any given temperature above absolute 0 K.
S0 is not to be confused with entropy.
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(5.14), it becomes obvious that the spacing of energy levels for strongly
bonded (i.e., high-S0) solids is greater than that for weakly bonded solids.
a result that has far-reaching ramifications, as discussed shortly.

At absolute zero, the atoms populate the lowest energy levels available,
and only one configuration exists. Upon heating, however, the probability of
exciting atoms to higher energy levels increases, which in turn increases the
number of possible configurations of the system — which is another way
of saying that the thermal entropy has increased.

The details of lattice vibrations will not be discussed here.47 But for the
sake of discussion, the main results of one of the simpler models, namely, the
Einstein solid, are given below without proof. By assuming the solid to consist
of Avogadro's number NAv of independent harmonic oscillators, all oscil-
lating with the same frequency ve, Einstein showed that the thermal entropy
per mole is given by

ST = 37VAv - rf= -- ln(l - e' ) (5.15)T A [kT(el"/'/kT - 1) J

For temperatures kT » hve (e
x ^ 1 + x), Eq. (5.15) simplifies to

1 kT
In-— (5.16)

On the basis of this result,48 it is possible to make the following
generalizations concerning ST:

1. Thermal entropy ST is a monotonically increasing function of tempera-
ture; i.e., ST increases as T increases. This comes about because as the
temperature is raised, the atoms can populate higher and higher
energy levels. The uncertainty of distributing these atoms among the
larger number of accessible energy levels constitutes entropy.

2. The thermal entropy decreases with increasing characteristic frequency
of vibration of the atoms, that is, ve. Given that ve scales with the
strength of a bond [Eq. (5.14)], it follows that for a given temperature,
the solid with weaker bonds will have (he higher thermal entropy. The
reason is simple. If the bonds are strong, that is, S0 is large, then the
spacing between energy levels will also be large, and thus for a given
AT increase in the temperature, only a few levels are accessible and
the thermal entropy is low. In a weakly bound solid, on the other
hand, for the same AT, many more levels are accessible and the uncer-
tainty increases. As discussed in greater detail later, this conclusion is

For more details see, e.g., K. Denbigh, The Principles of Chemical Equilibrium, 4th ed..
Cambridge University Press, New York, 1981, Chap. 13.
The more accurate Debye model, which assumes a distribution of frequencies rather than a
single frequency, yields virtually the same result at higher temperatures.
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important when one is dealing with temperature-induced polymorphic
transformations since they tend to occur in the direction of increased
thermal entropy. In other words, polymorphic transformations will
tend to occur from phases of higher cohesive energy (e.g., close-
packed structures) to those of lower cohesive energies (more open
structures).

Another implication of Eq. (5.16) is that if the vibrational frequency of
the atoms changes from, say, a frequency v to v , as a result of a phase trans-
formation or the formation of defects, e.g., the associated entropy change is

;) (5j?)
Note that if v > v , AS-p"8 will be positive.

WORKED EXAMPLE 5.3.

(a) Sketch the various possible configurations for three particles distributed over
three energy levels subject to the constraint that the total energy of the system is
constant at 3 units, (b) By defining the Einstein characteristic temperature to be
9e = hvc/k, it can be shown that

T

where cr is the molar heat capacity at constant volume. Usually 9e is determined
by choosing its best value that fits the experimental cv versus T data. For KC1,
9e Ki 230 K. Estimate the frequency of vibration for KC1 from the heat capacity
data, and compare your result with that calculated based on Eq. (5.14). Assume
the Born exponent n = 9 for KC1. Atomic weight of Cl is 35.5 g/mol and that of
K is 39.1 g/mol.

Answer

(a) The various configurations are shown in Fig. 5.2. They total 10.
(b) The interatomic distance for KC1 is 319pm. If follows that for KC1 (see
Prob. 4.2)

z}z2e
2 N

S0 = -—^ (n-m) = 56.7 —
A— ..<, m

Mred = -- = ' = 3.1 x 10-26 kred (ml+m2) 10007VAv

Applying Eq. (5.14):



118 Fundamentals of Ceramics

Figure 5.2 Possible configurations of arranging three particles in a system with a total
energy of 3 units.49 Here it is assumed that cf) = 0. e\ = 1 unit. s2 = 1 units, etc.

Since 9e = hv.jk = 230K, it follows that ve = 4.8 x lO'V. The
agreement is quite good, considering the many simplifying assumptions made
to arrive at Eq. (5.14). The importance of these calculations lies more in
appreciating that ions in solids vibrate at a frequency on the order of 1013 s - 1 .

Electronic entropy

In the same manner as randomization of atoms over available energy levels
constitutes entropy, the same can be said about the distribution of electrons
over their energy levels. At 0 K, electrons and holes in semiconductors and
insulators are in their lowest energy state, and only one configuration
exists. As the temperature is raised, however, they are excited to higher
energy levels, and the uncertainty of finding the electron in any number of
excited energy levels constitutes a form of entropy. This point will be dealt
with in greater detail in Chaps. 6 and 7.

Other forms of entropy

Some elements and compounds have magnetic or dielectric moments. These
moments can be randomly oriented, or they may be ordered. For example,
when they are ordered, the magnetic entropy is zero since there is only one
configuration. As the temperature is increased, however, the entropy
increases as the number of possible configurations increases. The same argu-
ment can be made for dielectric moments (see Chap. 14).

Total entropy

Since entropies are additive, it follows that the total entropy of a system is
given by

•Stot = Sconfig + ST + Selec + Sother (5.18)

See D. Gaskell, Introduction to Metallurgical Thermodynamics. 2d ed.. Hemisphere. New
York. 1981, Chap. 4, for more details.
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G

Figure 5.3 Schematic of free-energy versus reaction coordinate curve. At £ = £0, that is,
when AG = 0, the system is said to be in equilibrium.

5.2.3 Free Energy, Chemical Potentials, and Equilibrium

As noted at the outset of this section, the important function that defines
equilibrium, or lack thereof, is neither enthalpy nor entropy, but rather the
free-energy function G, defined by Gibbs as

G = H - TS (5.19)

It follows that the free energy changes occurring during any reaction or
transformation are given by

AG = A// - TAS (5.20)

where AS now includes all forms of entropy change.
Furthermore, it can be shown that at equilibrium AG = 0. To illustrate,

consider changes occurring in a system as a function of a given reaction
variable £ that affects its free energy as shown schematically in Fig. 5.3.
The variable £ can be the number of vacancies in a solid, the number of
atoms in the gas phase, the extent of a reaction, the number of nuclei in a
supercooled liquid, etc. As long as £ ̂  £0 (Fig. 5.3), then AG / 0 and the
reaction will proceed. When £ = £0> AG is at a minimum and the system is
said to be in equilibrium, since the driving force for change AG/A£ = AG
vanishes. Thus the condition for equilibrium can be simply stated as

AG
(5.21)
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Equation (5.21), despite its apparent simplicity, is an extremely powerful
relationship because once the free energy of a system is formulated as a func-
tion of £, the state of equilibrium can simply be determined by differentiation
of that function50 (i.e., locating the minimum). In Chap. 6 how this simple
and yet powerful method is used to determine the equilibrium number of
vacancies in a solid is described. It is important to emphasize that this
condition for equilibrium is valid only when the changes are occurring at
constant temperature and pressure.

Free-energy change, AG, is an extensive property; i.e., it depends on
the size of the system. If normalized, however, to a per-mole or per-atom
basis, it becomes known as the chemical potential. The formal definition of
the chemical potential of species, i, is

r,
(5.22)

The chemical potential thus defined is the work that would be required to
remove an atom from the bulk of an uncharged solid to infinity at constant
pressure and temperature while keeping all other chemical components, j. in
the system fixed.

Once again, as in the case of enthalpy, since one is dealing with energy,
there are no absolute values. To circumvent this problem, the standard
chemical potential of a pure element or compound p°, is defined, and all
changes that occur in a system are then referred to that standard state.51

To take into account the fact that an element or compound is not in its
standard state, the concept of activity has been introduced. Mathematically
^,- can be described by

dG
^ dn{ P.T.j

(5.23)

where «, is the activity of that species, which is further described as

a, = 7,*, (5.24)

where Xi and 7, are the mole fraction and activity coefficient, respectively. It
follows directly from the definition of the standard state that ai, of a pure
element in its standard state is 1.0, and //, = /z°.

The activity coefficient is generally a function of composition. However,
if a solution is ideal or dilute enough such that the solute atoms do not
interact with each other, the activity coefficient can be assumed to be

50 Needless to say, the real difficulty does not lie in determining the location of the minimum —
that is the easy part. The hard part is determining the relationship between G and n therein
lies the challenge.

51 This value is unknown. This is not a major problem, however, because what is of interest is the
change //, - / / / .
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constant and

ai = j ° X i (5.25)

where 7° is known as the henrian activity coefficient, which is not a function of
composition. It also follows that for an ideal solution 7, = 1.

Experimental Details: Measuring Activities

Whereas it is possible to define activities mathematically by using Eq. (5.23),
it is only when it is appreciated how ai is measured that a better understand-
ing of that concept emerges. There are several ways ai can be measured; the
most tangible entails measuring the partial pressure Pi of the species for
which the activity is to be determined and comparing that value to the partial
pressure of the same species when it is in its pure standard state. The activity
is then related to the partial pressures by52

where P° is the partial pressure of the same species i in its standard state, i.e.,
pure. Note that for gases P° is taken to be 1 atm or 0. 1 MPa.

To further illustrate, consider the following thought experiment. Take
an element M, place it in an evacuated and sealed container, and heat the
system to a given temperature until equilibrium is attained; then measure
the pressure of gas atoms in the container. By definition, the measured
quantity represents the equilibrium partial pressure P°M, of pure M. This
value, which is solely a function of temperature, is well documented and
can be looked up.

By proceeding further with the thought experiment and alloying M with
a second element N, such that the molar ratio is, say, 50 : 50 and repeating the
aforementioned experiment, one of the following three outcomes is possible:

1 . The fraction of M atoms in the gas phase is equal to their fraction in the
alloy, or 0.5, in which case the solution is termed ideal and
ai. = Pi/P° = 0.5 = Xi and 7/ = 1.

2. The fraction of M atoms in the gas phase is less than 0.5. So
a-t — Pj/P° < 0.5, hence 7,- < 1. This is termed negative deviation from
ideality and implies that the M atoms prefer being in the solid or melt
to being in the gas phase relative to the ideal mixture.

This can be easily seen by noting that the work done in transferring one mol of atoms from a
region where the pressure is Pt to one where the pressure is P° is simply A// = RT\n(Pj/P°).
This work has to be identical to the energy change for the reaction Mpure => M,Moy for which
A// = R T \ n ( a / / l ) . This is essentially how Eq. (5.23) is obtained.
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3. The fraction of M atoms in the gas phase is greater than 0.5. So
ai = Pj/P° > 0.5 and 7, > 1. This is termed positive deviation from
ideality and implies that the M atoms prefer being in the gas phase
relative to the ideal mixture.

Thus by measuring the partial pressure of an element or a compound in
its pure state and by repeating the measurement with the element or
compound combined with some other material, the activity of the former
can be calculated.

5.3 Chemical Equilibrium and the Mass Action Expression

Consider the reaction

AGrxn (I)

where AGrxn represents the free-energy change associated with this reaction.
Clearly AGrxn will depend on the state of the reactants. For instance, one
would expect AGrxn to be greater if the partial pressure of X2 were 1 atm
than if it were lower, and vice versa.

Mathematically, this is taken into account by appreciating that the driv-
ing force for any reaction is composed of two terms: The first is how likely
one expects the reaction to occur under standard conditions, and the
second factor takes into account the fact that the reactants may or may
not be in their standard states. In other words, it can be shown (App. 5 A)
that the driving force AGrxn for any reaction is given by

AGrxn = AG°xn + /mnA: (5.27)

where AG°xn is the free-energy change associated with the reaction when the
reactants are in their standard state. And K is known as the equilibrium
constant of the reaction. For reaction (I),

aM\
(5.28)

where «MX> aM> and P\2
 are respectively, the activities of MX and M, and the

partial pressure of X2 at any time during the reaction. Equation (5.28) is also
known as the mass action expression for reaction (I).

At equilibrium, AGrxn = 0, and Eq. (5.27) simplifies to the well-known
result

(5.29)

At equilibrium, K = Keq = exp — [A(7°xn//RT)].
Before one proceeds further, it is instructive to dwell briefly on the

ramifications of Eq. (5.27). First, this equation says that if the reactants
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and products are in their standard state,53 that is, jPX2 —
 aM = aMX = 1 ^then

K = 1 and AGrxn = AG^n? which is how AG>xn was defined in the first place.
The other extreme occurs when the driving force for the reaction is zero, that
is, AGVXn = 0, which by definition is the equilibrium state, in which case Eq.
(5.29) applies.

It is worth noting that for the generalized reaction

aA + bB => cC + dD

the equilibrium constant is given by

(5.30)

where the a, values represent the activities of the various species raised to
their respective stoichiometric coefficients a, b, c, etc.

Armed with these important relationships, it is now possible to tackle
the next important topic, namely, the delineation of the chemical stability
domains of ceramic compounds.

5.4 Chemical Stability Domains

The chemical stability domain of a compound represents the range of activity
or gaseous partial pressure over which that compound is stable. For example,
experience has shown that under sufficiently reducing conditions, all oxides
are unstable and are reducible to their parent metal(s). Conversely, all
metals, with the notable exception of the noble ones, are unstable in air —
their oxides are more stable. From a practical point of view, it is important
to be able to predict the stability or lack thereof of a ceramic in a given
environment. A related question, whose answer is critical for the successful
reduction of ores, is this: at what oxygen partial pressure will an oxide no
longer be stable?

To illustrate, it is instructive to consider an oxide MOZ, for which a
higher oxide MO^ also exists (that is, y > z) and to calculate its stability
domain. The equilibrium partial pressure of the oxide that is in equilibrium
with the parent metal is determined by applying Eq. (5.29) to the following
reaction:

- O2 + M <-> MO, AG) (II)

As noted above, the standard state of a gas is chosen to be the state of 1 mol of pure gas at
1 atm (0.1 MPa) pressure and the temperature of interest. One should thus realize that when-
ever a partial pressure Pi appears in an expression such as Eq. (5.28), it is implicit that one is
dealing with the dimensionless ratio, Pi/1 atm.
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2AC7

Further oxidation of MO. to MO, occurs by the following reaction:

O2 MO MO,

(5.31

(III)
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Figure 5.4 Standard free energies of formation of a number of binary oxides as a function
of temperature.54

54 Adapted from L. S. Darken and R. W. Gurry, Physical Chemistry of Metals. McGraw-Hill.
New York, 1953.
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and the corresponding equilibrium oxygen partial pressure is given by
\rl\

ln/V = -^ (532)

where

It follows that the oxygen partial pressure regime over which MO- is
stable is bounded by the values obtained from Eqs. (5.31) and (5.32). The
following worked example should further clarify the concept. Needless to
say, carrying out the type of calculations described above would be
impossible without a knowledge of the temperature dependence of the
standard free energies of formation of the oxides involved. Figure 5.4 plots
such data for a number of binary oxides.

WORKED EXAMPLE 5.4

Calculate the chemical stability domains for the phases in the Fe-O system at
1000 K, given the following standard free energies of formation:55

AGFeOat l000 K = -206.95 kJmol

AGFe3o4 = -792.6 kJmol

AGFei0, = -561.8 kJmol

Answer

At equilibrium between Fe and FeO, the pertinent reaction is:

Fe + i°2 => FeO AGFeO

Applying Eq. (5.31) and solving for the equilibrium PO2 at 1000 K yields
2.4 x 10-22atm.

As the oxygen partial pressure is further increased, Fe3O4 becomes the
stable phase according to56

3FeO + ±O2 =j> Fe3O4 AG,,, = AGFe,O4 - 3AGFeO

Once again solving for Po^ gives 1.14 x 10-18atm.
Similarly Fe3O4 is stable up to a partial pressure given by the equilibrium

between it and Fe2O3, or

fFe3O4 + |°2 => Fe2O3 AGr,2 = AGFe,o, -f AGFe,o4

with an equilibrium partial pressure of 3.4 x 10~" atm.

's One of the more comprehensive and reliable sources of thermodynamic data is the JANAF
thermochemical tables.

56 The stoichiometry of the phases of interest can be read easily from the pertinent phase
diagram.
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To summarize at 1000 K: below a Po2 2.4 × 10-22 atm, Fe is the stable
phase, between 2.4 x 10–22 and 1.14 x 10-18, FeO is stable. Fe3O4 is stable
between 1.14 × 10-18 and 3.4 x 10 -11. At oxygen partial pressures greater
than 3.4 x 10-11, Fe2O3 is the stable phase up to 1 atm (see Fig. 6.8c for a
graphical representation of these results as a function of temperature).

5.5 Electrochemical Potentials

In the previous section, the chemical potential of species i in a given phase
was defined as the work needed to bring a mole of that species from infinity
into the bulk of that phase. This concept is of limited validity for ceramics,
however, since it only applies to neutral specie or uncharged media, where
in either case the electric work is zero. Clearly, the charged nature of ceramics
renders that definition invalid. Instead the pertinent function that is applic-
able in this case is the electrochemical potential ni, defined for a particle of
net charge zi, by:

' " ' (5.33)

where ni is the chemical potential per mole and 6 is the electric potential. On
a molar basis, this expression reads

molar (5.34)

where F is Faraday's constant (F = NAve = 96500 C/equivalent). In other
words, Eq. (5.33) states that 77, is the sum of the chemical and electrical
work needed to bring a particle of charge zte from infinity to that phase.
Note once again that if zi were zero, the electrochemical and chemical poten-
tials would be identical, or 77, = //,, which is the case for metals and other
electronically conducting materials. Note that this conclusion is also valid
when one is dealing with the insertion or the removal of a neutral species
from charged media, such as ionic ceramics or liquid electrolytes.57 The

57 An interesting ramification of this statement is that it is impossible to measure the activities or
chemical potentials of individual ions in a compound, for the simple reason that it is impos-
sible to indefinitely add or remove only one type of ion without having a charge buildup. For
example, if one starts removing cations from an MX compound, it will very quickly acquire a
net negative charge that will render removing further ions more and more difficult. In other
words, because it is impossible to measure the "partial pressure" of, say. Na ions above an
NaCl crystal, it follows that it is impossible to measure their activity. Interestingly enough,
it is, in principle, possible to measure the partial pressure of Na metal. Cl2 gas. or NaCl
vapor over an NaCl crystal. In other words, it is only possible to measure the activity of
neutral entities. This problem is by no means restricted to ionic solids. The problem was
historically first looked at in liquid electrolytic solutions. For an excellent exposition of
that problem, see J. Bockris and A. K. N. Reddy, Modern Electrochemistry, vol. 2.
Plenum. New York. 1970, Chap. 7.
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fundamental problem in dealing with ionic ceramics arises, however, if
the problem involves charged species. In that case, one has to grapple with
the electrochemical potential.

It can be shown (see Chap. 7) that the driving force on a charged species
is the gradient in its electrochemical potential. It follows directly that the
condition for equilibrium for any given species i is that the gradient vanishes,
i.e., when

\dr), = Q\ (5.35)

In other words, at equilibrium the electrochemical potential gradient of
every species everywhere must vanish. It follows that for charged species the
condition for equilibrium occurs not when dfj, = 0 but rather when dr\ = 0.

The astute reader may argue at this point that since the bulk of any
material has to be neutral, it follows that <b was constant across that material
and therefore the electric work was a constant that could be included in /u0,
for instance. The fundamental problem with this approach, however, is that
in order to insert a charged particle into a given phase, an interface has to be
crossed. It follows that if a given interface is charged with respect to the bulk,
the electric work can no longer be neglected.

5.6 Charged Interfaces, Double Layers, and Debye Lengths

The next pertinent question is, are interfaces charged, and if so, why? The
answer to the first part is simple: almost all interfaces and surfaces are
indeed charged. The answer to the second part is more complicated; it depends
on the type of interface, class of material, etc., and is clearly beyond the scope
of this book. However, to illustrate the concept the following idealized and
simplified thought experiment is useful. Consider the bulk of an MO oxide
depicted in Fig. 5.5a. Focus on the central ion. It is obvious that this ion is
being tugged at equally in all directions. Imagine, now, that the crystal is
sliced in two such that an interface is created in the near vicinity of the afore-
mentioned ion. The cutting process bares two surfaces and causes an imbal-
ance of the forces acting on ions that are near the surface, depicted in Fig. 5.5b.

This asymmetry in force in turn induces the ion to migrate one way or
another. If it is further assumed, again for the sake of simplicity, that in this
case the O ions are immobile and that the driving force is such as to induce
the M ions to migrate to the surface, then it follows that the interface or surface
will now be positively charged with respect to the bulk — a charge that has to
be balanced by a negative one in the bulk. For a pure MO compound,58 this is
58 Most oxides contain impurities, which in an attempt to reduce the strain energy of the system

tend to migrate to the interfaces, grain boundaries, and surfaces. It is usually the segregation
of these impurities that is responsible for the surface charge. This charge is usually compen-
sated, however, with bulk ionic defects.
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Figure 5.5 (a) Ion in bulk is subjected to a symmetric force. (A) Near an interface the
forces are no longer symmetric, and the ions migrate one way or another, (c) Schematic
of diffuse layer extending into the bulk from the interface. In this case, for simplicity it
is assumed that the anions are immobile and the cations move toward the surface. The
net positive charge is compensated by a distribution of negatively charged cation vacancies
in the bulk, (d) Charge distribution of cation vacancies, (e) A sheet of charge equal in
magnitude to surface charge at a distance A from interface.

accomplished automatically, because as the ions migrate to the surface, the
vacancies that are left behind are negatively charged (see Chap. 6). The
formation of a surface sheet of charge that is balanced by a concentration of
oppositely charged bulk entities constitutes a double layer (Fig. 5.5c).

For reasons that will become apparent in Chap. 7 (namely, diffusion), it
can be shown that the compensating charges to the one at the interface, i.e..
the cation vacancies in this case, are not concentrated in a plane but rather
are diffusely distributed in the bulk of the solid, as shown in Fig. 5.5c and
d. It can also be shown that a measure of the thickness of this so-called
double layer, also known as the Debye length A, is given by59

A = (5.36)

59 See. for example, J. Bockris and A. K. N. Reddy. Modern Electrochemistry. Plenum. New
York. 1970.
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where zi and ni are the charge and number density (particles per cubic meter)
of the defects in the bulk of the material and e0 and k' are, respectively, the
permittivity of free space and the relative dielectric constant of the solvent
(see Chap. 14). All other symbols have their usual meaning; A is the distance
at which the diffuse charge can be replaced by an equivalent sheet of charge
(Fig. 5.5e) that would result in the same capacitance as that of the diffuse
charge. Note that Eq. (5.36) is only applicable to dilute solutions and
breaks down at higher concentrations.

Finally, it is worth noting that charged interfaces are created not only at
free surfaces, but whenever two dissimilar phases come into contact. Electri-
fied interfaces are at the heart of much of today's technology; from drug
manufacturing to integrated circuits. Life itself would be impossible without
them. More specifically in ceramics, the electric double layer is responsible
for such diverse phenomena as varistor behavior, chemical sensing, and
catalysis, to name but a few.

5.7 Gibbs-Duhem Relation for Binary Oxides

The chemical potentials of the various components in a multicomponent
system are interrelated. The relationship for binary compounds, known as
the Gibbs-Duhem equation, is developed here. Its applicability and usefulness,
however, will only become apparent later in Chap. 7.

In terms of the building blocks of a binary MOc compound, one can
write

£O (5.37)

from which it follows that

At equilibrium, by definition, ^MO£ = 0? and consequently,
- , or

Furthermore, since locally, the anions and cations are subjected to the
same potential 0, it follows that for a binary oxide

(5.38)

This expression is known as the Gibbs-Duhem relationship and it expresses
the fact that the changes in the chemical potentials of the building blocks
of a binary crystal (i.e., anions and cations) are interrelated.60

In textbooks of solution thermodynamics the Gibbs-Duhem is derived as *A d^A + xB d/B = 0,
where .xA and xB denote the mole fractions of A and B, respectively.
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Note that Eq. (5.37) could have been written as

MO 4* M+|o2 (5.39)

from which it follows that

(5.40)

As noted above, the importance and applicability of these relationships
will become apparent in Chap. 7.

WORKED EXAMPLE 5.5.

(a) Assume a crystal of MgO is placed between Mg metal on one side and pure
oxygen on the other side as shown in Fig. 5.6. Calculate the chemical potential of
each species at each interface at 1000 K. given that at that temperature
AG^go = —492.95 kg/mol. (b) Show that the Gibbs-Duhem relationship holds
for the MgO crystal described in part (a).

Answer

(a) The pertinent reaction and its corresponding equilibrium mass action
expression are, respectively,

Mg-f ^O2 => MgO(s)

AG° = -RT\nK = -RTln "Mg°

Since the MgO that forms in this case is pure. i.e.. in its standard state (e.g.. not
in solid solution), it follows that by definition aMgO = 1 on either side. On the
metal side, aMg = 1.0, and solving for PO2 yields 3.2 x 10-52 atm. or
3.2 × 10-53 MPa.

Conversely, on the oxygen side. PO2, = 1 atm. and aMg is calculated to be

a M g = 1.8 × 10-26

The results are summarized in Fig. 5.6.

Figure 5.6 Equilibrium conditions for an MgO crystal simultaneously subjected to Mg
metal on one side and pure oxygen at 1 atm on the other.
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(b) The Gibbs-Duhem expression simply expresses the fact that the chemical
potentials of the constituents of a binary compound are interrelated. Referring
to Fig. 5.6, the following applies:

MgO oxygen

or

RT
L*O2 + ~j~ m^O2 + /-*Mg + RJ lu"Mg|oxygen

RT
— A*O2 ^ 9" °2 metal

which simplifies to

in aMg oxygen J O2 metal

Insertion of the appropriate values for the activity of Mg and Po2 at each
interface shows that this identity is indeed fulfilled.

5.8 Kinetic Considerations

In the preceding sections, the fundamental concept of equilibrium was
discussed. Given sufficient time, all systems tend to their lowest energy
state. Experience has shown, however, that many systems do not exist in
their most stable configuration, but rather in a metastable form. Most
materials are generally neither produced nor used in their equilibrium
states. For example, glasses are metastable with respect to their crystalline
counterparts, yet are of great utility because at the temperatures at which
they are typically used, the kinetics of the glass-crystal transformation are
negligible.

In general, the kinetics or rate of any transformation is assumed to be
proportional to a driving force F

Rate = (3F (5.41)

where the proportionality constant is a system property that depends on
the process involved. For instance, can be a diffusion coefficient, a reaction
rate constant, or a conductance of any sort.

The driving force is a measure of how far a system is from equilibrium.
Referring to Fig. 5.3, the driving force is nothing but dG/d^, or AG. Thus the
importance of thermodynamics lies not only in defining the state of equili-
brium, but also in quantifying the driving force — it is only by knowing
the final equilibrium state that the rate at which a system will approach
that state can be estimated.

All changes and transformations require a driving force, the nature and
magnitude of which can vary over many orders of magnitude depending on
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Table 5.1 Typical orders of magnitude of driving forces governing various phenomena
discussed in this book

Process Driving force Typical
values,
J/molf

Comments

Fracture (Chap. 11) V,,,o-2/(2Y)

Grain growth (Chap. 10) 272b/r

Sintering or
coarsening (Chap. 10)
Creep (Chap. 12)

Crystallization (Chap. 9) A// A7/7W

0.5 a is stress at failure and Y is
Young's modulus

20.0 7gb is grain boundary energy,
and /• is radius of a particle
->• is surface energy term100.0

1000.0
(Chap. 4)

Interdiffusion (Chap. 7)

Oxidation (Chap. 7)

RT(xa\n.\a

xh\nxh)

a is applied stress and Vm,
molar volume

3000.0 A// is enthalpy of
transformation, AT" is
undercooling, and Tm is
melting point

5000.0 Assuming ideal solution [see
Eq. (5.11)]

50,000.0- AGºform free energy of
500,000.0 formation of oxide-

normalized to a per-mole-of-
oxygen basis

Assumptions: 1000 K, molar volume: 10
a= 100 MPa.

-5m3/mol (10cm3 mol); r = 1 um. - = 1 J rrr:

the process involved (Table 5.1). For example, the driving forces for chemical
reactions, such as oxidation, are usually quite large, in the range of a few
hundred kilojoules per mole. On the other hand, the driving forces for
boundary migration, coarsening, and densification are much smaller, on
the order of 100J/mol or less. This, in turn, partially explains why it is
much easier to oxidize a fine metal powder than it is to sinter it.

The four most important driving forces operative in materials science
are those due to

1. Reduction in free energies of formation as a result of chemical reactions
and phase transformations, e.g., oxidation or crystallization

2. Reduction of energy due to applied stresses, e.g., creep
3. Reduction of surface or interfacial energy, e.g.. sintering and grain

growth
4. Reduction of strain energy, e.g., fracture, segregation

At this point the expressions and order-of-magnitude values of these
driving forces are simply listed (Table 5.1). However, each will be revisited
and discussed in detail in subsequent chapters. Fracture is dealt with in
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Chap. 11, grain growth and sintering in Chap. 10, crystallization in Chap. 9,
creep in Chap. 12, and oxidation and interdiffusion in Chap. 7.

The second important parameter that determines the rate at which a
given process will occur is the f a c t o r . And since, with the notable exception
of fracture, all the processes listed in Table 5.1 require the movement of
atoms, (3 is usually equated to the rate at which an atom or ion will make a
jump. This concept is discussed in greater detail in Chap. 7, where diffusion
is elucidated.

5.9 Summary

The free energy is a function made up of two terms, an enthalpy term and an
entropy term. Entropy can be of various kinds, but fundamentally it is a
measure of the disorder in a system.

For a system that is at constant pressure and temperature, the state of
equilibrium is defined as that state of the system for which the free energy
is at a minimum.

For a chemical reaction equilibrium dictates that AGrxn = 0 and
consequently

AG° = -RTlnK

where K is the equilibrium constant for that reaction.
In ionic ceramics it is not the chemical but the electrochemical potential

that defines equilibrium.

Appendix 5A

Derivation of Eq. (5.27)

Reaction (I) in text reads

M(j) + iX2fe) =* MX(s) AGrxn

Applying Eq. (5.23) to reactants and products, one obtains

(5A.2)

(5A.3)

It follows that the free-energy change associated with this reaction is

AGrxn = //MX ~ MM ~ 7/^X, (5 A. 4)
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Combining Eqs. (5A.1) to (5A.4) gives

AGform - (//MX - fa - ifa)
«M^X;

If one defines A(7° as

fa - J//x, (5A.6)

and K by Eq. (5.28), Eqs. (5A.5) and (5.27) are identical. Furthermore, since
at equilibrium AGform = 0, Eq. (5 A. 5) now reads

= -RT\n „ (5A.7)

Problems

5.1. Starting with Eq. (5.9), and making use of Stirling's approximation,
derive Eq. (5.10).

5.2. Pure stoichiometric ZnO is heated to 1400 K in an evacuated chamber
of a vapor deposition furnace. What is the partial pressure of Zn and
O2 generated by the thermal decomposition of ZnO? Information you
may find useful: &G°ZnO at 1400 K = -183 kJ/mol.

Answer: log PO2 = -4.75, log Pzn = -4.45

5.3. Calculate the driving force for the oxidation of pure Mg subjected to
an oxygen partial pressure of 10 - 1 2 atm at 1000 K. Compare that
value to the driving force if the oxygen partial pressure was 1 atm.

Answer: —378.1 kJ/mol

5.4. (a) Evaluate the equilibrium partial pressure of oxygen for the Si-
silica system at 1000 K.

(b) If the oxidation is occurring with water vapor, calculate the
equilibrium constant and the H2/H2O ratio in equilibrium with
Si and silica at 1000 K.

(c) Compute the equilibrium partial pressure of oxygen for a gas
mixture with an H2/H2O ratio calculated in part (b). Compare
your result with the oxygen partial pressure calculated in part (a).

5.5. Given at 1623 K:

, = -623 kJ/mol

,N,o = -446kJ/mol

i,N4 = -209kJ/mol
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Figure 5.7 Si-N-O stability diagram at 1623 K.

Confirm that the stability diagram in the Si-N-O system at 1623 K is
the one shown in Fig. 5.7.

5.6. (a) Can Al reduce Fe2O3 at 1200°C? Explain.

Answer. Yes

(b) Is it possible to oxidize Ni in a CO/CO2 atmosphere with a ratio of
0.1?

(c) Will silica oxidize zinc at 700°C. Explain.

Answer: No

5.7. Calculate the stability domains of NiO and CoO at 1000 K. Compare
your results with those listed in Table 6.1.

5.8. A crucible of BN is heated in a gas stream containing N2, H2, and H2O
at 1200 K. The partial pressure of nitrogen is kept fixed at 0.5 atm. What
must the ratio PH2 / PH2O have to be or exceed in order for B2O3 not to
form? Information you may find useful: at 1200 K; AG^N = -743 kJ/
mol; AG^o, = -957.47 kJ/mol; AG^o = -181.425 kJ/mol.
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Chapter 6

Defects in Ceramics

Textbooks and Heaven only are Ideal;
Solidity is an imperfect state.
Within the cracked and dislocated Real
Nonstoichiometric crystals dominate.
Stray Atoms sully and precipitate;
Strange holes, excitons, wander loose, because
Of Dangling Bonds, a chemical Substrate
Corrodes and catalyzes — surface Flaws
Help Epitaxial Growth to fix adsorptive claws.

John Updike, The Dance of the Solids*

6.1 Introduction

Alas, as John Updike so eloquently points out, only textbooks (present
company excepted) and heaven are ideal. Real crystals, however, are not
perfect but contain imperfections that are classified according to their
geometry and shape into point, line, and planar defects. A point defect can
be defined as any lattice point which is not occupied by the proper ion or
atom needed to preserve the long-range periodicity of the structure.
Dislocations are defects that cause lattice distortions centered on a line
and are thus classified as linear defects. Planar defects are surface imperfec-
tions in polycrystalline solids that separate grains or domains of different
orientations and include grain and twin boundaries. In addition, there are
three-dimensional bulk defects such as pores, cracks, and inclusions; these
are not treated in this chapter, however, but are considered in Chap. 11,
where it is shown that these defects are critical in determining the strength
of ceramics.

The importance of defects in general and point defects in particular
cannot be overemphasized. As will become apparent in subsequent chapters,

' J. Updike, Midpoint and other Poems, A. Knopf, Inc., New York, New York, 1969. Reprinted
with permission.
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many of the properties considered are strongly affected by the presence or
absence of these defects. For instance, in Chap. 7, the one-to-one correlation
between the concentration of point defects and atom movement or diffusion
is elucidated. In metals, but less so in ceramics except at higher temperatures,
it is the presence and movement of dislocations that is responsible for
ductility and creep. In Chap. 11, the correlation between grain size and
mechanical strength is made. As discussed in Chap. 16, the scattering of
light by pores is responsible for their opacity.

Generally speaking, in ceramic systems more is known about point
defects than about the structure of dislocations, grain boundaries, or free
surfaces — a fact that is reflected in the coverage of this chapter in which
the lion's share is devoted to point defects.

6.2 Point Defects

In contrast to pure metals and elemental crystals for which point defects
are rather straightforward to describe (because only one type of atom is
involved and charge neutrality is not an issue), the situation in ceramics is
more complex. One overriding constraint operative during the formation
of ceramic defects is the preservation of electroneutrality at all times.
Consequently, the defects occur in neutral "bunches" and fall in one of
three categories:

Stoichiometric defects

These are defined as ones in which the crystal chemistry, i.e., the ratio of the
cations to anions, does not change, and they include, among others. Schottky
and Frenkel defects (Fig. 6.3).

Nonstoichiometric defects

These defects form by the selective addition or loss of one (or more) of the
constituents of the crystal and consequently lead to a change in crystal
chemistry and the notion of nonstoichiometry discussed below. The basic
notion that the composition of compounds is a constant with simple ratios
between the numbers of constituent atoms is one that is reiterated in every
first-year college chemistry course. For instance, in MgO the cation anion
ratio is unity, that for A12O3 is 2/3, etc. In reality, however, it can be
rigorously shown using thermodynamic arguments that the composition of
every compound must vary within its existence regime.61

61 The existence regime of a compound defines the range of chemical potential of the constituents
of that compound over which it is thermodynamically stable. For example, it was shown in
Worked Example 5.5 that MgO was stable between the oxygen partial pressures of 1 atm
and 3.2 x 10-52atm — below 3.2 x 1CT-52. MgO decomposed to Mg metal and oxygen.
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A material accommodates those changes in composition by selectively
losing one of its constituents to its environment by the creation or elimi-
nation of defects (see Fig. 6.4). In so doing, a compound will adjust its
composition to reflect the externally imposed thermodynamic parameters.
This leads to the idea of nonstoichiometry where the simple ratio between
the numbers of the constituent atoms of a compound breaks down. For
example, if an oxide were annealed in a high oxygen partial pressure, it
would be fair to assume that the number of oxygen atoms should be relatively
greater than the number of cations. Conversely, if the oxygen partial pressure
were very low, one would expect the cation concentration to be higher.

The importance of nonstoichiometry lies in the fact that many physical
properties such as color, diffusivity, electrical conductivity, photoconduc-
tivity, and magnetic susceptibility can vary markedly with small changes in
composition.

Extrinsic defects

These are defects created as a result of the presence of impurities in the host
crystal.

The remainder of this section attempts to answer, among others, the
following questions: Why do point defects form? What are the different
types of defects that can form? And how is their concentration influenced
by temperature and externally imposed thermodynamic parameters, such
as oxygen partial pressure? Before we proceed, however, it is imperative to
describe in greater detail the various defects that can form and to formulate
a scheme by which they can be notated.

6.2.1 Point Defects and Their Notation

In a pure binary compound, the following lattice defects, shown schemati-
cally in Fig. 6.1, exist:

1. Vacancies: sites where an atom is missing. These can occur on either
sublattice.

2. Interstitial atoms: atoms found in sites that are normally unoccupied.
3. Misplaced atoms: types of atoms found at a site normally occupied by

other types. This defect is only possible in covalent ceramics, however,
where the atoms are not charged.

The following electronic defects also exist:

4. Free electrons: electrons that are in the conduction band of the
crystal.

5. Electron holes: positive mobile electronic carriers that are present in the
valence band of the crystal (see Chap. 7).
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Figure 6.1 Various types of defects typically found in ceramics. Misplaced atoms can only
occur in covalent ceramics due to charge considerations.

In addition to the aforementioned, an impure crystal will contain

6. Interstitial and substitutional impurities: As depicted in Fig. 6.1. these
can occur on either sublattice.

Over the years, several schemes have been proposed to denote
defects in ceramics. The one that is now used almost universally is the
Kroger-Vink notation and is thus the one adopted here. In this notation,
the defect is represented by a main symbol followed by a superscript and
a subscript.

Main symbol. The main symbol is either the species involved, i.e.. chemi-
cal symbol of an element, or the letter V for vacancy.
Subscript. The subscript is either the crystallographic position occupied
by the species involved or the letter i for interstitial.
Superscript. The superscript denotes the effective electric charge on the
defect, defined as the difference between the real charge of the defect
species and that of the species that would have occupied that site in a
perfect crystal.62 The superscript is a prime for each negative charge, a
dot for every positive charge, or an \ for zero effective charge.

The best way to explain how the notation works is through a series of
examples.

62 The charge is so called because it denotes not the real charge on the defect, but the effective
charge relative to the perfect crystal. It is this effective charge that determines the direction in
which the defect will move in response to an electric field. It also denotes the type of
interaction between the defects, for instance, whether two defects would attract or repel
each other.
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EXAMPLE 1

Consider the possible defects that can occur in a pure NaCl crystal:

(a) Vacancy on the Na+ sublattice: V'Na^site on which vacancy resides. The symbol V
is always used for a vacancy. The superscript is a prime (representing a single
negative charge) because the effective charge on the vacancy is 0 — (+1) = — 1.
(b) Vacancy on Cl~ sublattice: \'c\. In this case the superscript is a small dot
(which denotes a positive charge) because the effective charge on the vacancy
i s O - ( - l ) = +1.
(c) Interstitial position on Na sublattice: Na*^always used for interstitials. The main
symbol here is the misplaced Na ion; the subscript / denotes the interstitial
position, and the effective charge is +1 — 0 = +1.

EXAMPLE 2

Consider the addition of CaCl2 to NaCl. The Ca cation can substitute for a Na
ion or go interstitial (needless to say, because of charge considerations, only
cations will substitute for cations and only anions for anions). In the first
case, the defect notation is Ca^, and the effective charge [+2 — (+1) = 1] is
+ 1 . Conversely, an interstitial Ca ion is denoted as Ca** .

EXAMPLE 3

Instead of adding CaCl2, consider KC1. If the K ion, which has the same
charge as Na, substitutes for a Na ion, the notation is KNa

x, since the effective
charge in this case is 0 (denoted by an x). If the K ion goes interstitial, the
notation is K*.

EXAMPLE 4

Dope the NaCl crystal with Na2S. Again only anions can substitute for anions,
or they can go interstitial. Two possibilities are SQ and Sf .

EXAMPLE 5

One would expect to find the following defects in pure A12O3: Al***, Of, V'£\, and

After this brief introduction to defects and their notation, it is pertinent
to ask why point defects form in the first place. However, before the more
complicated case of defects in ceramics is tackled in Sec. 6.2.3, the simpler
situation involving vacancy formation in elemental crystals such as Si, Ge
or pure metals is treated.

6.2.2 Thermodynamics of Point Defect Formation in Elemental Crystals

There are several ways by which vacancy formation can be envisioned. A
particularly useful and instructive one is to remove an atom from the bulk
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of a crystal and place it on its surface. The enthalpy change A/J associated
with such a process has to be endothermic because more bonds are broken
than are re-formed. This brings up the legitimate question. If it costs
energy to form defects, why do they form? The answer lies in the fact that
at equilibrium, as discussed in Chap. 5, it is the free energy rather than the
enthalpy that is minimized. In other words, it is only when the entropy
changes associated with the formation of the defects are taken into account
that it becomes clear why vacancies are thermodynamically stable and their
equilibrium concentration can be calculated. It follows that if it can be shown
that at any given temperature, the Gibbs free energy associated with a perfect
crystal Gp^f is higher than that of a crystal containing «,. defects, i.e.. that
Gdef — Gperf < 0, where Gdef is the free energy of the defective crystal, then
the defective crystal has to be more stable. The procedure is as follows:

Free energy of a perfect crystal63

For a perfect crystal,

Gperf = Hperf ~ TSperf

where H is the enthalpy; S, the entropy; and 7\ the absolute temperature of
the crystal.

As noted in Chap. 5, the total entropy of a collection of atoms is the sum
of a configuration term and a vibration entropy term, or

ST

For a perfect crystal, Scoring = 0 since there is only one way of arranging N
atoms on N lattice sites. The vibration component, however, is given by
Eq. (5.16), or

ST = Nk In — + 1
\ hv

where TV is the number of atoms involved, k is Boltzmann's constant, and v is
the vibration frequency of atoms in the perfect crystal. Adding the various
terms, one obtains

= "erf ~ #* T in + 1 (6.1)

Free energy of a defective crystal

If one assumes that it costs hd joules to create one defect, it follows that the
enthalpy of the crystal upon formation of n,. vacancies increases (i.e..

63 This approach is not strictly orthodox because G^ cannot be calculated on an absolute scale.
However, the approach is still valid because before the final result is reached, that energy will
be subtracted from Gdef .
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becomes less negative) by nvhd. Hence the enthalpy of the defective crystal is

#def = #perf + «A/ (6.2)

Furthermore, the configurational entropy is no longer zero because the nv

vacancies and N atoms can now be distributed on N + nv total atomic
sites. The corresponding configuration entropy [see Eq. (5.10)] is given by

(6.3)

It is fair to assume that only the atoms in the near vicinity of each
vacancy will vibrate at a different frequency z/ than the rest — the remainder
of the atoms will be unaffected and will continue to vibrate with frequency z/.
If one further assumes only nearest-neighbor interactions, then for a co-
ordination number £ of the vacancies, the total number of atoms affected
is simply £«,,. The vibration entropy term is then given by

(6.4)

where the first term represents the atoms whose vibration frequencies have
been unaffected by the vacancies and the second term represents those that
have, and are now vibrating with, a new frequency.

Combining Eqs. (6.2) to (6.4) yields

s~* u i /

kT \ / kT

(6.5)v '

— kT/v J i v •*• T »»"?!V. / i •»•" , i » i i * "??N I -*" i /hv I \ hv

nv + N nv + N

Subtracting Eq. (6.1) from Eq. (6.5) yields the sought-after result

AG = Gdef - Gperf

= nvhd + kTnv£\n— + kT^Nln - - + nv\n
 HV j (6.6)

This is an important result because it says that the free-energy change upon
the introduction of nv defects in an otherwise perfect crystal is a function of
both nv and T. If T is kept constant and A(7 is plotted versus nv, as shown in
Fig. 6.2a, it is immediately obvious that this function goes through a mini-
mum.64 In other words, the addition of vacancies to a perfect crystal will
initially lower its free energy up to a point beyond which further increases
in the number of vacancies is no longer energetically favorable, and the

64 For the sake of simplicity, the second term in Eq. (6.6) was omitted from Fig. 6.2.
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Figure 6.2 (a) Free-energy change as a function of number of defects n,. The top line
represents the energy needed to create the defects. The lower curve is the free energy
gained as a result of the configuration entropy. The centerline represents the sum of the
two components [i.e., a plot of Eq. (6.6)], which clearly goes through a minimum, (b)
Same plot as in (a) except at a higher temperature. Note that the equilibrium number of

neq

neq + N

neq _

~ N ~ex »( Hdp v - rAsvib
kT ) c-*( A&A

A-rJ

free energy increases once again.65 The number of vacancies at which the
minimum in A (7 occurs, i.e., when dAG/dw,. = 0, is the equilibrium
number of vacancies neq at that temperature and is given by (see Prob. 6. 1 )

(6.7)

where Ag = hd-T Asvib and Asvib = k I n ( v / v ' ) . Note that the final
expression does not contain any configuration entropy terms, but depends
solely on the free energy associated with the formation of a single defect.

Equation (6.7) predicts that the equilibrium number of vacancies
increases exponentially with temperature. To understand why. it is instruc-
tive to compare Fig. 6.2a and b, where Eq. (6.6) is plotted, on the same
scale, for two different temperatures. At higher temperatures (Fig. 6.2b),
the configurational entropy term becomes more important relative to the
enthalpy term, which in turn shifts neq to higher values.

At this point, the slightly more complicated problem of defects in
ceramics is dealt with. The complications arise because, as noted above,
the charges on the defects preclude their forming separately — they always
form in bunches so as to maintain charge neutrality. In the following section,
defect formation in ceramics is dealt with by writing down balanced-defect

65 Note that here n,. is the reaction variable discussed in Chap. 5 (Fig. 5.3).
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reactions. Expressions for the equilibrium concentration of these defects are
then calculated by using two approaches. The first uses the statistical
approach used to derive Eq. (6.7). The second approach (Sec. 6.2.5) makes
use of the mass action expression of the pertinent defect reactions. Needless
to say, the two approaches should and do yield the same results.

6.2.3 Defect Reactions

The formation of the various point defects is best described by chemical
reactions for which the following rules have to be followed:

• Mass balance: mass cannot be created or destroyed. Vacancies have zero
mass.

• Electroneutrality or charge balance: charges cannot be created or destroyed.
• Preservation of regular site ratio: the ratio between the numbers of regular

cation and anion sites must remain constant and equal to the ratio of the
parent lattice.66 Thus if a normal lattice site of one constituent is created
or destroyed, the corresponding number of normal sites of the other
constituent must be simultaneously created or destroyed so as to preserve
the site ratio of the compound. This requirement recognizes that one
cannot create one type of lattice site without the other and indefinitely
extend the crystal. For instance, for an MO oxide, if a number of cation
lattice sites are created or destroyed, then an equal number of anion lattice
sites have to be created or destroyed. Conversely, for an M2O oxide, the
ratio must be maintained at 2 : 1, etc.

To generalize, for an MaXb compound, the following relationship has to
be maintained at all times:

that is, the ratio of the sum of the number of atoms and vacancies on each
sublattice has to be maintained at the stoichiometric ratio, or

Note that this does not imply that the number of atoms or ions has to
maintain that ratio but only the number of sites.

In the following subsections these rules are applied to the various types
of defects present in ceramics.

Stoichiometric defect reactions

A stoichiometric defect reaction by definition is one where the chemistry of
the crystal does not change as a result of the reaction. Said otherwise, a

66 Interstitial sites are not considered to be regular sites.
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( a ) ( b )

Figure 6.3 (a) Schottky defect in NaCl; (b) Frenkel defect in AgCl.

stoichiometric reaction is one in which no mass is transferred across the crystal
boundaries. The three most common stoichiometric defects are Schottky
defects, Frenkel defects, and antistructure disorder or misplaced atoms.

Schottky defects. In the Schottky defect reaction, electric-charge-equivalent
numbers of vacancies are formed on each sublattice. In NaCl, for example, a
Schottky defect entails the formation of Na and Cl vacancy pairs (Fig. 6.3a).
In general, for an MO oxide, the reaction reads67

Null (or perfect crystal) =» VM + Vo &gs (6-8)

where Ags is the free-energy change associated with the formation of the
Schottky defect.

Similarly, for an M2O3 oxide,

Null (or perfect crystal) 2V'^ + 3V"

In general for an MaOh oxide,

Null (or perfect crystal) => aV^ + k\%)~

It is left as an exercise to the reader to ascertain that as written, these
reactions satisfy the aforementioned rules.

Equation (6.7) was derived with the implicit assumption that only one
type of vacancy forms. The thermodynamics of Schottky defect formation
is slightly more complicated, however, because disorder can now occur on

67 To see how that occurs, consider the formation of a defect pair in an MO oxide by the migra-
tion of a cation and an anion to the surface. In that case, one can write

OX , \ « X , f~\\ , » jf X , \/** \/"
o -r MM => Un t + Mvi t + V r > - ' - V v i

where the subscript s refers to the surface sites. But since the ions that migrated to the surface
covered ions previously located at the surface, this equation is usually abbreviated to Eq. (6.8).
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both sublattices. This is taken into account as follows: Assuming the number
of ways of distributing the cation vacancies Vcat on Ncat + Vcat sites is 0], and
the number of ways of distributing Van anion vacancies on N,an + Van sites is
S12, it can be shown that the configuration entropy change upon the intro-
duction of both defects is given by

where

(fj 4- v V (N 4-D \/ 'cat i ' ca t / - v/ 'an '

McatWVcat)! Man)!(Van)!

where Ncat and Nan are the total numbers of cations and anions in the
crystal, respectively. Following a derivation similar to the one shown for
the elemental crystal and taking an MO oxide as an example, i.e., subject
to the constraint that (Nca t + ncat)/(Nan + n a n ) — 1, one can show that (see
Prob. 6.1c) at equilibrium

VeqVeq veqVeq / A / i o - r A v cv an v cat ^ v an v cat „„ / ^"S 1 ^^S

kT
(6.9)

where V^t, and Va^ are, respectively, the equilibrium numbers of cation and
anion vacancies. And Ass and Ahs are, respectively, the entropy and enthalpy
associated with the formation of a Schottky pair, or Ags = hs — T A%.

This result predicts that the product of the cation and anion vacancy
concentrations is a constant that depends on only temperature and holds
true as long as equilibrium can be assumed.68 In certain cases, discussed in
greater detail below, when Schottky defects dominate, that is,
Van = vcat » the sum of all other defects, Eq. (6.9) simplifies to

[Va] = [Vc] = e x p e x p (6.10)

where:

[VJ = and [VJ = ( 6 J i )

Note that from here on, in equations in which defects are involved, square
brackets will be used exclusively to represent the mole or site fraction of defects.

Frenkel defects. The Frenkel defect (Fig. 6.3b) is one in which a vacancy is
created by having an ion in a regular lattice site migrate into an interstitial

68 A good analogy conies from chemistry, where it is known that for water at room temperature
the product of the concentrations of H+ and OH" ions is a constant equal to 1014, a result that
is always valid. Increasing the proton concentration decreases the OH– concentration, and
vice versa.
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site. This defect can occur on either sublattice. For instance, the Frenkel
reaction for a trivalent cation is

M ^ ^ V S + M r (6.12)

while that on the oxygen sublattice is

0^0;' + V0' (6.13)

Note that the Frenkel reaction as written does not violate rule 3 since inter-
stitial sites do not constitute regular lattice sites. FeO. NiO, CoO, and Cu2O
are examples of oxides that exhibit Frenkel defects.

Similar to the Schottky formulation, the number of ways of distributing
ni interstitials on N* interstitial sites is

n = *
(N - ni,-)!/!,.!

Similarly, the number of configurations of distributing Vcat vacancies on NT

total sites is

n NT'2 (NT - Vcat)!Vcat!

The configurational entropy is once again AS = / r lnQi f J 2 - At equilibrium,
yeq eqvcat''/ „
NTN*

z exp 1 AgF\
kT ) (6.14)

where Ag/r is the free-energy change associated with the formation of a
Frenkel defect.

It is worth noting that N* will depend on crystal structure. For instance,
for 1 mol of NaCl, if the ions migrate to tetrahedral sites. N* % 2NAv.

WORKED EXAMPLE 6.1

Estimate the number of Frenkel defects in AgBr (NaCl structure) at 500°C. The
enthalpy of formation of the defect is 110 kJ/mol, and the entropy of formation
is 6.6R. The density and molecular weights are 6.5g/cm3 and 187.8 g mol.
respectively. State all necessary assumptions.

Answer

By taking a basis of 1 mol, assuming that the Frenkel disorder occurs on the
cation sublattice, and further assuming that the silver ions go into the tetrahedral
sites (i.e., number of interstitial sites = double the number of lattice sites
% 2jVAv), it follows that

3

2(6.02 x 10

6.6R / 1 1 0 x l O J \ i n_ s^ = exp—exp |-8314(5()() + 273)| = 2 . 7 x 1 0 -
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or

v;>Jq - 1.957 x 1043defects/mol2

As long as the crystal is in equilibrium, this expression is always valid; i.e., the
-5left-hand side of the equation will always be equal to 2.7 x 10 . Under certain

conditions, discussed below, the Frenkel defects can dominate, in which case

V^t = «;q = 4.43 x 1021defects/mol

and the corresponding number of defects per cubic centimeter is
4.43 x 1021 x 6.5/187.7 = 1.5 x 1020defects/cm3.

Antistructure disorder or misplaced atoms. These are sites where one type of
atom is found at a site normally occupied by another. This defect does not
occur in ionic ceramics, but it has been postulated to occur in covalent
ceramics like SiC. The notation for such a defect would be Sic or Csi, and
the corresponding defect reaction is

Cc + Sisi => Sic + Csi

where the effective charge is assumed to be zero throughout.
Finally, note that for a stoichiometric reaction, all that is happening is

the rearrangement of the atoms or ions comprising the crystal on a larger
number of lattice sites, which consequently increases the configurational
entropy of the crystal. In a stoichiometric reaction, the ratio of the atoms
comprising the crystal does not change.

Nonstoichiometric defects

In nonstoichiometric defect reactions, the composition of the crystal changes
as a result of the reaction. Said otherwise, a nonstoichiometric reaction is one
in which mass is transferred across the boundaries of the crystal. The possible
number of nonstoichiometric defect reactions is quite large, and covering
even a fraction of them is not feasible here. The best that can be done is to
touch on some of their more salient points.

One of the more common nonstoichiometric reactions that occurs at low
oxygen partial pressures is shown in Fig. 6.4, where one of the components
(oxygen in this case) leaves the crystal. The corresponding defect reaction is

0&=>io2fe) + V& (6.15)

As the oxygen atom escapes, an oxygen vacancy is created. Given that the
oxygen has to leave as a neutral species,69 it has to leave two electrons (the

The reason for this is quite simple: if charged entities were to escape, a charge would build up
near the surface that would very rapidly prevent any further escape of ions. See the section on
electrochemical potentials in Chap. 5.
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Figure 6.4 (a) The formation of an oxygen vacancy by the loss of an oxygen atom to the
gas phase. This is a nonstoichiometric reaction because the crystal chemistry changes as a
result. Note that as drawn, the electrons are localized at the vacancy site, rendering its
effective charge zero, (b) A Vo site is formed when one of these electrons is excited into
the conduction band. (c) The escape of the second electron creates a V" site.

ones that belonged to the cations in the first place!) behind (Fig. 6.4a). As
long as these electrons remain localized at the vacant site, it is effectively
neutral {—2 — (—2) = 0}. However, the electrons in this configuration are
usually weakly bound to the defect site and are easily excited into the
conduction band; i.e., Vo acts as a donor — see Chap. 7. The ionization
reaction can be envisioned to occur in two stages:

in which case the net reaction reads

and the oxygen vacancy is said to be doubly ionized (Fig. 6.4c) and carries an
effective charge of + 2.

Another possible nonstoichiometric defect reaction is one in which
oxygen is incorporated into the crystal interstitially, i.e..

-02(g)=»0* (6.17)

Ionization can also occur in this case, creating holes in the valence band
(i.e., the defect acts as an acceptor) such that

O* => O- + If

o; => o;' + Hm

with the net reaction being - O2 (g) => O" + 2h (6.18)

Nonstoichiometric defect reactions, with the selective addition or
removal of one of the constituents, naturally lead to the formation of



Defects in Ceramics 151

nonstoichiometric compounds. The type of defect reaction that occurs will
determine whether an oxide is oxygen- or metal-deficient. For example, reac-
tion (6.16) will result in an oxygen-deficient oxide,70 whereas reaction (6.18)
will result in an oxygen-rich oxide.

When one assumes that the electrons or holes generated as a result of
redox reactions, such as Eqs. (6.16) or (6.17), end up delocalized (i.e., in
the conduction or valence bands, see Chap. 7), the implicit assumption is
that the cations were only stable in one oxidation state (e.g., Al or Mg).
For oxides in which the cations can exist in more than one oxidation state,
such as the transition metal ions, an alternate possibility exists.

As long as the energy associated with changing the oxidation state of the
cations is not too large, the electronic defects can — instead of being
promoted to the conduction band — change the oxidation state of the
cations. To illustrate, consider magnetite, Fe3O4, which has a spinel structure
with two-thirds of the Fe ions in the +3 state and one-third in the +2 state.
One can express the oxidation of Fe3O4 in two steps as follows:

2Fe2+ + 2h' => 2Fe3+

for a net reaction of

1/2O2(g) + 2Fe2+ =* 2Fe3++Ox
O + V''Fe

In other words, the holes that are created as a result of the oxidation are
used to change the valence state of the cations from +2 to +3.71

Extrinsic defects

The discussion so far has applied to pure crystals. Most crystals are not pure,
however, and their properties, especially electrical and optical, are often
dominated by the presence of trace amounts of impurities (see Worked
Example 6.3). These impurities cannot be avoided; and even if the starting
raw materials are exceptionally pure, it is difficult to maintain the purity
levels during subsequent high-temperature processing. The next task is
thus to consider impurity incorporation reactions — once again, a task
that very rapidly gets out of hand, what with literally thousands of

Note that oxygen deficiency is also equivalent to the presence of excess metal. One possible
such reaction is

Magnetite can be considered a solid solution of FeO and Fe2O3. Thus upon oxidation, it
makes sense that the average oxidation state should move toward Fe2O3, that is, more
Fe3+ should be present.
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compounds and reactions. What is attempted here instead is to present some
simple guidelines for addressing the issue.

First and foremost, impurities usually substitute for the host ion of
electronegativity nearest their own, even if the sizes of the ions differ. In
other words, cations substitute for cations and anions for anions, irrespective
of size differences.72 For example, in NaCl, Ca and O would be expected to
occupy the cation and anion sites, respectively. In more covalent compounds
where the electronegativities may be similar, size may play a more important
role. Whether an impurity will occupy an interstitial site is more difficult to
predict. Most interstitial atoms are small, but even large atoms are sometimes
found in interstitial sites.

In writing a defect incorporation reaction, the following simple book-
keeping operation can be of help:

1. Sketch a unit or multiple units of the host (solvent) crystal, as shown in
Fig. 6.5a.

2. Place a unit or multiple units of the dopant (solute) crystal on top of the
sketch drawn in step 1, such that the cations are placed on top of the
cations and the anions on top of the anions. It is important to note
that the locations of the ions so placed are not where they end up in the
crystal. This is simply a bookkeeping operation.

3. Whatever is left over is the defect that arises, with the caveat that one
should try to minimize the number of defects formed.

To illustrate, consider the following examples

EXAMPLE 1

Incorporate CaCl2 into NaCl. From Fig. 6.5a, it is immediately obvious that one
possible incorporation reaction is

CaCl2 => CaNa + V'Na + 2C1X
CI

2NaCl

A second perfectly legitimate incorporation reaction is shown in Fig. 6.5b. for
which the corresponding defect reaction is

CaCl2 => CaNa + Cl'i + Clc,
NaCl

Note that in both cases the overriding concern was the preservation of the
regular site ratios of the host crystal. In the first case, two Cl lattice sites were
created by the introduction of the dopant, and hence the same number of lattice
sites had to be created on the cation sublattice. But since only one Ca cation was
available, a vacancy on the Na sublattice had to be created. In the second case
(Fig. 6.5/>), there is no need to create vacancies because the number of lattice sites

72 This topic is addressed again in Chap. 8, when solid solutions and phase diagrams are
considered.
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Figure 6.5 Bookkeeping technique for impurity incorporation reactions, (a) CaCl2 in
NaCl leaves a vacancy on cation sublattice. (b) An alternate reaction is for the extra Cl
ion to go interstitial. This reaction is unlikely, however, given the large size of the Cl
ion. (c) A12O3 in MgO creates a vacancy on the cation sublattice. (d) MgO in A12O3 creates
a vacancy on the anion sublattice.

created does not change the regular site ratios of the host crystal (interstitial sites
are not considered regular sites).

EXAMPLE 2

Doping MgO with A12O3 (Fig. 6.5c):

A12O3
3MgO

2Al*Mg

EXAMPLE 3

Doping A12O3 with MgO (Fig. 6.5d), one possible incorporation reaction is

2MgO => 2Mg^, + V0' + 20^

It should be emphasized at this point that it is difficult to determine a priori
what the actual incorporation reaction would be. For the most part, that is
determined from experiments such as density measurements (see Probs. 6.8
and 6.9).

Oxides with multiple substitution of ions. In some oxides, the structure is such
as to be able to simultaneously accommodate various types of cations. These
multiple substitutions are allowed as long as charge neutrality is maintained.
The preservation of site ratios is no longer an issue because the distinction
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blurs between a regular lattice site and a regular lattice site that is vacant. Good
examples are clays, spinels (Fig. 3.10), and the /3-alumina structure (Fig. 7.9).

Consider the clay structure shown in Fig. 3.146. The substitution of
divalent cations for the trivalent Al ions between the sheets occurs readily
as long as for every A13+ substituted, the additional incorporation of a
singly charged cation, usually an alkali-metal ion from the surrounding,
occurs to maintain charge neutrality such that at any time the reaction

Al2(OH)4(Si2O5) => (Al2_YNavMgv)(OH)4(Si2O5)

holds.
The chemistry of spinels is also similar in that multiple substitutions are

possible as long as the crystal remains neutral. For instance, the unit cell of
normal spinel, Mg8Al16O32 , can be converted to an inverse spinel by substi-
tuting the eight Mg ions by four Li and four Al ions to give Li4Al20O32, where
the Li ions now reside on the octahedral sites and the Al ions are distributed
on the remaining octahedral and tetrahedral sites. It is worth noting here that
the vast number of possible structural and chemical combinations in spinels
and the corresponding changes in their magnetic, electric, and dielectric
properties have rendered them indispensable to the electronics industry. In
essence, spinels can be considered to be cation "garbage cans," and within
reasonable size constraints, any combination of cations is possible as long
as, at the end, the crystal remains neutral. In that respect, spinels can be
compared to another "universal" solvent, namely, glasses (see Chap. 9).

6.2.4 Electronic Defects

In a perfect semiconductor or insulating crystal at 0 K, all the electrons are
localized and are firmly in the grasp of the nuclei, and free electrons and holes
do not exist. At finite temperatures, however, some of these electrons are
knocked loose as a result of lattice vibrations and end up in the conduction
band. As elaborated on in Chap. 7, for an intrinsic semiconductor the libera-
tion of an electron also results in the formation of an electron hole such that
the intrinsic electronic defect reaction can be written as

Null «» <?' + /?• (6.19)

Given that the energy required to excite an electron from the valence to the
conduction band is the band gap energy Eg (see Chap. 2), by a derivation
similar to the one used to arrive at Eq. (6.14), it can be easily shown that

Kl (6.20,

where n and p are, respectively, the numbers of free electrons and holes per
unit volume; Nc and N,. are the density of states per unit volume in the
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conduction and valence bands, respectively. It can be shown (App. 7A) that
for an intrinsic semiconductor, Nc and Nv are given by

T\ 3/2 /J-n-m*!kT\ 3//2

i a n d t f | 1 = 2 * i (6.21)

where m* and ml are the effective masses of the electrons and holes,
respectively, h is Planck's constant, and all other terms have their usual
meanings.

It is worth noting here that the mathematical treatment for the for-
mation of a Frenkel defect pair is almost identical to that of an electron-
hole pair. A Frenkel defect forms when an ion migrates to an interstitial
site, leaving a hole or a vacancy behind. Similarly, an electron-hole pair
forms when the electron escapes into the conduction band, leaving an elec-
tron hole or vacancy in the valence band. Conceptually, Nc and Nv (in
complete analogy to N* and NT) can be considered to be the number of
energy levels or "sites" over which the electrons and holes can be distributed.
The multiplicity of configurations over which the electronic defects can
populate these levels is the source of the configurational entropy necessary
to lower the free energy of the system.

6.2.5 Defect Equilibria and Kroger- Vink Diagrams

One of the aims of this chapter is to relate the concentration of defects to
temperature and other externally imposed thermodynamic parameters
such as oxygen partial pressure, a goal that is now almost at hand. This is
accomplished by considering defects to be structural elements which possess
a chemical potential73 and hence activity and expressing their equilibrium
concentrations by a mass action expression similar to Eq. (5.30):

' (6.22)
A B

This expression is almost identical to Eq. (5.30), except that here ideality
has been assumed and the activities have been replaced by the mole
fractions x{.

To illustrate, consider an MO oxide subjected to the following oxygen
partial pressure regimes:

A distinction has to be made here between chemical and virtual potentials. As discussed at
some length in Chap. 5, since the activity or chemical potential of an individual ion or charged
defect cannot be denned, it follows that its chemical potential is also undefined. The distinc-
tion, however, is purely academic, because defect reactions are always written so as to
preserve site ratios and electroneutrality, in which case it is legitimate to discuss their chemical
potentials.
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Low oxygen partial pressure

At very low oxygen partial pressures, it is plausible to assume that oxygen
vacancies will form according to reaction (6.16), or

0&«»VS + 2*' + £02te) Agred (I)

The corresponding mass action expression is:74

red (6.23)

where KTed = exp(—Ag K d / kT) . Note that as long as Van « Nan then
[0&]=N a n / (N a n +V a n )« l .

Intermediate oxygen partial pressure

Here it is assumed that Schottky equilibrium dominates, i.e.

Applying the mass action law yields:

^F) (6-24)

which, not surprisingly, is identical to Eq. (6.9), since [Oo] ~ [MM] ~ 1.

High oxygen partial pressure

In this region, a possible defect reaction is:75

i02(g)^0£ + 2/7-+V'^ Agoxid ( I I I )

74 In keeping with the notation scheme outlined above, the following applies for electronic
defects:

["} = •£- and \P]=-JT

It is worth emphasizing once more that both [n] and [p] are dimensionless. whereas p and n
have the units of 1/m3. The advantage of using site fractions, instead of actual concentrations,
in the mass action expression is that the left-hand side of the mass action expression [for
example, Eq. (6.23)] would be dimensionless and thus equal to e\p{-Ag/kT}. If other
units are used for concentration, the K values have to change accordingly (see Worked
Example 6.2).

75 Note that in general the reactions that are occurring are usually not known. In practice,
various defect models are proposed to explain the experimental results. For an a priori pre-
diction, a complete set of all the relevant thermodynamic data for all possible defect reactions
(a difficult task indeed, which has only been accomplished for a few oxides) would have to be
known to solve the puzzle completely.
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for which

\QO\\V M\\P^
.1 — „ , — Af • | (f) 25)179 •lvoxid \\j,^-~> i

pl/z

02

where Koxid = exp{-Agoxid/(^r)}. Note here that increasing the oxygen
partial pressure increases the cation vacancies.76

In addition to Eqs. (6.23) to (6.25), the following reaction

Null <&e' + h" (IV)

is relevant, and at equilibrium

(6.26)

which, not surprisingly, is identical to Eq. (6.20).
At equilibrium, the concentrations of the various defects have to

simultaneously satisfy Eqs. (6.23) to (6.26) together with one further condi-
tion, namely, that the crystal as a whole remain electrically neutral or

Y^ positive charges (m~3) = V"" negative charges (m~3)

Note that in writing the neutrality condition, it is the number of defects
per unit volume that is important rather than their mole fractions. For the
example chosen, if one assumes that the only defects present in any appreci-
able quantities are //*, e1, V", and V'^; the neutrality condition reads

p + 2VZ = 2Vb+n (6.27)

At this point, all the necessary information needed to relate the con-
centrations of the various defects to the oxygen potential or partial pressure
surrounding the crystal is available. In Eqs. (6.23) to (6.27), there are four
unknowns [n, p, VQ, VM] and five equations. Thus in principle, these
equations can be solved simultaneously, provided, of course, that all the
Ag's for the various reactions are known. Whereas this is not necessarily a
trivial exercise, fortunately the problem can be greatly simplified by
appreciating that under various oxygen partial pressure regimes, one defect
pair will dominate at the expense of all other pairs and only two terms
remain in the neutrality condition. How this Brouwer approximation is
used to solve the problem is illustrated now:

76 To see that more clearly, reaction (III) can be rewritten as:

In other words, the oxygen atoms from the gas phase are incorporated into the crystal by
filling the oxygen vacancies present, which naturally decreases their concentration. This, in
turn, must increase the cation vacancy concentration to maintain the Schottky equilibrium,
i.e., Eq. (6.9).
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At sufficiently low PQ,, the driving force to lose oxygen to the atmos-
phere is quite high [i.e., reaction (I) is shifted to the right], and consequently
the number of oxygen vacancies in the crystal increases. If the oxygen
vacancies are doubly ionized, it follows that for every oxygen that leaves
the crystal, two electrons are left behind in the conduction band (see
Fig. 6.4c). In this case it is not unreasonable to assume that at sufficiently
low oxygen partial pressures

other defects)

Combining Eq. (6.28) with (6.23) and solving for n or V" yields

n =

(6.28)

(6.29)

where K'Ted ~ KKdNanN^. According to this relationship, a plot of logn
(or VQ) versus logPO2, should yield a straight line with a slope of -1/6
(Fig. 6.6a, range I), i.e., both n and VQ decrease with increasing Po,. The
physical picture is simple: Upon reduction, the oxygen ions are being
"pulled" out of the crystal, leaving electrons and oxygen vacancies behind.

By similar arguments, in the high- PO2 regime, the electroneutrality
condition can be assumed to be />^2V'I(1, which, when combined with
Eq. (6.25), results in

I1/3 P1/6 — J/6 (6.30)

(a) (b)

Figure 6.6 Variation in defect concentration in an MO oxide as a function of oxygen
partial pressure for: (a) Ks » Kt and (b) Kt » Ks. Note that in (a) the oxide is stoichio-
metric over a large range of oxygen partial pressures, but that it reduces to a point where
VM = V£ when/:, » K,.
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where K'oxid ~ Kox idNca tNv. In this region, a plot of the defect concentration
versus log/V, yields a straight line with a positive slope of 1/6 (Fig. 6.6a,
range III).

In the intermediate PO, regime, two possibilities exist:

1. Kx » Kj, in which case the neutrality condition becomes

Vo'^V^v7^ (6-31)

where K's = Nc&tNaaKs and the point defect concentrations become
independent of PQZ (Fig. 6.6a, range II).

By combining the three regimes, the functional dependence of the
defect concentrations over a wide range of oxygen partial pressures
can be succinctly graphed in what is known as a Kroger-Vink diagram,
shown in Fig. 6.6a.

2. Kj » Kx, in which case the neutrality condition reads

where K/ = NcNvKt. It is left as an exercise to the reader to show that the
corresponding Kroger-Vink diagram is the one shown in Fig. 6.6b.

Up to this point, the focus has been on the effect of the oxygen partial
pressure on the majority defects, that is, Vo* and n under reducing conditions,
(v''M and p under oxidizing conditions, and so forth). What about the electron
holes and the metal vacancies in that region, the so-called minority defects?
To answer this question, it is important to appreciate that at equilibrium
Eqs. (6.23) to (6.26) have to be satisfied at all times. For example, equilibrium
dictates that at all times and under all circumstances the product [Vo ] [V^]
has to be remain a constant equal to Ks. And since it was just established
that in the low oxygen pressure region [Eq. (6.29)]:

V0' = (const)[/>o2r
1/6

it follows that for Schottky equilibrium to be satisfied, VM has to increase by
the same power law, or

VX, = (const.) [PoJ1/6

Similarly, since n = (const .)[Po2]~~1^6 , it follows that to satisfy Eq. (6.26),
p — (const.)[/)o2]

I//6- The behavior of the minority defects in region I is
plotted in Fig. 6.6.a and b (lower lines).

In the intermediate region when Ks » Kh Eq. (6.31) holds and
Vo* ~ \/^Jand is thus independent of the oxygen partial pressure. Substitut-
ing this result in Eq. (6.23) yields

(6.32)



160 Fundamentals of Ceramics

In other words, n is decreasing with 1/4 power with increasing Po^ which
implies that p is increasing with the same power in that range.

Diagrams such as Fig. 6.6 are very useful when trying to understand the
relationship between the externally imposed thermodynamic parameters,
such as the partial pressure of one of the components of a crystal, and any
property that is related to the crystal's defect concentration. For instance,
as described in detail in Chap. 7, the diffusivity of oxygen is proportional to
its vacancy concentration. Thus it follows that if the Kroger-Vink diagram
of that given oxide is the one shown in Fig. 6.6a, then the diffusivity of
oxygen will be highest at the extreme left, i.e., under reducing conditions,
and will decrease with a slope of -1/6 with increasing Po^ will become
constant over an intermediate PO2 regime, and finally start to drop again
with a slope of-1/6 at higher PO2 values. Similarly, if the oxide is an electronic
conductor and its conductivity is measured over a wide enough oxygen partial
pressure range, the conductivity is expected to change from n type at low
oxygen partial pressures to p type at higher oxygen potentials.

WORKED EXAMPLE 6.2

The following information for NaCl is given:

At 600 K:

K's = 3.74 x 1035cm"6 and K'F (on cation sublattice) = 5.8 x 1034cm-6

At 800 K:

#5 = 7.06 x 1037cm-6 and K'F = 1.7 x 1037cnT6

Calculate the equilibrium number of defects at 600 K and 800 K.

Answer

The three pertinent equations are

(V'Na)(Vc,) - K's

(V'Na)(NaD = K'F

V'Na = Na" 4- VQ electroneutrality condition

Note that here the concentrations are given in cm"3 instead of mole fractions
because the K values are given in cm"6. Adding the first two equations, one
obtains

\'^CNa:+Va) = K's + K'F

which when combined with the electroneutrality condition, yields

(V'vJ2 = K's + ft
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Solving for the various concentrations at 600 K one obtains

V'Na = 6.6x 1017cm"3 Na* = 8.8 x 10!6cirT3 V*, = 5.7 x 1017crrT3

whereas at 800 K

V'Na = 9.4 x 10l8cnT3 Na; = 1.8 x 1018cm~3 Va = 7.5 x 1018cm~3

6.2.6 Stoichiometric Versus Nonstoichiometric Compounds

Based on the foregoing analysis, stoichiometry (defined as the point at which
the numbers of anions and cations equal a simple ratio based on the
chemistry of the crystal) is a singular point that occurs at a very specific
oxygen partial pressure. This immediately begs the question: if stoichiometry
is a singular point in a partial pressure domain, then why are some oxides
labeled Stoichiometric and others nonstoichiometric? To answer the
question, examine Table 6.1 in which a range of stoichiometries and chemical
stability domains for a number of oxides are listed. The deviation from
stoichiometry, defined by Ax, where Ax is the difference between the

Table 6.1 Range of stoichiometry and existence domains of a number of binary oxides at
1000K77

Oxides Deviation from stoichiometry

A.xT

Stability or existance region* — log

Min Max

Nonstoichiometric oxides
TiO
Ti2O3

TiO2

VO
MnO
FeO
Fe304

CoO
NiO
Cu2O

0.8
1.501
1.992
0.8
1.00
1.045
1.336
1.00
1.00
0.500

1.3
1.512
2.00
1.3
1.18
1.2
1.381
1.012
1.001
0.5016

0.5
0.011
0.008
0.5
0.18
0.155
0.045
0.012
0.001
0.0016

44.23
41.5
25.7
35.9
34.5§
21. 6§
17.9,
17. 1§

9.97^

41.5
30.1
—
33.2
10.7
17.9
10.9
2.5

7.0

Stoichiometric oxides
A1203

MgO
1 .5000
1.00000

1.5000
1.0000

71.3
51.5 —

For an MaO^,, oxide, x — b/a ± 6.
See Sec. 5.4 for more details.
In equilibrium with the parent metal.

1 T. B. Reed, The Chemistry of Extended Defects in Non-Metallic Solids, L. Eyring and
M. O'Keeffe, eds., North-Holland, Amsterdam, 1970.
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.9 +ve
o
5

Figure 6.7 Distinction between a stoichiometric and a nonstoichiometric MOh/a ± ?. oxide,
where the functional dependence of the changes in stoichiometry on the oxygen partial
pressure for two hypothetical compounds having the same range of chemical stability is
compared. From the foregoing discussion, it follows that the oxide for which AA- varies
widely over the stability domain will be labeled nonstoichiometric. and vice versa.

maximum and minimum values of bja in an MO/,/a oxide, varies from
oxide to oxide. Note that FeO and MnO exhibit only positive deviations
from stoichiometry, i.e., they are always oxygen-rich, whereas TiO exhibits
both negative and positive deviations.

From Table 6.1, one can conclude that an oxide is labeled stoichiometric
if A.x is a weak function of oxygen partial pressure. Conversely, an oxide is
considered nonstoichiometric if the effect of oxygen partial pressure on the
composition is significant. This concept can be better appreciated graphically
as shown in Fig. 6.7.

As a typical example of a nonstoichiometric compound, consider the
variations in composition in MnO as the oxygen partial pressure is varied
at 1000 K (Fig. 6.8a). MnO is stable between a />o, of 10"345 atm (below
which Mn is the stable phase and O/Mn = 1.0) and 10~107 atm (above
which Mn3O4 is the stable phase and O/M = 1.18). The range of stoichio-
metry is depicted by the dotted lines normal to the .Y axis. Such a variation
is quite large and consequently MnO is considered a nonstoichiometric
oxide.

Similarly, the phase diagram of the Fe-O system is shown in Fig. 6.8/>
and c. Note that while FeO and Fe3O4 are nonstoichiometric. Fe2O3 is
stoichiometric.

It is worth noting that as a class, the transition metal oxides are more
likely to be nonstoichiometric than stoichiometric. The reason is simple:
the loss of oxygen to the environment and the corresponding adjustments
in the crystal are much easier when the cations can readily change their
oxidation states.
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Figure 6.8 (a) Stability domains of various phases in the Mn-O system and the
corresponding deviations in stoichiometry.78 (b) Phase diagram of Fe-O system, xo is
mole fraction of oxygen, and (c) stability domains of the various phases in Fe-O system.79

78 T. B. Reed, The Chemistry of Extended Defects in Non-Metallic Solids, L. Eyring and
M. O'Keeffe, eds., North-Holland, Amsterdam, 1970.

79 R. Dieckmann, J. Electrochem. Soc., 116, 1409 (1969).
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WORKED EXAMPLE 6.3

(a) Given the expense and difficulty of obtaining powders that contain much
less than 10 ppm of aliovalent impurities, estimate the formation enthalpy for
intrinsic defect formation above which one would expect the properties of a
material to be dominated by the impurities. State all assumptions, (b) Repeat
part (a) for MnO in equilibrium with Mn3O4 at 1000 K.

Answer

Make the following assumptions:

• A fraction ( 1 ppm) of the impurities create vacancies on one of the sublattices
in rough proportion to their concentration. In other words, it is assumed that
the mole fraction of extrinsic vacancies on one of the sublattices is on the order
of 10–6.

• The stoichiometric defects are Schottky defects for which the formation
enthalpy is A/zs.

• Ignore Ass.
• Temperature is 1000°C.

For the solid to be dominated by the intrinsic defects their mole fraction has to
exceed the mole fraction of defects created by the impurities (i.e.. 10-6). Thus

Solving for A/i5, one obtains «3eV. Note: 1 eV/particle = 96,500 J/mol.
This is an important result because it predicts that the defect con-

centrations in stoichiometric oxides or compounds for which the Schottky or
Frenkel defect formation energies are much greater than 3 eV will most likely
be dominated by impurities.
(b) According to Table 6.1, at 1000 K, MnO in equilibrium with Mn}O4 has
the composition MnO1.18. It follows that for this oxide to be dominated by
impurities, the dopant would have to generate a mole fraction of vacancies in
excess of 0.18!

Experimental Details: Measuring Nonstoichiometry

Probably the easiest and fastest method to find out whether an oxide is
stoichiometric is to carry out thermogravimetric measurements as a function
of temperature and oxygen partial pressure. In such experiments, a crystal is
suspended from a sensitive balance into a furnace. The furnace is then
heated, and the sample is allowed to equilibrate in a gas of known partial
pressure. Once equilibrium is established (weight change is zero), the
oxygen partial pressure in the furnace is changed suddenly, and the
corresponding weight changes are recorded as a function of time.
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Time

Figure 6.9 Typical thermogravimetric results for the oxidation of FeOv.

Typical curves are shown in Fig. 6.9. From the weight gain the new
stoichiometry can be easily calculated (see Prob. 6.10). If the same experiment
were repeated on, say, MgO or A12O3, the weight changes, over a wide range of
oxygen partial pressures, would be below the detectability limit of the most
sensitive balances, which is why they are considered stoichiometric oxides.

At this stage it is not a bad idea to think of a nonstoichiometric crystal as
some kind of oxygen "sponge" that responds to the oxygen partial pressure
in the same way as a sponge responds to water. How the oxygen is incorpo-
rated and diffuses into the crystal is discussed in the next chapter.

6.2.7 Energetics of Point Defects Formation

Clearly, a knowledge of the free-energy changes associated with the various
defect reactions described above is needed to be able to calculate their
equilibrium concentrations. Unfortunately, much of that information is
lacking for most oxides and compounds.

As noted at the outset of this chapter, the creation of a vacancy can be
visualized by removing an ion from the bulk of the solid to infinity, which
costs ~£bond5 and bringing it back to the crystal surface recovering
~-Ebond/2- Similarly, the formation of a Schottky vacancy pair of a binary
MX compound costs « 2Ebond/2 = Ebond In general, the lattice energies for
the alkali halides fall in the range of 650 to 850 kJ/mol, and hence one would
expect the enthalpy for the formation of a Schottky defect to be of the same
order. Experimentally, however, the enthalpies of formation of Schottky
and Frenkel defects in alkali halides fall in the range of 100 to 250 kJ/mol
(Table 6.2). The discrepancy arises from neglecting (1) the long-range
polarization of the lattice as a result of the formation of a charged defect and
(2) the relaxation of the ions surrounding the defect. When these effects are



166

Table 6.2

Crystal

AgCl

AgBr

BaF2

CaF2

CsCl
KC1
LiBr
LiCl
LiF
Lil
NaCl
SrF2

Fundamentals of Ceramics

Defect formation and migration energies for various halides

Defect
type

Frenkel

Frenkel

Frenkel

Frenkel

Schottky
Schottky
Schottky
Schottky
Schottky
Schottky
Schottky
Frenkel

A/,fonn,
kJ/mol

140

110

190

270

180
250
180
210
230
110
240
170

A-9form, in
units of R

9AR

6.6R

5.5R

10.0/?
9.0R

9.6R

10.0/?

A//mig,

kJ mol

28 (V'Ag)
1-10 (Ag?)
30(V'Agf
5-20 (Ag*)
40-70 (V"r)
60 80 (F|-)
40-70 (V*r)
80-100 (FJ)
60 (V^s)
70(V'K)
40(V'Li)
40(V'L l)
70 (V'Ll)
40(V'Ll)
70 (V'Na)
50-100(V'f)

ASmig. in
units of R

-1.0(VAe)
-3.0 (Ag*)

\-2(VF)
5(F|)

2.4 (V'K)

i (VLl)

l -3(V' N a )

Source: J. Maier, Angewandte Chemie, 32:313-335 (1993).

taken into account, better agreement between theory and experiment is usually
obtained.

6.3 Linear Defects

Dislocations were originally postulated to account for the large discrepancy
between the theoretical and actual strengths observed during the plastic
deformation of metals. For plastic deformation to occur, some part of the
crystal has to move or shear with respect to another part. If whole planes
had to move simultaneously, i.e., all the bonds in that plane had to break
and move at the same time, then plastic deformation would require stresses
on the order of F/10 as estimated in Chap. 4. Instead, it is a well-established
fact that metals deform at much lower stresses. The defect that is responsible
for the ease of plastic deformation is known as a dislocation. There are
essentially two types of dislocations: edge (shown in Fig. 6.lOa) and screw
(not shown). Every dislocation is characterized by the Burgers vector, b.
which is defined as the unit slip distance for a dislocation shown in
Fig. 6.10fl. For an edge dislocation, the Burgers vector is always perpendicu-
lar to the dislocation line. For a screw dislocation it is parallel.

It is worth noting here that dislocations are thermodynamically
unstable, since the entropy associated with their formation does not make
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Figure 6.10 (a) Edge dislocation, the width of which is characterized by Burgers vector b.
(/>) Actual TEM image of a dislocation in Ti3SiC2. (c) Edge dislocation in NaCl produced
by the insertion of two extra half-planes of ions (solid lines), (d) A 60° dislocation along
{110} in the diamond cubic structure. The glide plane is (111) and the extra half-plane is
shown in heavier lines.

up for their excess strain energy. They must thus form during solidification
from the melt or as a result of thermal or mechanical stresses.

In ionic solids, the structure of dislocations can be quite complex
because of the need to maintain charge neutrality. For example, for an
edge dislocation to form in an NaCl crystal, it is not possible to simply
insert one row of ions as one would do in a metallic crystal. Here two half-
planes have to be inserted, as shown in Fig. 6.106. The plane shown here is
the (010) plane in NaCl and slip would occur along the (101) plane.

The structure of dislocations in diamond lattices, which, as discussed
in Chap. 3, is adopted quite frequently by elements that have tetrahedral
covalent bonding, has to conform to the comparatively rigid tetrahedral
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bonds, as shown in Fig. 6.10c. This, as discussed in Chap. 11, makes them
highly resistant to shear, and so solids such as Si, SiC, and diamond are
brittle at room temperatures.

6.4 Planar Defects

Grain boundaries and free surfaces are considered to be planar defects. Free
surfaces were discussed in Chap. 4. This section deals with grain boundary
structure and grain boundary segregation.

Grain boundary structure

A grain boundary is simply the interface between two grains. The two
grains can be of the same material, in which case it is known as a homophase
boundary, or of two different materials, in which case it is referred to as a
heterophase boundary. The situation in ceramics is further complicated
because often other phases that are only a few nanometers thick can be
present between the grains, in which case the grain boundary represents
three phases. These phases usually form during processing (see Chap. 10)
and can be crystalline or amorphous. In general, the presence or absence
of these films has important ramifications on processing, electrical proper-
ties, and creep, hence their importance.

Typically grain boundaries are distinguished according to their structure
as low-angle (<15°), special, or random. The easiest to envision is the low-
angle grain boundary, which can be described as consisting of arrays of
dislocations separated by areas of strained lattice. An example of such a
grain boundary is shown in Fig. 6.1 la, where the dislocations are represented
by solid lines. The angle of the grain boundary is determined from the
dislocation spacing \d and b. From Fig. 6.1 la it is easy to appreciate that
the angle of tilt or misorientation is given by

sin6» = ^- (6.33)
\i

Special or coincident grain boundaries are those in which a special
orientational relationship exists between the two grains on either side of the
grain boundary. In these boundaries, a fraction of the total lattice
sites between the two grains coincide. For example, at 36.87° the Ni and O
ions in NiO coincide periodically, as shown in Fig. 6.1 \b. These special grain
boundaries have lower energies, diminished diffusivities and higher mobilities
relative to general boundaries.

The vast majority of grain boundaries, however, are neither low-angle
nor special, but are believed to be composed of islands of disordered material
where the fit is bad separated by regions where the fit is better. This so-called
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island model was first proposed by Mott80 and appears to qualitatively
describe the present view of grain boundary structures.

Impurity segregation at grain boundaries

The role of grain boundary chemistry on properties cannot be over-
emphasized. For many ceramics, the presence of small amounts of impurities
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Figure 6.11 (a) Schematic representation of a low-angle tilt grain boundary made up of a
series of dislocations (solid lines) with the Burgers vector b spaced Arf apart, (b) Structure of
special or coincident boundary in NiO.81

8(1 N. F. Mott, Proc. Phys. Soc., 60: 391 (1948).
S1 D. M. Duffy and P. W. Tasker, Phil. Mag., A47: 817 (1983).
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in the starting material can vastly influence their mechanical, optical, electri-
cal, and dielectric properties. The effect of impurities is further compounded
since they have a tendency to segregate at grain boundaries. If the
concentration of solute is not too large, then the ratio of the grain boundary
concentration Cgb to bulk concentration C^k depends on the free energy
change due to segregation AG^g and is given by

Cph

(6.34)

One of the contributions to the decrease in free energy comes from the
decrease in strain energy resulting from solute misfit in the lattice. It can be
shown that this decrease in strain energy scales as [(r2 — r\ ) / r \ ] 2 , where r\ and
r2 are the ionic radii of the solvent and solute ions, respectively. Hence the
larger the radii differences, the greater the driving force for segregation.
which has been experimentally verified. Note that it is the absolute size
difference that is important; i.e., both smaller and larger ions will segregate
to the grain boundary. The reason is simple: The grain boundary is a
region of disorder that can easily accommodate the different-sized ions as
compared to the bulk. Consequently, if AG^g is large, the grain boundary
chemistry can be quite different from that of the bulk, magnifying the
effect of the impurities.

6.5 Summary

Point and electronic defects reduce the free energy of a system by increasing
its entropy. The concentration of defects increases exponentially with
temperature and is a function of their free energy of formation.

In compound crystals, balanced-defect reactions must conserve mass,
charge neutrality, and the ratio of the regular lattice sites. In pure com-
pounds, the point defects that form can be classified as either stoichiometric
or nonstoichiometric. By definition, stoichiometric defects do not result in a
change in chemistry of the crystal. Examples are Schottky (simultaneous
formation of vacancies on the cation and anion sublattices) and Frenkel
(vacancy-interstitial pair).

Nonstoichiometric defects form when a compound loses one (or more)
of its constituents selectively. Mass is transferred across the crystal bound-
ary, and compensating defects have to form to maintain charge neutrality.
For instance, when exposed to severe enough reducing conditions, most
oxides will lose oxygen, which in turn results in the simultaneous formation
of oxygen vacancies and free electrons. An oxide is labeled nonstoichiometric
when its composition is susceptible to changes in its surroundings, and is
usually correlated to the ease with which the cations (or anions) can
change their oxidation state.
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Extrinsic defects form as a result of the introduction of impurities. The
incorporation of aliovalent impurities in any host compound results in the
formation of defects on one of the sublattices, in order to preserve the lattice
site ratio.

To relate the concentrations of point and electronic defects to tem-
perature and externally imposed thermodynamic conditions such as
oxygen partial pressures, the defects are treated as chemical species and
their equilibrium concentrations are calculated from mass action expres-
sions. If the free-energy changes associated with all defect reactions were
known, then in principle diagrams, known as Kroger-Vink diagrams,
relating the defect concentrations to the externally imposed thermodynamic
parameters, impurity levels, etc., can be constructed.

With the notable exception of transition metal oxides that generally
exhibit wide deviations from stoichiometry, the concentration of intrinsic
or nonstoichiometric defects in most ceramic compounds is so low that
their defect concentrations are usually dominated by the presence of
impurities.

In addition to point and electronic defects, ceramic crystals contain
dislocations and grain boundaries.

Problems

6.1. (a) Starting with Eq. (6.6), derive Eq. (6.7).
(b) On the same graph, plot Eq. (6.6) for two different values of hd

for the same temperature, and compare the equilibrium number
of vacancies. Which will have the higher number of defects at
equilibrium? Why?

(c) Following the same steps taken to get to Eqs. (6.6) and (6.7),
derive Eq. (6.9).

6.2. (a) A crystal of ferrous oxide Fev,O is found to have a lattice
parameter a — 0.43nm and a density of 5.72 g/cm3. What is the
composition of the crystal (i.e., the value of y in FevO)? Clearly
state all assumptions.

Answer, y = 0.939

(b) For Fe098O, the density is 5.7 g/cm3. Calculate the site fraction
of iron vacancies and the number of iron vacancies per cubic
centimeter.

Answer: Site fraction = 0.02; Vpe = 9.7 x 1020cm~3

6.3. (a) Write two possible defect reactions that would lead to the
formation of a metal-deficient compound. From your knowledge
of the structures and chemistry of the various oxides, cite an
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example of an oxide that you think would likely form each of the
defect reactions you have chosen.

(b) Write possible defect reactions and corresponding mass action
expressions when possible for:

(i) Oxygen from atmosphere going interstitial
(ii) Schottky defect in M2O3

(iii) Metal loss from ZnO
(iv) Frenkel defect in A12O3

(v) Dissolution of MgO in A12O3

(vi) Dissolution of Li2O in NiO

6.4. Calculate the equilibrium number of Schottky defects n^ in an MO
oxide at 1000 K in a solid for which the enthalpy for defect formation
is 2 eV. Assume that the vibrational contribution to the entropy can be
neglected. Calculate AG as a function of the number of Schottky
defects for three concentrations, namely, neq, 2weq. and 0.5«eq. State
all assumptions. Plot the resulting data.

Answer: AG., =-0.15 J, AG,,, = -0.095 J, and AG0 s» = -0.129 J"eq ' -"eq u--"'eq

6.5. Compare the concentration of positive ion vacancies in an NaCl
crystal due to the presence of 10~4 mol fraction of CaCl2 impurity
with the intrinsic concentration present in equilibrium in a pure
NaCl crystal at 400CC. The formation energy A/zs of a Schottky
defect is 2.12 eV, and the mole fraction of Schottky defects near the
melting point of 800°C is 2.8 x 10~4.

Answer. V^a(extnnsic)/V'Na(intrinsic) = 6.02 x 1019/l-85 x 1017 = 324

6.6. (a) Using the data given in Worked Example 6.2, estimate the free
energies of formation of the Schottky and Frenkel defects in NaCl.

Answer. &gs = 104.5kJ/mol, Agf = 114kJ/mol

(b) Repeat Worked Example 6.2, assuming Agf is double that
calculated in part (a). What implications does it have for the
final concentrations of defects?

6.7. The crystal structure of cubic yttria is shown in Fig. 3.7.

(a) What structure does yttria resemble most?
(b) Estimate its lattice parameter, a. Hint: make use of touching ions

to relate the radii to a.
(c) Calculate its theoretical density. Compare your result with the

actual value of 5.03 g/cm3. Why do you think the two values
are different?

(d) What stoichiometric defect do you think such a structure would
favor? Why?
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(e) The experimentally determined density changes as a function of
the addition of ZrO2 to Y2O3 are as follows:

Composition, mol % ZrO2 0.0 2.5 5.2 10.0

Density, g/cm3 5.03 5.04 5.057 5.082

Propose a defect model that would be consistent with these
observations.

6.8. (a) If the lattice parameter of ZrO2 is 0.513 nm, calculate its
theoretical density.

Answer. 6.06 g/cm3

(b) Write down two possible defect reactions for the dissolution of
CaO in ZrO2. For each of your defect models, calculate the
density of a 10 mol % CaO-ZrO2 solid solution. Assume the
lattice parameter of the solid solution is the same as that of
pure ZrO2, namely, 0.513 nm.

Answer. Interstitial 6.03, vacancy 5.733 g/cm3

6.9. The O/Fe ratio for FeO in equilibrium with Fe is quite insensitive to
temperature from 750 to 1250°C and is fixed at about 1.06. When
this oxide is subjected to various oxygen partial pressures in a thermo-
balance at 1150°C, the results obtained are as shown in Fig. 6.9.

(a) Explain in your own words why the higher oxygen partial pressure
resulted in a greater weight gain.

(b) From these results determine the O/Fe ratio for FeO at the two
oxygen partial pressures indicated.

Answer. 1.08 and 1.12

(c) Describe atomistically what you think would happen to the
crystal that was equilibrated at the higher oxygen partial pressure
if the partial pressure were suddenly changed to 10-20 atm.

6.10. (a) What renders an oxide stoichiometric or nonstoichiometric?
Would you expect Agred to be small or large for a stoichiometric
oxide compared to a nonstoichiometric one?

(b) Carrying out a calculation similar to the one shown in Worked
Example 6.3(a), show that an oxide can be considered fairly
resistant (i.e., stoichiometric) to moderately reducing atmospheres
(w 10 - 1 2 atm) at 1000°C as long as the activation energy for
reduction A/zred is greater than PS 6 eV. What would happen if
A/zred were lower? State all assumptions.

(c) Show that for any material A/zred + AAOX = 2Eg. Discuss the
implications of this result.
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6.11. Using the relevant thermodynamic data, calculate the chemical
stability domain (in terms of oxygen partial pressure) of FeO and
NiO. Plot to scale a figure such as Fig. 6.7 for each compound, using
the data given in Table 6.1. Which of these two oxides would you
consider the more stoichiometric? Why?

6.12. As depicted in Fig. 6.1 la, the grain boundaries in polycrystalline
ceramics can be considered to be made up of a large accumulation
of edge dislocations. Describe a simple mechanism by which such
grains can grow when the material is annealed at an elevated tem-
perature for a long time.
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Electroconductivity depends
On Free Electrons: in Germanium
A touch of Arsenic liberates; in blends
Like Nickel Oxide, Ohms thwart Current. From
Pure Copper threads to wads of Chewing Gum
Resistance varies hugely. Cold and Light
as well as "doping" modify the sum
of Fermi levels, Ion scatter, site
Proximity, and other Factors recondite.

John Updike, Dance of the Solids*

7.1 Introduction

The solid state is far from static. Thermal energy keeps the atoms vibrating
vigorously about their lattice positions and continually bumping into each
other and exchanging energy with their neighbors and surroundings. Every
now and then, an atom will gain sufficient energy to leave its mooring and
migrate. This motion is termed diffusion, without which the sintering of
ceramics, oxidation of metals, tempering of steels, precipitation hardening
of alloys, and doping of semiconductors, just to name a few phenomena,
would not be possible. Furthermore, diffusion is critical in determining the
creep and grain growth rates in ceramics, hence its importance.

For reasons that will become clear shortly, a prerequisite for diffusion
and electrical conductivity is the presence of point and electronic defects.
Consequently, this chapter and the preceding one are intimately related,
and one goal of this chapter is to make that relationship clear.

In many ceramics, diffusion and electrical conductivity are inextricably
linked for two reasons. The first is that ionic species can be induced to migrate
under the influence of a chemical potential gradient (diffusion) or an electric

J. Updike, Midpoint and other Poems, A. Knopf, Inc., New York, New York, 1969. Reprinted
with permission.
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potential gradient (electrical conductivity). In either case, the basic atomic
mechanism is the same, and one of the major conclusions of this chapter is
that the diffusivity of a given species is directly related to its conductivity.
The second important link is that the defects required for diffusion and elec-
trical conductivity are often created in tandem. For example, as discussed in
Chap. 6, the reduction of an oxide can result in the formation of oxygen
vacancies and free electrons in the conduction band — this not only renders
the oxide more electronically conductive but also increases the diffusivity of
oxygen in that oxide.

This chapter is structured as follows: Sec. 7.2.2 deals with the atomistics of
diffusion. The relationship between atom diffusivities and activation energies,
temperature, and concentration of the defects responsible for their motion is
developed. In Sec. 7.2.3, the diffusion of ions and defects subjected to a
chemical potential gradient is dealt with in detail, without reference to their
electrical conductivity. But since the two cannot be separated (after all. the
diffusion of charged defects is nothing but a current!), Sec. 7.2.4 makes the
connection between them. Section 7.2.5 goes a step further, where it is
shown that in essence the true driving force that gives rise to a flux of any
charged species is the gradient in the electrochemical potential.

In Sec. 7.3.1, the concept of electrical conductivity is introduced. Now in
addition to ionic conductivity, the influence of mobile electronic defects has
to be factored into the total conductance. How these electronic defects are
introduced in a crystal was first encountered in the previous chapter and is
further elaborated in Sec. 7.3.2.

In Sec. 7.4, situations where the fluxes of the different species are coupled
are considered. This coupled or ambipolar diffusion is of paramount impor-
tance since it is responsible for such diverse phenomena as creep, sintering of
ceramics, and high-temperature oxidation of metals.

In Sec. 7.5, the relationships between the various diffusion coefficients
introduced throughout this chapter are made clear.

7.2 Diffusion

There are essentially three mechanisms by which atoms will diffuse, as shown
schematically in Fig. 7.1a to c. The first, the vacancy mechanism, involves the
jump of an atom or ion from a regular site into an adjacent vacant site
(Fig. 7.la). The second, interstitial diffusion, occurs as shown schematically
in Fig. 7.16 and requires the presence of interstitial atoms or ions. The
third, less common mechanism is the interstitialcy mechanism, shown in
Fig. 7.1c, where an interstitial atom pushes an atom from a regular site
into an interstitial site.

In all cases, to make the jump, the atom has to squeeze through a narrow
passage, which implies it has overcome an activation or energy barrier. This
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\J

( b )

( d )

Figure 7.1 (a) Diffusion of atoms by vacancy mechanism, (h) Interstitial diffusion
mechanism, (c) Interstitialcy mechanism, (d) For the interstitial atom shown in (b), to
make a jump, it must overcome an energy barrier A//*,.

barrier is known as the energy of migration and is shown schematically in
Fig. 7 . Id for the diffusing interstitial ion shown in Fig. 7.\b.

7.2.1 Phenomenological Equations

In Chap. 5 it was noted that for many physical phenomena that entail trans-
port — whether it is charge, mass, or momentum — the assumption is
usually made that the flux J is linearly proportional to the driving force F, or

J = KF (7.1)

where K is a material property. In case of diffusion, the relationship between
the flux J and the concentration gradient dc / dx is given by Fick's first law,82

namely,

/mol\ BA
dx

TT mol
s m3 • m

(7.2)

The reason why Pick's first law does not have the same form as Eq. (7.1) — after all, a concen-
tration gradient is not a force! — is discussed in greater detail later on.
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where Z)A is the chemical diffusion coefficient of species A in matrix B. The units
of D are square meters per second; CA is the concentration, and it can be
expressed in a number of units, such as moles or kilograms per cubic meter.
The resulting flux is then expressed in units consistent with those chosen for rA.

The self-diffusivity D of an atom or ion is a measure of the ease and
frequency with which that atom or ion jumps around in a crystal lattice in the
absence of external forces, i.e., in a totally random fashion. Experimentally,
it has long been appreciated that D is thermally activated and could be
expressed as

(7.3)

where Q is the activation energy for diffusion which is not a function of
temperature, whereas Z)0 was a weak function of temperature. It also has
been long appreciated that diffusivity depends critically on the stoichiometry
and purity level of a ceramic. To understand how these variables affect D. the
phenomenon of diffusion has to be considered at the atomic level. Before we
do so, however, it is useful to briefly explore how one measures D.

Experimental Details: Measuring Diffusivities

There are many techniques by which diffusion coefficients can be measured.
The most common is to anneal a solid in an environment that well defines
the activity or concentration of the diffusing species at a given location for a
given time and then to measure the resulting concentration profile, that is,
c(x, t), of the diffusing species. The profile will clearly depend on the
diffusivity (the larger D, the faster the diffusing species will penetrate into
the material), time, and temperature of the diffusion anneal and the boundary
and initial conditions. To determine the diffusivity. Pick's second law

(7-4)

has to be solved using the appropriate boundary and initial conditions. The
derivation of this equation can be found in most textbooks on diffusion, and
it is nothing but a conservation of mass expression. If D is not a function of
position, which implies it is also not a function of concentration, then
Eq. (7.4) simplifies to

= D (7.5)

where c is a function of x and t.
Once solved by using the appropriate initial and boundary conditions

employed during the experiment, the value of D that best fits the
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experimental profile is taken to be the diffusivity of that species at the anneal
temperature.

A convenient method to measure c(x, t) is to use radioactive isotopes of
the atom for which the diffusivity is to be measured. For instance, if one is inter-
ested in the diffusivity of Mn in MnO, a layer of radioactive 54MnO is applied
as a thin film on one end of a long rod of nonradioactive MnO. After an
appropriate anneal time t at a given temperature, the rod is quenched and
sectioned normal to the direction of the diffusing species, and the experimental
concentration profile is evaluated by measuring the radioactivity of each
section. The solution of Pick's second law for these conditions is given by83

where j3 is the total quantity per unit cross-sectional area of solute present
initially that has to satisfy the condition

roc
c(x] dx = (3

Jo

According to Eq. (7.6), a plot of lnc(,v) versus x2 should result in a
straight line with a slope equal to l/(4Dt). Given t, D can be calculated.

It is important to note that what one measures in such an experiment is
known as a tracer diffusion coefficient D^, which is not the same as the self-
diffusion coefficient D defined above. The two are related, however, by a corre-
lation coefficient/^,,., the physics of which is discussed in greater detail in Sec. 7.5.

7.2.2 Atomistics of Solid State Diffusion

The fundamental relationship relating the self-diffusion coefficient D of an
atom or ion to the atomistic processes occurring in a solid84 is

D = am2 (7.7)

where $1 is the frequency of successful jumps, i.e., number of successful jumps
per second; A is the elementary jump distance which is on the order of the
atomic spacing; and a is a geometric constant that depends on the crystal
8 The methods of solution will not be dealt with here. The interested reader can consult

J. Crank, Mathematics of Diffusion, 2d ed., Clarendon Press, Oxford, 1975, or H. S. Carslaw
and J. C. Jaeger, Conduction of Heat in Solids, Clarendon Press, Oxford, 1959. See also
R. Ghez, A Primer of Diffusion Problems, Wiley, New York, 1988.

84 Eq. (7.7) can be derived from random walk theory considerations. A particle after n random
jumps will, on average, have traveled a distance proportional to ^/n times the elementary jump
distance A. It can be easily shown that, in general, the characteristic diffusion length is related
to the diffusion coefficient D and time t through the equation

.v" « Dt

[footnote 84 continues overleaf]
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structure, and its physical significance will become clearer later on. Here we
only remark that for cubic lattices, where only nearest-neighbor jumps are
allowed and diffusion is by a vacancy mechanism, a = 1 /£, where £ is the
coordination number of the vacancy.

Frequency £7 is the product of the probability of an atom's having the
requisite energy to make a jump v and the probability 9 that the site adjacent
to the diffusing entity is available for the jump, or

Q = v6 (7.8)

From this relationship it follows that to understand diffusion and its
dependence on temperature, stoichiometry, and atmosphere requires an
understanding of how v and 9 vary under the same conditions. Each is
dealt with separately in the following subsections.

Jump frequency v

For an atom to jump from one site to another, it has to be able to break the
bonds attaching it to its original site and to squeeze between adjacent atoms.
as shown schematically in Fig. 7.1d. This process requires an energy A//,*,,
which is usually much higher than the average thermal energy available to
the atoms. Hence at any instant only a fraction of the atoms will have suffi-
cient energy to make the jump.

Therefore, to understand diffusion, one must first answer the question:
at any given temperature, what fraction of the atoms have an energy > A//*,
and are thus capable of making the jump? Or to ask a slightly different
question, how often, or for what fraction of time, does an atom have suffi-
cient energy to overcome the diffusion barrier?

To answer this question, the Boltzmann distribution law is invoked,
which states that the probability P of a particle having an energy A//,,, or
greater is given by:85

P(E > A//,:,) = (const.) exp ~ (7.9)
V K1 /

where k is Boltzmann's constant and T is the temperature in Kelvin.

[footnote 84 continued from overleaf]
from which it follows that:

(v/nA)- a Dt
Rearranging yields

D a \-n/t a A2Q
where fi is defined as n/t, or the number of successful jumps per second. For further details see
P. G. Shewmon, Diffusion in Solids, McGraw-Hill. New York. 1963. Chap. 2.

85 Equation (7.9) is only valid if A//*, is much larger than the average energy of the system. In
most cases for solids, that is the case. For example, the average energy of the atoms in a
solid is on the order of k T which at room temperature is R=0.025eV and at 1000 C is
~0.11 eV. Typical activation energies for diffusion, vacancy formation, etc.. are on the order
of a few electron volts. So all is well.
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It follows that the frequency v with which a particle can jump, provided
that an adjacent site is vacant, is equal to the probability that it is found in a
state of sufficient energy to cross the barrier multiplied by the frequency VQ at
which that barrier is being approached. In other words,

(7.10)

where V0 is the vibration of the atoms86 and is on the order of 1013 s-1 (see
Worked Example 5.36). For low temperatures or high values of A//JJ,, the
frequency of successful jumps becomes vanishingly small, which is why, for
the most part, solid-state diffusion occurs readily only at high temperatures.
Conversely, at sufficiently high temperatures, that is, kT >• A//^,, the barrier
ceases to be one and every vibration could, in principle, result in a jump.

Probability 0 of site adjacent to diffusing species being vacant

The probability of a site being available for the diffusing species to make the
jump will depend on whether one considers the motion of the defects or of the
ions themselves. Consider each separately.

Defect diffusivity. As noted above, the two major defects responsible for the
mobility of atoms are vacancies and interstitials. For both, at low concentra-
tions (which is true for a vast majority of solids) the site adjacent to the defect
will almost always be available for it to make the jump and 9 « 1 .

There is a slight difference between vacancies and interstitials, however.
An interstitial can and will make a jump with a rate that depends solely on its
frequency of successful jumps z^nt. By combining Eqs. (7.7), (7.8), and (7.10),
with 0inl = 1 , the interstitial diffusivity Dim is given by

r\ \ - m . n f n ,
Ant = a.ntA ^Oexp -- —=— 7.1

where A//*M int is the activation energy needed by the interstitial to make the
jump.

For a vacancy, however, the probability of a successful jump is increased
(-fold, where C is the number of atoms adjacent to that vacancy (i.e., the
coordination number of the atoms), since if any of the £ neighboring
atoms attains the requisite energy to make a jump, the vacancy will make
a jump. Thus, for vacancy diffusion

s6 This is easily arrived at by equating the vibrational energy hv to the thermal energy kT. At
1000K, i/o = 2 x lO'V.
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Combining this equation with Eqs. (7.7) and (7.8), again assuming 0va

yields

(7.12)

Atomic or ionic diffusivity. In contrast to the defects, for an atom or ion in a
regular site, 9 <C 1, because most of these are surrounded by other atoms.
The probability of a site being vacant is simply equal to the mole or site
fraction, denoted by A (lambda), of vacancies in that solid. Thus the
frequency of successful jumps for diffusion of atoms by a vacancy mechanism
is given by

The factor £ appears here because the probability of a site next to a diffusing
atom being vacant is increased C-fold. The diffusion coefficient is given by

(7.13)

Comparing Eqs. (7.12) and (7.13) reveals an important relationship
between vacancy and ion diffusivity, namely,

Aon=AZ) v a c (7.14)

Given that usually A «c 1, it follows that Dion << Dvac, a result that at first
sight appears paradoxical — after all one is dealing with the same species.87

Going one step further, however, and noting that A w cvac/clon [Eq. (6. 1 1 )].
where cvac and cion are the concentrations of vacancies and ions, respectively,
we see that

Action =£>vacCvac| (7 '15)

Now the physical picture is a little easier to grasp: the defects move often
(high D) but are not that numerous — the atoms move less frequently, but
there are a lot of them. The full implication of this important result will
become obvious shortly.

In deriving Eq. (7.13), for the sake of simplicity, the effect of the jump on
the vibration entropy was ignored. This is taken into account by postulating
the existence of an excited equilibrium state (Fig. 7.50), albeit of very short
duration, that affects the frequency of vibration of its neighbors and is

87 The implication here is that the vacancies are jumping around much more frequently than the
atoms, which indeed is the case. For example, in a simulation of a diffusion process, if one
were to focus on a vacancy, its hopping frequency would be quite high since it does not
have to wait for a vacant site to appear before making a jump. If. however, one were to
focus on a given atom, its average hopping frequency would be much lower because it will
hop only if and when a vacancy appears next to it.
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associated with an entropy change given by AS1^ « kT ln(z//7/), where i/ and
v' are the frequencies of vibration of the ions in their ground and activated
states, respectively. A more accurate expression for Aon thus reads

D. i/ \2rv/" A^ion Vy A ttC, 1\
AS"*£AOWcxp k cxp ( *frm\

1 kT )
UQ exp i

2 \
kT)

Aon = aA'-AO/oexp --r^r (7.16)
V kl J

where AG*M is defined as

AG*M = A//*, - T AS"*, (7.17)

Putting all the pieces together, one obtains a final expression that most
resembles Eq. (7.3), namely,

. _______ __ _ ___

(7.18)

except that now the physics of why diffusivity takes that form should be
clearer. The temperature dependence of diffusivity of some common
ceramics is shown in Fig. 7.2.

The values of the activation energies Q and their variation with tempera-
ture are quite useful in deciphering the nature of the diffusion process. For
instance, if A is thermally activated, as in the case of intrinsic point defects,
then the energy needed for the defect formation will appear in the final
expression for D. If, however, the vacancy or defect concentration is fixed
by impurities, then A is no longer thermally activated but is proportional
to the concentration of the dopant. The following worked examples should
make that point clearer. Finally, it is worth noting here that the preexponen-
tial term A), calculated from first principles, i.e., from Eq. (7.18), does not, in
general, agree with experimental data, the reason for which is not entirely
clear at this time.

WORKED EXAMPLE 7.1

For Na+ ion migration in NaCl, A//^ is 77kJ/mol, while the enthalpy and
entropy associated with the formation of a Schottky defect are, respectively,
240kJ/mol and 10 K (see Table 6.2).
(a) At approximately what temperature does the diffusion change from extrinsic
(i.e., impurity-controlled) to intrinsic in an NaCl-CaQ2 solid solution contain-
ing 0.01 percent CaCl2? You can ignore AS1 ,̂.
(b) At 800 K, what mole percent of CaCl2 must be dissolved in pure NaCl to
increase DNd+ by an order of magnitude?

Answer

(a) To solve this problem, an expression for Z)Na-, as a function of temperature in
both the extrinsic and intrinsic regions has to derived. Once derived, the two
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expressions are equated, and ris solved for. In the intrinsic region, the vacancy-
concentration is determined by the Schottky equilibrium, or

A//5

v-5

kT

Temperature (°C)

1716 1393 1145 977 828 727

0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1

T 10

Figure 7.2 Temperature dependence of diffusion coefficients for some common ceramic
oxides.88

88 Adapted from W. D. Kingery, H. K. Bowen and D. R. Uhlmann. Introduction to Ceramics.
2nd ed., Wiley, New York, 1976. Reprinted with permission.
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where Af/s and ASS are, respectively, the Schottky formation energy and
entropy. Assuming that the Schottky defects dominate, that is, [VNa] — [VQ],

(7.19)

which when combined with Eq. (7.18), and noting that A = [VNa], yields the
desired expression in the intrinsic regime

(7.20)

If the following incorporation reaction (see Chap. 6)

CaCl2 => V'Na + Ca;a + 2C£,

is assumed, it follows that in the extrinsic region, for every 1 mol of CaCl2

dissolved in NaCl, 1 mol of Na vacancies is created. In other words,
A = [VNa] = [Ca^a] = 0.0001. Thus in the extrinsic regime, the vacancy concen-
tration is fixed and independent of temperature. In other words,

0Na" = [CVNa]Aac>oexp ~~L (7.21)
V k> )

Equating Eqs. (7.20) and (7.21) and solving for T yields a temperature of 743 C.
(b) At 800 K the intrinsic mole fraction of vacancies [Eq. (7.19)] is 2.2 x 10"6 or
1.3 x 1018 vacancies per mole. To increase D^ by an order of magnitude, the
doping must create ten times the number of intrinsic vacancies. It follows that
the addition of 2.2 x 10~5 mol fraction of CaCl2 to a mole of NaCl would do
the trick.

Note that when the defect concentration was intrinsically controlled, the
activation energy for its formation appeared in the final expression for D [i.e.,
Eq. (7.20)], whereas when the concentration of the defects was extrinsically
controlled, the final expression included only the energy of migration. How
this fact is used to experimentally determine both A//*, and A//s is discussed
in the following worked example.

WORKED EXAMPLE 7.2

Calculate the migration enthalpy for Na ion migration and the enthalpy
of Schottky defect formation from the data shown in Fig. 7.3. Discuss all
assumptions.

Answer

The behavior shown in Fig. 7.3 is typical of many ceramics and indicates a tran-
sition from intrinsic behavior at higher temperatures to extrinsic behavior at
lower temperatures. In other words, at higher temperatures Eq. (7.20) applies
and the slope of the line equals &.H*m/k + A//S/2A;. At lower temperatures
Eq. (7.21) applies and the slope of the line is simply equal to A//^,/&. Calculating
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Figure 7.3 Temperature dependence of diffusivity of Na ions in NaCl.

the corresponding slopes from the figure and carrying out some simple algebra.
one obtains A//^ ~ 77 kJ/ mol.

It is worth noting here that measurements such as those in Fig. 7.3 are one
technique by which the data reported in Table 6.2 are obtained.

WORKED EXAMPLE 7.3

The functional dependence of the diffusion of ^Mn in MnO on the oxygen
partial pressure is shown in Fig 7.4. Explain the origin of the slope. Would
increasing the temperature alter the slope?

Answer

Since Z)Mn clearly depends on the oxygen partial pressure, the first step in solving
the problem is to relate the diffusivity to Po, . Assuming the diffusivity of Mn in
MnO occurs by a vacancy diffusion mechanism, i.e.. A = [V'j^n]. and replacing
D0 in Eq. (7.18) by [V^n}D'0, one sees that

The next step is to relate [V'Mn]to PQ,. Given that the slope of the curve is +16.
that is, increasing the oxygen partial pressure increases the diffusivity of Mn. the
most likely defect reaction occurring is reaction (III) in Chap. 6, for which.
assuming the neutrality condition to be p — 2[V^n}. the mass action expression
is given by Eq. (6.30), or

[VJU = (const.)/>o!/6
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Figure 7.4 Functional dependence (on log-log plot) of the diffusion coefficient of 54Mn in
MnO on oxygen partial pressure.

Combining this result with the expression for DMn reveals the observed behavior.
The physics of the situation can be summed up as follows: Increasing the oxygen
partial pressure (i.e., going from left to right in Fig. 7.4) decreases the concentra-
tion of oxygen vacancies which, in order to maintain the Schottky equilibrium,
results in an increase in [VMn] and a concomitant increase in DMn.

Note that had [VMn] been fixed by extrinsic impurities, then DMn would
not be a function of oxygen pressure. Increasing the temperature should, in
principle, only shift the lines to higher values but not alter the slope.

7.2.3 Diffusion in a Chemical Potential Gradient

In the foregoing discussion, the implicit assumption was that diffusion was
totally random, a randomness that was assumed in defining D by Eq. (7.7).
This self-diffusion, however, is of no practical use and cannot be measured.
Diffusion is important inasmuch as it can be used to effect compositional and
microstructural changes. In such situations, atoms diffuse from areas of
higher free energy, or chemical potential, to areas of lower free energy, in
which case the process is no longer random but is now biased in the direction
of decreasing free energy.

Consider Fig. 1.5b, where an ion is diffusing in the presence of a
chemical potential gradient d^/dx. If the chemical potential is given per
mole, then the gradient or force per atom,/, is given by

1 = L ̂
A 7VAv dx

(7.22)
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where 7VAv is Avogadro's number.89 Consequently (see Fig. 7.5/>), the differ-
ence H between the energy barrier in the forward and backward directions is

=. = \f — — A
dx

The forward rate for the atom to jump is thus proportional to

"forward

while the backward jump rate is

"back =

~

(7.23)

(7.24)

(7.25)

Initial state Activated state

(a)

Final state

AG«,m

( b )

Figure 7.5 (a) Schematic of activated state during diffusion, (b) Diffusion of an ion down
a chemical potential gradient.

Note that/is defined here, and throughout this book, as positive.
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and A appears here because, as noted earlier, for a jump to be successful,
the site into which it is jumping must be vacant. Also a is the same constant
that appears in Eq. (7.7) and whose physical meaning becomes a little more
transparent here — it is a factor that takes into account that only a fraction
of the total (,v hops are hops in the x direction. For instance, in cubic lattices
for which £ = 6, only one-sixth of successful jumps are in the forward x
direction, that is, a = 1/6 and thus aC, = 1.

The existence of a chemical potential gradient will bias the jumps in the
forward direction, and the net rate will be proportional to

"nei "forward "back

exp - j (7-26)

In general, chemical potential gradients are small compared to the
thermal energy, i.e., E/(kT] -C 1, and Eq. (7.26) reduces to (e~x = 1 — x
for small x)

A (7*
T^ 6XP

The average drift velocity vdrift is given by A?;net, which, when combined with
Eqs. (7.27) and (7.23), gives

(7.28,

and the resulting flux

0 exp - f (7.29)
\ kl J )

where ct is the total concentration (atoms per cubic meter) of atoms or ions
diffusing through the solid. Since the term in brackets is nothing but Z)ion

[Eq. (7. 16)] it follows that

' ~ ' (7.30)/
•'ion

CionAo

kT
n r

J

This equation is of fundamental importance because

1. It relates the flux to the product cionDion. The full implication of
Eq. (7.15), namely, that Aoncion = ^vacA-ao should now be obvious —
when one is considering the diffusion of a given species, it is immaterial
whether one considers the ions themselves or the defects responsible for
their motion: the two fluxes have to be, and are, equal.
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2. It relates the flux to the driving force, f. Given that/has the dimensions
of force, Eq. (7.29) can be considered a true flux equation in that it is
identical in form to Eq. (7.1). Note also that this relationship has general
validity and is not restricted to chemical potential gradients. For
instance, as discussed in the next two sections, f can be related to
gradients in electrical or electrochemical potentials as well.

3. It can be shown (see App. 7A) that for ideal and dilute solutions
Eq. (7.30) is identical to Pick's first law, that is, Eq. (7.2).

7.2.4 Diffusion in an Electric Potential Gradient

The situation where the driving force is a chemical potential gradient has
just been addressed. If, however, the driving force is an electric potential
gradient, then the force on the ions is given by90

f, = --,^ ("Dax

where 0 is the electric potential in volts and z, is the net charge on the moving
ion. The current density 7,(A/m") = C/(m2 -s) is related to the ionic flux
yion [atoms/m2 • s)], by

// ='/ft/ion (7-32)

Substituting Eqs. (7.31) and (7.32) in Eq. (7.30) shows that

which, when compared to Ohm's law / = -crlon dd>/dx [see Eq. (7.39)], yields

(7.34)
kT kT

where crion is the ionic conductivity. This relationship is known as the Nernst-
Einstein relationship, and it relates the self-diffusion coefficient to the ionic
conductivity. The reason for the connection is obvious: in both cases, one
is dealing with the jump of an ion or a defect from one site to an adjacent
site. The driving forces may vary, but the basic atomic mechanism remains
the same.

In applying Eq. (7.34), the following points should be kept in mind:

1. The conductivity a refers to only the ionic component of the total
conductivity (see next section for more details).

Note that as defined here,/is positive for positive charges and negative for negative charges.
This implies that positive charges will flow down the potential gradient, whereas negative
charges flow "uphill,'" so to speak.
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2. This relationship is valid only as long as 0 for the defects is «1 (i.e., at
high dilution).

3. The variable Ci introduced in Eq. (7.29) and now appearing in Eq. (7.34)
represents the total concentration of the diffusing ions in the crystal.91

For example, in calcia-stabilized zirconia which is an oxygen ion
conductor, qon is the total number of oxygen ions in the crystal and
not the total number of defects (see Worked Example 7.4). On the
other hand, in a solid in which the diffusion or conductivity occurs by
an interstitial mechanism, cion represents the total number of interstitial
ions in the crystal, which is identical to the number of defects.

7.2.5 Diffusion in an Electrochemical Potential Gradient

In some situations, the driving force is neither purely chemical nor electrical
but rather electrochemical, in which case the flux equation has to be modified
to reflect the influence of both driving forces. This is taken into account as
follows: expressing Eq. (7.30) as a current by use of Eq. (7.32) and combining
the results with Eqs. (7.34) and (7.22) one obtains

/' = _ zkeckDk djLk_ = _ ^k_ dy,k
kT dx zke dx

where djik/dx is now the driving force per ion,92 that is, ftk = ^k/N^v. Assum-
ing that the total current due to an ion subjected to both a chemical and an
electrical potential gradient is simply the sum of Eq. (7.35) and Ohm's law,
or I" = —ak d(f)/dx, one obtains the following fundamental equation

(7.36)Ik — I' 4- I"*k T lk
<?k (dfik

zke \ dx
dd>\

L dx)
*k(
zke\

dfik\
dx )

It may be argued that since only a few ions are moving at one time, the use of c (the concen-
tration of all the ions in the system) is not warranted. After all, most of the ions are not migrat-
ing down the chemical potential gradient simultaneously. The way out of this apparent
dilemma is to appreciate that if given enough time, indeed all the ions would eventually
migrate down the gradient. To illustrate, assume that a single crystal of a binary oxide, in
which diffusion of the cations is much faster than that of the anions and occurs via a vacancy
mechanism, separates two compartments of differing oxygen partial pressures. At the high
oxygen partial pressure side, oxygen atoms will adsorb on the surface, creating cation vacancies
and holes. These defects will in turn diffuse ambipolarly (see Sec. 7.4), i.e., together, toward
the low oxygen partial pressure side, where they will be eliminated (i.e., combine with oxygen
vacancies) in order to maintain the local Schottky equilibrium. But since the movement of
cation vacancies toward the low oxygen pressure side is tantamount to cations moving
toward the high oxygen partial pressure side, the net result is that the crystal will be growing
at the high oxygen partial pressure side and shrinking at the low oxygen pressure side. Thus
for all practical purposes, the solid is actually moving with respect to the laboratory frame
of reference in very much the same way as a fluid flows in a pipe •-- the pipe in this case is
an imaginary external frame.
For the remainder of this chapter, the tilde over /i or 77 will denote an energy per ion or atom.
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relating the gradient in electrochemical potential fjk = jJik 4- zketi> to the
current density. The corresponding flux equation (in particles per square
meter per second) is

Di.fi. dfii. (TI. dfii.
(7.37)

Equations (7.36) and (7.37) are of fundamental importance and general
validity since they describe the flux of charged species under any conditions.
The following should be clear at this point:

1. The driving force acting on a charged species is the gradient in its elec-
trochemical potential.

2. For neutral species, the electric potential does not play a role, and the
driving force is simply the gradient in the chemical potential.

3. In the absence of an electric field, Eq. (7.37) reverts to Eq. (7.30).
4. If the driving force is simply an electric field, i.e., du./dx = 0, then

Eq. (7.36) degenerates to Ohm's law [Eq. (7.39)].
5. Equilibrium is achieved only when the gradient in rfk vanishes, as briefly

discussed in Chap. 5.
6. In all the equations dealing with flux, the product DC appears and once

more it is entirely equivalent whether one focuses on the defects and
their diffusivity or on the ions and their diffusivity.

7.3 Electrical Conductivity

Historically ceramics were exploited for their electric insulation properties,
which together with their chemical and thermal stability rendered them
ideal insulating materials in applications ranging from power lines to cores
bearing wire-wound resistors. Today their use is much more ubiquitous —
in addition to their traditional role as insulators, they are used as electrodes,
catalysts, fuel cells, photoelectrodes, varistors, sensors, and substrates,
among many other applications.

This section deals solely with the response of ceramics to the application
of a constant electric field and the nature and magnitude of the steady-state
current that results. As discussed below, the ratio of this current to the
applied electric field is proportional to a material property known as conduc-
tivity, which is the the focus of this section. The displacement currents or
non-steady-state response of solids which gives rise to capacitive properties
is dealt with separately in Chaps. 14 and 15 which treat the linear and
nonlinear dielectric properties, respectively.

In metals, free electrons are solely responsible for conduction. In semi-
conductors, the conducting species are electrons and/or electron holes. In
ceramics, however, because of the presence of ions, the application of an
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electric field can induce these ions to migrate. Therefore, when dealing with
conduction in ceramics, one must consider both the ionic and the electronic
contributions to the overall conductivity.

Before one makes that distinction, however, it is important to develop
the concept of conductivity. A good starting point is Ohm's law, which
states that

F = iR (7.38)

where V is the applied voltage (V) across a sample, R its resistance in ohms
(O), and / the current (C/s) passing through the solid. Rearranging Eq. (7.38),
dividing both sides by the cross-sectional area through which the current
flows A, and multiplying the right-hand side by d/d, where d is the thickness
of the sample, one gets

__ / __ d V
1 = ^~~RA ~d

where / = if A is the current density passing through the sample. Given that
V/d is nothing but the electric potential gradient d(/>/dx, Ohm's law can be
rewritten as93

(7.39)

where

Equation (7.39) states that the flux / is proportional to dfi/dx. The
proportionality constant a is the conductivity of the material, which is the
conductance of a cube of material of unit cross section. The units of
conductivity are Siemens per meter or Sm"1, where S = Q"1.

The range of electronic conductivity (Fig. 7.6, right-hand side) in
ceramics is phenomenal — it varies over 24 orders of magnitude, and that
does not even include superconductivity! Few, if any, other physical proper-
ties vary over such a wide range. In addition to electronic conductivity, some
ceramics are known to be ionic conductors (Fig. 7.6, left-hand side). In order
to understand the reason behind this phenomenal range and why some
ceramics are ionic conductors while others are electronic conductors, it is
necessary to delve into the microscopic domain and relate the macro-
scopically measurable a to more fundamental parameters, such as
carrier mobilities and concentrations. This is carried out in the following
subsections.

93 The minus sign appears for the same reason as it appears in Pick's first law. A current of
positive charges is positive when it flows down an electric potential gradient.
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Figure 7.6 Range of electronic (right-hand side) and ionic (left-hand side) conductivities

in fi~' cm^1 exhibited by ceramics and some of their uses.94

7.3.1 Generalized Equations

If one assumes there are cm mobile carriers per cubic meter drifting with an
average drift velocity v^, it follows that their flux is given by

/,- = |r,K/./c,,,,- (7.40)

The electric mobility nd (m2/V • s) is defined as the average drift velocity
per electric field, or

(7.41)
™' dd>/dx

Combining Eqs. (7.39) to (7.41) yields the important relationship

(7-42)

between the macroscopically measurable quantity a and the microscopic
parameters p,d and cm.

In deriving this equation, it was assumed that only one type of charge
carrier was present. However, in principle, any mobile charged species can

H. Tuller in Glasses and Ceramics for Electronics. 2nd ed.. Buchanan, (ed.). Marcel Dekker.

New York. 1991. Reprinted with permission.
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and will contribute to the overall conductivity. Thus the total conductivity is
given by

— / _. cmj (7.43)

The absolute value sign about r,- ensures that the conductivities are always
positive and additive regardless of the sign of the carrier.

The total conductivity is sometimes expressed in terms of the trans-
ference or transport number, defined as

(7.44)
^tot

from which it follows that ertot = ?eiec°"tot + ^ion^tot? where fion is the ionic
transference number and includes both anions and cations and ?elec is the
electronic transference number which includes both electrons and electron
holes. For any material t-lon + te — 1.

From Eq. (7.42) it follows that an understanding of the factors that
affect conductivity boils down to an understanding of how both the mobility
and the concentration of mobile carriers, be they ionic or electronic, vary
with temperature, doping, surrounding atmosphere, etc.

7.3.2 Ionic Conductivity

By definition, t-Mn for an ionic conductor should be «1, that is,
^eiec ^ ^ion ~ °"tof In these solids, the mobile carriers are the charged ionic
defects, or cniii — cdef, where cdef represents the concentration of vacancies
and/or interstitials.95 Replacing cm,i by cdef in Eq. (7.42) and comparing
the resulting expression with Eq. (7.34), one sees immediately that

|z,.|g//)def |r,-|g|-Aon (?45)

^•' kT kTA ( }

This is an important result because it implies that the mobility of a charged
species is directly related to its defect diffusivity, a not-too-surprising result
since the mobility of an ion must reflect the ease by which the defects jump
around in a lattice. Note that if diffusion is occurring by a vacancy mechan-
ism, A « Cdef Mon ^ 1 A whereas if diffusion is occurring by an interstitial
mechanism, then A ̂  1.0 and ^int = \z, e,-Z)int/(/:r).

The rationale for using the number of mobile carriers rather than the total number of ions
involved is similar to the one made for Eq. (7.29). Here it can be assumed that one sublattice
is the "pipe" through which the conducting ions are flowing. Referring to Fig. 7.7, the ions or
defects enter the solid on one side and leave at the other. In contrast to the case where the
crystal as a whole is placed in a chemical potential gradient, here the crystal itself does not
move relative to an external frame of reference.
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Experimental Details: Measuring Ionic Conductivity

There are several techniques by which ionic conductivity can be measured;
one of the simpler setups is shown schematically in Fig. 7.7. Here two
compartments of, say, molten Na are separated by a solid electrolyte or
membrane that is known to be an Na+ ion conductor (i.e., te <c /ion w 1.0).
The application of a dc voltage V will result in the flow of an ionic current
7ion from the anode to the cathode. If one assumes that electrode polarization
effects can be ignored, then the ratio Vy/ion is a measure of the ionic
resistance of the solid, which is easily converted to a conductivity if the
cross-sectional area through which the current is flowing and the thickness
of the solid membrane are known.

For this experiment to work, the following reaction

Na(electrode) =>• Na+(in solid) + e~'(in external circuit)

has to occur at the anode. Simultaneously, the reverse reaction

Na+(solid) + e~1(from molten Na) => (electrode)

has to occur at the cathode. (Given the polarity shown in Fig. 7.7, all the Na
will end up on the right-hand side.) Thus to measure ionic conductivity:

1. The solid has to conduct ions rather than electrons or holes. If that were
not the case, the current would simply be carried by electronic defects.

Figure 7.7 Experimental setup for measuring ionic conductivity. If the electrodes are
nonblocking. then the ionic conductivity is simply /?ion = K//ion.
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2. The electrodes have to be nonblocking to the electroactive species (Na+

in this case), i.e., the Na+ ions had to be able to cross unhindered from
the solid electrolyte into the liquid electrode and vice versa. None of this
is very surprising to anyone familiar with rudimentary electrochemistry;
the only difference here is that the ions actually pass through a solid.

For the most part, ceramics, if they conduct at all, are electronic conduc-
tors. Sometimes if the band gap is large (see Worked Example 7.4) and the
ceramic is exceptionally pure, it is possible to measure its ionic conductivity.
In general, however, these conductivities are quite low. There is a certain
class of solids, however, that exhibit ionic conductivities that are exception-
ally high and can even approach those of molten salts (that is,
a > 10~2 ScrcT1). These solids are known as fast ion conductors (FICs), some-
times also referred to as solid electrolytes. Figure 7.8 shows the temperature
dependence of a number of these solids, both crystalline and amorphous.

FICs fall in roughly three groups. The first is based on the halides and
chalcogenides of silver and copper. The most notable of these is a-Agl
which is a silver ion conductor. The second is alkali metal conductors
based on nonstoichiometric aluminates, the most important of which is
/3-Al2O3, with the approximate formula Na2O- HA^C^. The third is
based on oxides with the fluorite structure that have been doped with aliova-
lent oxides to create a large number of vacancies on the oxygen sublattice and
hence are oxygen ion conductors. In all these structures, the concentration of
defects is quite large and, depending on the class of FIC, is accomplished
either intrinsically or extrinsically. The halides and the /3-aluminas are
good examples of "intrinsic" FIC where, as a consequence of their structures
(see Fig. 7.9, for example), the conduction planes contain a large number of
vacant sites. Furthermore, the activation energy needed for migration A//*,
between sites is quite small and is in the range of 0.01 to 0.2eV, which results
in quite large defect mobilities and hence conductivities.

Calcia-stabilized zirconia is an example where the number of defects is
extrinsically controlled by aliovalent doping. For every 1 mol of CaO
added to ZrO2, 1 mol of oxygen vacancies is created according to

CaO =>• Cazr + V£+0&
Zr()2

Consequently one would expect the conductivity to be a linear function of
doping, which is indeed the case, as shown in Fig. 7.10. The conductivity
does not increase monotonically, however, but rather goes through a
maximum at higher doping levels, a fact that has been attributed to defect-
defect interactions and the breakdown of the dilute approximation.

In general, most fast ionic conductors are characterized by the following
two common structural features. First, a highly ordered, immobile sublattice
provides the framework and defines continuous open channels for ion
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Figure 7.8 Ionic conductivities as a function of reciprocal temperature of a number of
fast Ag, Na, Li. and O ion conductors. Tg denotes the glass transition temperature (see
Chap. 9).96

H. Tuller, D. Button, and D. Uhlmann. J. Non-Crystalline Solids. 40: 93. 1980. Reprinted
with permission.
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Figure 7.9 Structure of /3-alumina. (a) Plane parallel to c axis, (b) Arrangement of atoms
in conduction plane (i.e., top view of conduction planes). Empty squares denote equivalent
Na ion sites that are vacant.
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Figure 7.10 Effect of doping on the ionic conductivity of a number of oxygen ion
conductors.97

Adapted from W. H. Flygare and R. A. Huggins, J. Phys. Chem. Sol., 34: 1199, 1973.
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transport. Second, a highly disordered complementary mobile carrier sub-
lattice with an excess of total equipotential sites n0, compared to the
number of available mobile ions nmob that fill them. Under these conditions,
it can be shown (see Prob. 7.2/>) that the conductivity of FICs can be
expressed as98

(7.46)

where (3 = nmob/nQ. This function reaches a maximum when 3 — 1/2. Refer
once again to Fig. 7.96. The reason why this expression takes this form
becomes obvious: Maximum conductivity will occur when the number of
ions in the plane equals the number of vacant sites.

7.3.3 Electronic Conductivity

Electronic conductivity, like its ionic counterpart, is governed by Eq. (7.42).
and is proportional to the concentration of mobile electronic carriers, both
electrons and holes, and their mobility. In general, there are three ways by
which these mobile electronic carriers are generated in ceramics, namely.
(1) by excitation across the band gap (intrinsic), (2) due to impurities (extrin-
sic), or (3) as a result of departures from stoichiometry (nonstoichiometric).
Each is considered in some detail below.

Intrinsic semiconductors

In this case the electrons and holes are generated by excitation across the
band gap of the material. For every electron that is excited into the conduc-
tion band, a hole is left behind in the valence band; consequently, for an
intrinsic semiconductor, n — p.

To predict the number of electrons which are excited across the band
gap at any given temperature, both the density-of-states function and the
probability of occupancy of each state must be known (see App. 7B for
more details). The density of states is defined as the number of states per
unit energy interval in the vicinity of the band edges. The probability of
their occupancy is given by the Fermi energy function, namely.

This equation is plotted as a function of temperature in Fig. 7.11. Here E is
the energy of interest, and Ef is the Fermi energy, defined as the energy for
which the probability of finding an electron is 0.5. And k and T have their
usual meanings. It can be shown (see App. 7B) that for this energy function.

98 This expression is valid only if defect-defect interactions are ignored.
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Figure 7.11 Fermi distribution function for two different temperatures; Ef was assumed
to be 1 eV. Note that whereas the distribution shifts to higher energies as the temperature
increases, Ef, defined as the energy at which the probability of finding an electron is 0.5,
does not change.

the number of electrons per cubic meter in the conduction band is given by:

Ec —-
n = Nc exp

and the number of holes by

p = Nv exp
Ef - Ev

(7.48)

(7.49)

where Ec and Ev refer to the energy of the lowest and highest levels in the
conduction and valence bands, respectively (see Fig. 7.12); Nc and Nv were
denned in Chap. 6 and are given by (see App. 7B)

and

where mi* is the effective mass of the migrating species. The product of
Eqs. (7.48) and (7.49) yields

= NCNVK i (7.50)

which is not a function of Ef and which, not surprisingly, is identical to
Eq. (6.20).
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Figure 7.12 Schematic of energy levels for (a) intrinsic semiconductors, (b) extrinsic
semiconductors, and (c) nonstoichiometric semiconductors.

As noted above for an intrinsic semiconductor, n = p. that is.

n=p =

and the conductivity is given by

1^}
2kT

a = (7.52)

Up to this point, the mobility of the electronic carriers and their
temperature dependencies were not discussed. The effect of temperature
on the mobility of the electrons and holes will depend on several factors,
with the width of the conduction and/or valence bands being the most
important. For wideband materials (not to be confused with wide-band-
gap materials), the mobility of the electronic carriers decreases with increas-
ing temperature as a result of lattice or phonon scattering, not unlike what
happens in metallic conductors. It can be shown that in this case both nn

and np are proportional to T - 3 / 2 . Thus the temperature dependence of
<7el.int is given by

(7.53)
2kT

Note T3//2 term comes from the pre-exponential term in Eq. 7.51, i.e. from the
density of states. This result is applicable to an intrinsic semiconductor for
which phonon scattering is responsible for the temperature dependence of
the electronic mobility, i.e., one in which the mobility decreases with
increasing temperature. Other possibilities exist, however; two of the more
important ones are the small and large polaron mechanisms discussed
below. A polaron is a defect in an ionic crystal that is formed when an
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excess of charge at a point polarizes or distorts the lattice in its immediate
vicinity. For example, if an oxygen vacancy captures an electron"
(Fig. 6.46), the cations surrounding it will be attracted to the defect and
move toward it, whereas the anions will move away. This polarization essen-
tially traps or slows down the electronic defect as it moves through the lattice.

Small polaron. In this mechanism, conduction occurs by the "hopping" of
the electronic defects between adjacent ions of, usually but not necessarily,
the same type but with varying oxidation states. Because of the ease by
which transition-metal ions can vary in oxidation states, this type of con-
duction is most often observed in transition metal oxides. For example, if
the charge carrier is an electron, the process can be envisioned as

Polarization of the lattice results in a reduction of the energy of the
system, and the carrier is then assumed to be localized in a potential
energy well of effective depth EB. It follows that for migration to occur,
the carrier has to be supplied with at least that much energy, and con-
sequently the mobility becomes thermally activated. It can be shown (see
Prob. 7.2c) that polaron conductivity can be described by an expression
very similar to that for FICs, that is,

(const) _Z*1 exp - (7.54)

where xf is the fraction of sites occupied by one charge and [1 — jc,-] the
fraction of sites occupied by the other charge. For example, for polaron
hopping between Fe cations, x and 1 — x represent the concentrations of
Fe2+ and Fe3+ cations, respectively. Based on this simple model, one
would expect a conduction maximum at x « 0.5. Experimentally, this is
not always observed, however, for reasons that are not entirely clear.

Large polaron. If the distortion is not large enough to totally trap the
electron but is still large enough to slow it down, the term large polaron is
applicable. Large polarons behave as free carriers except that they have a
higher effective mass than a free electron. It can be shown that the large
polaron mobility is proportional to jT~1/ /2, and consequently, the tempera-
ture dependence of an intrinsic semiconductor for which the conductivity
occurs by large polarons is

a = (const)r3/2r" l /2exp ( - JJZ-] = (const)r exp (-•= (7.55)
2.K I

Note that the combination of a trapped electron or hole at an impurity or defect is called a
color center, which can have very interesting optical and magnetic properties (see Chap. 16).
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WORKED EXAMPLE 7.4

A good solid electrolyte should have an ionic conductivity of at least
0.01 ( f t - c m ) - 1 with an electronic transference number that should not exceed
10-4. At 1000K, show that the minimum band gap for such a solid would
have to be «4eV. Assume that the electronic and hole mobilities are equal
and that each is 100 cm2/V • s. State all other assumptions.

Answer

Based on the figures of merit stated, the electronic conductivity should not
exceed

ere|ec = tefflot % tealon = 0.01 x 10~4 = 1 x 10~6(C7-cm)~'

Inserting this value for 0^ in Eq. (7.52), assuming ̂  = np = 0.01 nr/(V • s) at
1000K, and solving for n yields

1 X 10 = 3.12 x 1016electrons/nr
1.6 x 10~19(0.01 +0.01)

Furthermore by assuming that me = w*. it follows that

_, _ ,... , _ , 2 7 r x 9.1 x 10~31 x 1.38 x 10~2? x 1000
N.

/2-nmekT / _ /

' V Ir ) V (6.63 x 10-34)-

= 1.5x 1026m~3

Finally, assuming Nc = N,., substituting the appropriate values in Eq. (7.51) and
solving for Eg give

Eg = -2kT\n — = -2 x 1000 x 8.62 x 10~5ln-—-—^- = 3.84eV

Extrinsic semiconductors

The conductivity of extrinsic semiconductors is mainly determined by the
presence of foreign impurities. The best way to illustrate the notion of an
extrinsic semiconductor is to take the specific example of elemental silicon.
Consider the addition of a known amount of a group V element, such as
phosphorus, such that each P atom substitutionally replaces a Si atom.
Four electrons will be used up to bond with the Si, leaving behind a dangling
extra electron (Fig. l.\3a). Given that this electron will not be as tightly
bound as the others, it is easily promoted into the conduction band. In
other words, each P atom donates one electron to the conduction band
and in so doing increases the conductivity of the silicon host, which is now
termed an n-type semiconductor. In terms of band theory, a donor is depicted
by a localized level within the band gap. at an energy Ed lower than Ec
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Figure 7.13 Schematic of (a) an n-type semiconductor and (b) a p-type semiconductor.
The missing electron (definition of a hole) is formed when B is added to Si. With the
input of energy Ea, an electron from the valence band is promoted into the site labeled
electron hole, and a hole is created in the valence band.

(Fig. 7.126), where Ed is a measure of the energy binding the electron to
its site.

Conversely, if Si is doped with a group III atom, such as B (Fig. 7.136)
which only has three electrons in its outer shell, a hole will be created. Upon
application of an electric field, the hole acts as a vacancy into which electrons
from neighboring atoms can jump. Such a material is called a />-type semi-
conductor, and the corresponding energy diagram is also shown in
Fig. 7.126 (bottom of diagram).

To quantify the conductivity of an extrinsic semiconductor, consider an
n-type semiconductor doped with a concentration ND of dopant atoms. The
ionization reaction of the donor can be written as

D D'+e

Mass balance dictates that

where D and D* denote, respectively, the concentrations of un-ionized and
ionized donors. The corresponding mass action expression is

kT
(7.56)

where Ed is the energy required to ionize the donor (see Fig. 7.126). Note
once again that [D] and [D'] denote, respectively, the mole fractions of un-
ionized and ionized donors, whereas [n] = n/N(, and [D*] = D*/ND.
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Figure 7.14 Temperature dependence of the electronic conductivity of an extrinsic semi-
conductor. Region 2 is sometimes referred to as the exhaustion region.

To make the problem more tractable, consider the following three
temperature regimes:

Low-temperature region (region 1 in Fig. 7.14). At low temperatures, when
only a few donors are ionized, the neutrality condition can be written as
n = D* << ND. In other words, [D] w 1 and n — D°. Making the appropriate
substitutions in Eq. (7.56), one obtains

\
2k T )

(7.57)

Thus in this region a plot of log an versus reciprocal temperature should yield
a straight line with slope Ed /(2k}.

Intermediate-temperature region (region 2 in Fig. 7.14). In this region.
kT w Ed, and one can assume that most of the donor atoms are ionized.
Hence the total number of mobile carriers will simply equal ND, in which
case

In this region, the conductivity will be a weak function of temperature and
may even decrease with increasing temperature if phonon scattering becomes
important.
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High-temperature region (region 3 in Fig. 7.14). Here it is assumed that
the temperature is high enough that the number of electrons excited from
the valence band into the conduction band dominates, in which case the
semiconductor behaves intrinsically and conductivity is given by Eq. (7.53).
In this region, a plot of log an versus reciprocal temperature yields a straight
line with slope Eg /(2k) (Fig. 7.14).

To reiterate: At low temperatures, the conductivity is low because of
the paucity of mobile carriers — they are all trapped. As the temperature
increases, the defects start to ionize and the conductivity increases with
an activation energy needed to release the electrons from their traps. At
intermediate temperatures, when kT « Ed, most of the impurities will
have donated their electrons to the conduction band, and a saturation in
the conductivity sets in. With further increases in temperature, however,
it is now possible (provided the crystal does not melt beforehand) to
excite electrons clear across the band gap, and the conductivity starts
increasing again, but this time with a slope that is proportional to
Eg/2k.

Nonstoichiometric semiconductors

In the preceding subsection, the number of electronic defects was fixed by
the doping level, especially at lower temperatures, and the concepts of
donor and acceptor localized levels were discussed. The band picture for
nonstoichiometric electronic semiconductors is very similar to that of
extrinsic semiconductors, except that the electronic defects form not as a
result of doping, but rather by varying the stoichiometry of the crystal.

To appreciate the similarities between an extrinsic semiconductor and a
nonstoichiometric oxide, compare Fig. 7.13a with Fig. 6.4a or b. In both
cases the electron(s) is(are) loosely bound to its(their) mooring(s) and
is(are) easily excited into the conduction band. The corresponding energy
diagrams for the singly ionized and doubly ionized oxygen vacancies are
shown in Fig. 7.12c. In essence, a nonstoichiometric semiconductor is one
where the electrons and holes excited in the conduction and valence bands
are a result of reduction or oxidation. For example, the reduction of an
oxide entails the removal of oxygen atoms, which have to leave their elec-
trons behind to maintain electroneutrality. These electrons, in turn, are
responsible for conduction.

The starting point for understanding the behavior of nonstoichiometric
oxides involves constructing their Kroger-Vink diagram, as discussed in
Sec. 6.2.5. To illustrate, consider the following examples:

ZnO. Experimentally, it has been found that the electrical conductivity of
ZnO decreases with increasing oxygen partial pressure, as shown schemati-
cally in Fig. 7.15a. When plotted on a log-log plot, the resulting slope is
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Figure 7.15 Schematic representation of changes in conductivity as a function of oxygen
partial pressure for (a) ZnO and (/») Cu2O. These curves are based on actual experimental
results.

measured to be 0.25, which is explained as follows. The defect incorporation
reaction is presumed to be

00 + Zn|n & i02(g) + Zn* + e~l

for which the mass action expression is

Pl£[Zn'][n] = const

Combining this expression with the electroneutrality condition Zn* « n
results in

a ex n = (const )/>o!/4

as observed. Note that had one assumed the Zn interstitials to be doubly
ionized, the PO2 dependence predicted would not have been consistent with
the experimental results.

Cu2O. In contradistinction to ZnO, the conductivity of Cu2O increases with
increasing oxygen partial pressure with a slope of « + 1 /7. To explain this
result, the following incorporation reaction is assumed:

which, when combined with the neutrality condition Vcu = p and the mass
action expression, results in

a oap = (const) P^f

which is not too far off the measured value of 1/7 shown in Fig. 7.15ft.
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CoO. CoO is a metal-deficient oxide100 C O 1 _ X O (see Table 6.1), where the
conductivity is known to be p type and thermally activated, i.e., occurs by
polaron hopping such that np — (const)[exp —EB / kT}. At high oxygen partial
pressures, the conductivity changes are steeper with a slope of w +1/4,
whereas at lower partial pressure the slope changes to « +1/6. This suggests
that at high oxygen partial pressures the defect reaction is given by

i02(g) & 0*0 + V'Co + h' AGVco

with an equilibrium constant Ky = exp[—AGVCo/(&T')]. Making use of the
corresponding mass action expression and the electroneutrality condition
p = VCo one obtains

= (const)

which is the pressure dependence observed. Furthermore, since

K\rn =exp—-

the final expression for the electrical conductivity is given by

/ A#V' \ / EB\ 1/4
cr = (Tp= penp = (const) exp - Co exp - —I P^ (7.59)

\ ZK1 / \ K1 J
Similarly, at lower oxygen potentials, the data suggest that the corre-

sponding reaction is one where doubly ionized cobalt vacancies form,
namely,

It is left as an exercise for the reader to show that in the low oxygen partial
pressure regime

= ap = (const) exp - -± exp - (7.60)

where A//V" is the enthalpy of formation of the doubly ionized cobalt
vacancies.

It is worth noting that when the conductivity is dominated by redox
reactions such as the ones discussed here, the final expression does not
depend on the band gap or on doping but rather depends on the ease with
which an oxide is oxidized or reduced, i.e., on Agred and Agoxid. Generally
this is directly related to the ability of the cations to exist in more than one
oxidation state — and consequently it is intimately related to the range of
nonstoichiometry.

100 The actual situation for CoO is not as simple as put forth here. For a good interpretation,
see H-l Yoo, J.-H. Lee, M. Martin, J. Janek, and H. Schmelzried, Solid State Ionics,
67:317–322(1994).



210 Fundamentals of Ceramics

ZrO2. The Kroger-Vink diagram for yttria-doped zirconia is shown in
Fig. 7.16a, the construction of which is left as an exercise to the reader. In
pure zirconia, the concentration of oxygen vacancies is simply \fKs.
However, as noted earlier, that value can be dramatically increased by
doping with aliovalent cations such as Ca2+ or Y3+. Based on this diagram.

[p]

log Po2

10"

G
O 10"

10-

ZrO2(+10mol%Y2O3)

io i<r
(atm)

Figure 7.16 (a) Schematic of defect concentration dependence on oxygen partial pressure
for yttria-doped zirconia. (b) Functional dependence of ionic and electronic conductivities
on oxygen partial pressure and temperature101 for ZrO2 (+10mol% Y2O3). Note that
except at very low oxygen partial pressures where af ~(Tjon. the conductivity is ionic
and independent of oxygen partial pressure.

L. D. Burke. H. Rickert. and R. Steiner: Z. Physik. Chem. .\'.F.. 74:146 (1971).
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in the range where the conductivity is ionic, the minority carriers are
electronic defects: At high oxygen partial pressures, p > n; at low oxygen
partial pressures, the conduction is mixed.

Actual data for yttria-doped zirconia are shown in Fig. 7.166 as a func-
tion of temperature, and generally confirm the results shown in Fig. 7.16a.
At 1000°C and l(T10atm pressure, /lon « \Q~]/(W~] + 1 x 1(T6) « 1.0,
whereas at 1CT28 atm, tion « /elec « 0.5.

Note that, in contrast to electronic conduction, the ionic conductivity is
Po2 independent because the concentration of ionic defects is fixed extrinsi-
cally. Such an independence of conductivity on partial pressure is usually
taken to be strong evidence that a solid is indeed an ionic conductor.

WORKED EXAMPLE 7.5

In a now classic paper,102 Kingery et al. measured the conductivity of
Zr085Ca0.15O1.85 as a function of oxygen partial pressure and temperature.
They found that the conductivity (S/m) was independent of oxygen partial
pressure and obeyed the relation

The diffusion coefficient of the oxygen ions (m /s) was also measured in a
separate experiment on the same material and was found to obey

What conclusions can be reached regarding the conduction mechanisms in
this oxide and its defect structure? Information you may find useful: density of
zirconia « 6.1 g/cm3 and molecular weight of Zr is 91.22g/mol.

Answer

Since the total conductivity was not a function of oxygen partial pressure, one
can assume that the conductivity was ionic.103 The total number of oxygen
ions per cubic meter is

-ions
6.1 x 1.85 x 6.02 x 1023 „ 2X . ,
— 7— = 5.52 x 1028 ions/m3

(91.22 + 32) x 10~6 '

102 W. D. Kingery, J. Pappis, M. E. Doty, and D. C. Hill, "Oxygen Mobility in
Zr0.85Ca0.15O1.85," J. Amer. Cer. Soc., 42:(8): 393–398 (1959).

103 This is not always the case. There are situations where the conductivity can be electronic and
yet partial-pressure-independent.
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Using the Nernst-Einstein relationship and converting all units to SI units, one
obtains the following expression for the conductivity:

(22)(1.6 x IP"19)2 x (5.5 x 1028) x (1 x 10~6) f 1.22eV^
j 3g x 10_23

 PYn

4.07 x 108 / 1.22eV

CT°ions ~ i . 3 8 x i o ~ 2 3 x r exp V ^J^J

At 1000 K, the preexponential term yields a value of 4.07 x 105S/m, which
is in fairly close agreement with the preexponential term in the conductivity
expression shown above. The fit is even better at higher temperatures. These
results unambiguously prove that conduction in calcia-stabilized zirconia
occurs by the movement of oxygen ions.

7.4 Ambipolar Diffusion

In the discussion so far, the diffusional and electrical fluxes of the ionic and
electronic carriers were treated separately. However, as will become amply
clear in this section and was briefly touched upon in Sec. 5.6, in the absence
of an external circuit such as the one shown in Fig. 7.7, the diffusion of a
charged species by itself is very rapidly halted by the electric field it creates
and thus cannot lead to steady-state conditions. For steady state, the fluxes
of the diffusing species have to be coupled such that electroneutrality is main-
tained. Hence, in most situations of great practical importance such as creep,
sintering, oxidation of metals, efficiency of fuel cells, and solid-state sensors,
to name a few, it is the coupled diffusion, or ambipolar diffusion, of two fluxes
that is critical. To illustrate, four phenomena that are reasonably well under-
stood and that are related to this coupled diffusion are discussed in some
detail in the next subsections. The first deals with the oxidation of metals,
the second with ambipolar diffusion in general in a binary oxide, the third
with the interdiffusion of two ionic compounds to form a solid solution.
The last subsection explores the conditions for which a solid can be used
as a potentiometric sensor.

7.4.1 Oxidation of Metals

To best illustrate the notion of ambipolar diffusion, the oxidation of metals
will be used as an example following the elegant treatment first developed by
C. Wagner.104 Another reason to go into this model is to appreciate that it is
usually the electrochemical potential, rather than the chemical or electric
potential, that is responsible for the mobility of charged species in solids.
It also allows a link to be made between the notions of chemical stability

104 C. Wagner. Z. Physikal. Chem.. 821:25 (1933).
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and nonstoichiometry. However, before one proceeds much further, it is
instructive to briefly review how oxidation rates are measured and to
introduce the parabolic rate constant.

Experimental Details: Measuring Oxidation Rates

Oxidation rates can be measured by a variety of methods. One of the simplest
is to expose the material for which the oxidation resistance is to be measured
(typically metal foils) to an oxidizing atmosphere of a given oxygen partial
pressure for a given time, cool, and measure the thickness of the oxide
layer that forms as a function of time. Long before any atomistic models
were put forth, it was empirically fairly well established that for many
metals the oxidation rate was parabolic. In other words, the increase in
thickness Ax of the oxide layer was related to time by

Ax2 = 2Kxt (7.61)

with the proportionality constant Kx (m2/s), known as the parabolic rate
constant, a function of both temperature and oxygen partial pressure.

An alternate technique is to carry out a thermogravimetric experiment
and measure the weight gain of the material for which the oxidation resis-
tance is to be measured as a function of time (Fig. 7.17). In this case, the
weight change per unit area Aw is related to time by105

(7.62)Aw = Kwt
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Figure 7.17 Weight gain during the oxidation of Ti3SiC2 in air at 1000°C.

105 Sometimes Eq. (7.62) is written with a factor of 2 in analogy to Eq. (7.61). In this book KK is
defined as shown.
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where Kw (kg2/m4 • s) is also a constant that depends on temperature
and oxygen partial pressure. Needless to say, A^v and Kw are related (see
Prob. 7.17). Kn is also known as a parabolic rate constant.

In the remainder of this subsection, the goal is to relate these phenom-
enological rate constants to more fundamental parameters of the growing
oxide layer. Table 7.1 lists the parabolic rate constants for a number of
metals oxidized in pure oxygen at 1000°C.

Figure 7.18 (a) Growth of an oxide layer by the outward diffusion of metal cations and elec-
trons, (b) Concentration profile of defects and neutral species, (c) Schematic of quasi-steady-
state approximation — concentration profile, which is proportional to the flux at any time /. is
not a function of x. Nevertheless, as the thickness of oxide layer .v increases, the flux decreases
(slope decreases). In both (b) and (c) the profile is assumed to be linear for simplicity.
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elevated temperatures, and an oxide layer is formed by the outward diffusion
of cation interstitials, henceforth denoted by the subscript "def" for defect,
together with electrons. Note that both the cations and electrons are diffusing
in the same direction — ZnO is a good example of such an oxide. At the
metal/oxide interface (Fig. 7.18a), the incorporation reaction is

M* ~ Mjff + ze"1 (7.63)

where z is the valence on the cation and M* denotes the neutral or metallic
species. From here on, the superscript asterisk * denotes neutral species.

Conversely, at the oxide/gas interface, the cation and electron will
combine with oxygen according to

Z- 02(g) + Mr+ + ze~l +-> MCX/2 (7.64)

forming a reaction layer that grows with time with a velocity that should be
proportional to the flux of the defects through that layer. The net reaction is
simply the sum of Eqs. (7.63) and (7.64), or

|o2(g) + M* ~ M(X/2 AGMO,/2 (7.65)

where AG^o. .•-, is the free energy of formation of the growing oxide layer.

Make the following assumptions:

1. The process is diffusion-limited through a scale that is compact, fully
dense, and crack-free. Such layers will occur only if the volume
change upon oxidation is not too great. Otherwise, the growing oxide
layer cannot accommodate the mismatch strain that develops and will
tend to crack or buckle.

A good indicator of whether an oxide layer is protective is given by
the Pilling-Bedworth ratio

^MO./, MWM0,/,PM
P-B ratio = —-+ = ———^— (7.66)

FM MWM/9MO__/2

that compares the molar volume of the metal VM to that of the oxide,
^Mo./a • MW and p denote the molecular weights and densities of the
metal and oxide, respectively.

For metals having a P-B ratio less than unity, the oxide tends to be
porous and unprotective because its volume is insufficient to cover the
underlying metal surface. For ratios greater than unity, compressive
stresses develop in the film, and if the mismatch is too great, (P-B
ratios > 2), the oxide coating tends to buckle and flake off, continually
exposing fresh metal, and is thus nonprotective. The ideal P-B ratio is
1, but protective coatings normally form for metals having P-B ratios
between 1 and 2.
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2. Diffusion of charged species is by independent paths. In other words, it
is assumed that the flux of species / is proportional to its electrochemical
potential gradient solely and is independent of the gradient in the elec-
trochemical potential of the other components.

3. Charge neutrality is maintained, and there is no macroscopic separation
of charge. For instance, in the example shown above, the electronic
defects, as a result of their higher mobility, will attempt to move
along faster than the ions; but as they do so, they will create a local elec-
trical potential gradient d<t>/dx which will hold them back. That same
field, however, will enhance the flux of the ionic defects. As discussed
in greater detail shortly, it is this coupling of the two fluxes that gives
rise to an effective or ambipolar diffusion coefficient.

4. There is local equilibrium both at the phase boundaries and throughout
the scale. This implies that at every point, reaction (7.63) holds, or

— *~ i "" /"" ^\ \ f ~~ i \ / *1 £.T\
//» *„ TT~^ 7fl —r- 77-j r ~~^- "I // — €d) I ~T~ ( LtiA f "T" ""6*0 I ( / O / I

where 0 is the local electric potential acting on the defects.106 It thus
follows that across the layer

dp.M- d(zjie} </(/Zdef) ,- ,0v—-— = — 1 (/.ooj
dx dx dx

Given these assumptions, the flux of the defects can be related to the
rate of growth of the layer. Assuming one-dimensional diffusion, the
defect and electronic flux densities (particles per square meter per second)
subject to an electrochemical potential gradient dfjf/dx are given by
Eq. (7.37), or

^def "%ef ^def / v*A~aei , ~T j /-j f:n\

(re)2 dx (:e)- \ dx dx

j _^=^fdff._e^\ (7.70)
e~ dx e~ \ dx dx )

To maintain electroneutrality, these two fluxes have to be equal, and mass
balance dictates that they in turn must be equal to the flux of the neutral
metal species JM-. In other words,

JjL _ ydef _ yM> (7.71)

Using this condition to solve for d(t>/dx results in

C* Y' lp C4 l^a dcf r^dcf / T T> \——. l i / / I

dx e dx ze dx

106 As noted earlier, the tilde denotes that the quantities are expressed per defect or per electron
rather than per mole.
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which, when substituted back in Eq. (7.69) or (7.70) while use is made of
Eq. (7.68), yields

(ze)2 dx (ze)2(ade( + ae) dx
(7.73)

where /M* is the number of neutral metal atoms passing through a unit area of
the oxide per second and d^^* lax *s the chemical potential gradient of the
neutral metal species.

This is an important result because it implies that for oxidation or
corrosion to occur, the oxide layer must conduct both ions and electrons
— if either ae or crdef vanishes, the permeation flux also vanishes. This
comes about because it was assumed early on that both the electronic and
ionic defects must diffuse together to maintain charge neutrality. It also
follows from Eq. (7.73) that it is the slower of the two diffusing species
that is rate-limiting. If an oxide is predominantly an electronic conductor,
then te « 1 , and the permeation flux will be determined by the ionic conduc-
tivity. Conversely, if t-lon w 1, then the permeation rate will be determined by
the rate at which the electronic defects move through the oxide layer.

Equation (7.73) also implies that the driving force for the growth of the
layer is nothing but the gradient in the chemical potential of the neutral
species, which, in turn, is nothing but the free-energy change associated
with reaction (7.65). In other words, the more stable the oxide, the higher
the driving force for its formation.

To relate the permeation flux to the parabolic rate constant, Wagner
further assumed quasi-steady-state growth conditions. This assumption
implies that the flux into the reaction layer is equal to the flux out of it and
that there is no accumulation of material in the film. In other words, at any
time, the flux was not a function of jc, but was only a function of time. This
condition is shown schematically in Fig. 7.18c for various times during scale
growth. Mathematically it implies that the flux is inversely proportional to
A,t, and hence dx in Eq. (7.73) can be replaced by Ax. Make that substitution,
and note that the rate at which the oxide layer is growing is given by

at (ze}

where 0MO is the atomic volume of an MO molecule.107 Rearranging terms
and integrating, one obtains

O f/ 'M* at oxide/gas interface
"MO / & e e ~ , 7(7.,
(ze)~ J/uM* at metal/oxide interface °"def ~r °V

To see how this comes about, multiply the flux /M. by the area A of the layer, which gives the
total number of metal atoms per second (AJM* ) reaching the surface and reacting with
oxygen. If the volume of an MO molecule is QMO- ^ follows that its thickness is simply
OMO//1. Hence, the rate at which the layer grows is simply QMO/M--
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Comparing this result to Eq. (7.61), one sees immediately that the parabolic
rate constant is given by108

fj»,rx PNT at oxide/gas interface __ _
°def°V i- /-, -7,-^(7-76).

(Ze) J^M« at metal/oxide interface O"def i

By making use of the Gibbs-Duhem relation [Eq. (5.40)], that is.
djiM. — —dp,o^ = — (zkT/4)d\nPo^ this relationship can be recast as

« ln A), (7.77)

where PQ, and /o2
 are tne oxygen partial pressures at the metal/oxide and

oxide/gas interfaces, respectively. Integrating Eq. (7.77) is nontrivial since
both the electronic and ionic defect concentrations are functions of Po^.
What is customarily done, however, is to assume average values for the
conductivities across the layer, with the final result being

K =™_W<_1

At this point, it is a useful exercise to recast Eq. (7.73) in terms of Pick's
first law, in order to get a different perspective on the so-called ambipolar
diffusion coefficient. It can be shown (see App. 7C) that

!L (7.79)
dx \n cdef

which when combined with Eq. (7.73) results in

1 \dc*
n cdef/ dx

Further, by making use of the Nernst-Einstein equation it can be shown that

dx

Since this equation is in the form of Pick's first law, it follows that the
chemical or ambipolar diffusion coefficient responsible for oxidation is

\oxid
Aunbi — 't'Aief + 'ion (7.82)

108 Wagner defined a rational scaling rate constant Kr as the time rate of formation of an oxide
expressed as equivalents per unit scale thickness. An equivalent is defined as the fraction of the
compound that transports one positive and one negative unit charge. In general, for an MaXh

oxide, the number of equivalents 0 = (/>|Z~|)~' = (a|Z+ |)~'. For example, for Nio5O05.
o = 0.5. while for Al^O,/;. 0=1/6 . It can be shown that Kr = ATv/(onM O) (see Prob. 7.17).
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which is an alternate way of saying that the rate at which permeation will
occur depends on the diffusivities or conductivities of both the ionic and
electronic carriers. If either of the two vanishes, then Z>ambi vanishes and
the oxide layer behaves as a passivating layer, protecting the metal from
further oxidation. Aluminum provides an excellent example — the
aluminum oxide that grows on Al is quite insulating, water-insoluble and
adherent, which is why aluminum need not be protected from the elements
in the way, say, Fe is.

WORKED EXAMPLE 7.6

The self-diffusion coefficient of Ni in NiO was measured at 1000°C to be
2.8 x 10~'4cm"/s. At the same temperature in air, Kx was measured to
2.9 x 10~l3cm2/s. NiO is known to be a predominantly electronic conductor.
What conclusions can be drawn concerning the rate-limiting step during the
oxidation of Ni? The lattice parameter of NiO is 0.418 nm. The free energy of
formation of NiO at 1000°C is -126kJ/mol.

Answer

Given that the oxide is predominantly an electronic conductor, and z — 2,
Eq. (7.77) simplifies to

°"def

Substituting for crdef, using the Nernst-Einstein relationship [Eq. (7.34)], and
integrating gives

JI

A^-^^-ln-pft

Note that in this case fiisfiocNi = 1 • The limits of integration are /*o2 in air (0.21
atm) and FQ, at the Ni/NiO interface. The latter is calculated as follows: For the
reaction Ni + |O2 => NiO, the equilibrium partial pressure is given by (see
Worked Example 5.4 for method)

-2 x 126,000\ A_, .,
. 8.314 x 1273 j - 4 . 5 6 x 1 0 "atm

Thus

In ̂ - = 22.24

It follows that if the diffusion of Ni were the rate-limiting step, then the
theoretically calculated Kx would be
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which is in excellent agreement with the experimentally determined value of
2.9 x l(T13cm2/s, indicating that the oxidation of Ni is indeed rate-limited by
the diffusion of Ni ions from the Ni side to the oxygen side.

7.4.2 Ambipolar Diffusion in a Binary Oxide

The problem considered here is slightly different from the one just examined.
Consider, for simplicity, an MO oxide subjected to an electrochemical poten-
tial gradient dr^Q/dx which in turn must result in the mass transport of MO
"units" from one area to another. Typically this occurs during sintering or
creep where as a result of curvature or externally imposed pressures, the
oxide diffuses down its electrochemical potential gradient (see Chaps. 10
and 12). To preserve electroneutrality and mass balance, the fluxes of the
M and O ions have to be equal and in the same direction.

Applying Eq. (7.37) to the fluxes of the M2+ and O2^ ions, one obtains

|
r-M~ kT dx kT V dx ' " dx

D0co2

0~ ~ -- Tr -- J - -- Tr — I ~v -- ^TkT dx kT \ dx dx

where c, and D/ represent the concentration and diffusivity of species /.
respectively. Making use of the following three conditions that reflect electro-
neutrality, local equilibrium, and mass balance, respectively, one obtains

JM2~ = Jo2 -, /^MO = Vo2~ + P>M2~ and co2 = CM-~ = CMO

where CMO is the molar concentration of MO "molecules" per unit volume
(that is, cMo = 1/^MO' where VMO is the molar volume). In complete
analogy to how Eq. (7.73) was derived, it is a lengthy but not difficult task
to show that the flux of MO units or molecules is given by

_ DM DO CMO ^AMO -, <-xM0 ~~ — , ", n A .+ £)o kT dx

The driving force here is the chemical potential gradient in MO. By reformu-
lating this expression in terms of Pick's first law (see App. 7A) it can be
shown that109

DM DO n QS.Ajmbi = : — r-- (7.86)

109 The term Dambi is used here to differentiate it from Dchem. It should be emphasized, however,
that in the literature, in most complex expressions for diffusivity, i.e., for any process where
there is some coupling between fluxes, the term chemical diffusion is used almost exclusively.
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This expression is only valid for an MO oxide; for the more general case of an
MKQg oxide, however, the appropriate expression is

^ambi
DM

/^>M-

DO
^KD0

(7.87)

Equation (7.87) has far-reaching ramifications and basically predicts that
in binary ionic compounds, diffusion-controlled processes are determined by
Aunbi> which is turn is a function of the individual component diffusivities.
For most oxides, however, there are typically orders-of-magnitude differences
between the diffusivities on the different sublattices (see, e.g., Fig. 7.2). Con-
sequently, with little loss in accuracy, Z>amt,i can be equated to the slower
diffusing species. For instance, in MgO, DMgi+ > DO2 and £>ambi ^ Do2~ •

Before one proceeds much further, it is important to be cognizant of the
underlying assumptions made in deriving Eq. (7.87):

1. The oxide is a pure intrinsic oxide, where the dominant defects are
Schottky defects. This was implied when it was assumed that
c02- = cM2+ = CMO.

2. The vacancy concentrations are everywhere at equilibrium.
3. Local electroneutrality holds everywhere.
4. The ionic transport number is unity.

7.4.3 Reaction between Solids — Interdiffusion

The reactions that can occur between solids are quite diverse and for the most
part are quite complicated and not well understood. In this subsection, the
focus is on one very simple case, namely, that of interdiffusion of two ionic
crystals in which the cations have the same charge, e.g., AO and BO. To
further simplify the problem, the following assumptions are made:

• The anion sublattice is immobile.
• Cations A and B counterdiffuse independently, with self-diffusion coeffi-

cients DA+ and DB+, respectively, that are not functions of composition.
• Electroneutrality is maintained by having the counterdiffusing cation

fluxes coupled. Note that for this to happen, the system must be
predominantly an ionic conductor, that is, te <C tf — if not, decoupling
of the fluxes will occur (see below).

• Within the interdiffusion layer the system behaves ideally.

The flux equations for the two cations are given by

d(j>

( ' -

-- _ Q2

kT dx kT dx dx

, rr ,kT dx kT
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Mass conservation requires that the sum of the mole fractions X& + XB = 1,
from which it follows that if the solution is ideal, dc^ /dx — -dc#~ /dx.
Making use of this result together with the fact that electroneutrality requires
/A- = /B-, and following a derivation similar to the one that led to Eq. (7.86).
one can show that the interdiffusion coefficient DAB is given by

* +
(7.90)

This expression is sometimes referred to as the Nernst- Planck expression,
and given the many simplifying assumptions made in deriving it, should be
used with care.

Now Z)AB is not to be confused with Damb^ comparing Eqs. (7.90) and
(7.86) or (7.87) makes it obvious that the two expressions are not equivalent.
When two charged carriers are moving in opposite directions, Z)AB results. It
is the appropriate coefficient to use whenever the two constituents of the
same charge migrate in opposite directions — to be used for, e.g., analyzing
ion-exchange experiments.

Note that Eq. (7.90) is valid only if the system is predominantly an ionic
conductor, since only under these conditions can a diffusion or Nernst poten-
tial be built up. For a predominantly electronic conductor, however, no
coupling occurs between the fluxes, in which case Z)AB is given by an equation
of the type110

(7-91)

For example, MgO-NiO interdiffusion has been interpreted by using such an
expression.

7.4.4 EMF of Solid-State Galvanic Cells

Technologically, one important use of ionic ceramics is for potentiometric
sensors. These are solids that, by virtue of being predominantly ionic con-
ductors, are capable of measuring the absolute thermodynamic activities of
various species.

It can be shown that (see App. 7D) when a solid is placed between two
electrodes with chemical potentials /zj and //n, as shown schematically in
Fig. 7.190, the open-cell voltage V of such a cell is given by

1 P"
(7-92)

where z and x are> respectively, the charge and stoichiometry of the electro-
active ion in its standard state. ' ' ' It follows that if the solid separating the

110 In the metallurgical literature this expression is known as a Darken-type expression.
111 For all metals, x = '- whereas for O2, CU. etc., \ = 2.
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Bulk-

Figure 7.19 Development of a space charge and corresponding potential difference
4>\ — fa across a solid electrolyte subjected to electrodes of different chemical potentials.
(a) Initially, before contact is made, it is assumed that //Na > rf^a > Upon contact
because /u^., > r/Na, Na ions will jump across the interface, leaving their electrons behind
and creating a space charge, (c) Local dynamic equilibrium is established at each electrode
when the migrational and diffusional fluxes become equal.

electrodes is an ionic conductor, that is, tion

of such a cell is simply
1.0, then the open cell voltage

T/ __

a{
(7.93)

where the activities a\ and <% correspond to the chemical potentials pi and
fj.ii, respectively. It follows directly from this expression that if one of the
electrodes is in its standard state, say, a\ — \ , then V is a direct measure of
the activity a\\ in the second electrode. Needless to say, this is a very powerful
and elegant technique to measure thermodynamic parameters such as
activities, activity coefficients, heats of solutions, solubility limits, and
extent of nonstoichiometry.

To understand how the observed voltage develops, it is instructive to
go through the following thought experiment, depicted schematically in
Fig. 7.19. To simplify the problem, the following assumptions are made:

1 .
2.

3.

4.

The solid electrolyte SE is a perfect Na ion conductor; that is, tt = 1 .0.
One of the electrodes is pure Na; that is, a\ = 1.0; and the other is an
electrode in which a\\ < 1.0.
Initially the electrodes are separated from the SE, and the initial
conditions are such that r/Na > r?Na > ^a (Fig- 7.19a). Note that this
condition is identical to /^a > ^Na > /"Na-
The electrode is perfectly blocking to electrons. In other words, there are
no surface states in the electrolyte that electrons can jump into.
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To illustrate how a voltage develops in such a system, consider what
happens when the electrodes are brought into intimate contact with the SE

I QP
(Fig. l.\9b). Upon contact, at the interface where 77^3 > wa^ the Na ions
will jump across the interface from the electrode into the electrolyte, leaving
their electrons behind (Fig. 7.19&). This has two consequences. The first is to
increase the Na ion concentration in the vicinity of the interface, which will
induce them to diffuse into the bulk (i.e., a diffusional flux of Na ions into the
bulk results, depicted by the arrow labeled diffusion in Fig. 7.19c). The second
is the creation of a space charge or an electric field at the interface. This space
charge or voltage fa creates an electric field that tends to attract the same ions
back to the electrode (see arrow labeled migration in Fig. 7.19c). The voltage
developed thus increases up to a point where the electric field responsible for
the migrational flux is exactly balanced by the diffusional flux into the bulk.
At this point the system is said to have reached a state of local dynamic
equilibrium. Note that another way to look at the process is to appreciate
that it will continue until r/^a = r/^a — which is the definition of equilibrium
[Eq. (5.35)].

Conversely, at the electrode at which it was assumed that r^a > ^Na- the
Na ions will jump from the SE into the electrode. Once again, the process will
proceed until a voltage 4>u (opposite in polarity to the one developed at
interface I) develops that is sufficient to equate the electrochemical potentials
T/Na = T/Na across that interface. To summarize: the space charge that forms
at the electrode/electrolyte interface gives rise to a measurable voltage differ-
ence V = d>u — (ft, which is related to the activities of the electroactive species
in the electrodes — a fact that is embodied in Eq. (7.93).

7.5 Relationships Between Self-, Tracer, Chemical, Ambipolar,
and Defect Diffusion Coefficients

Up to this point, quite a number of diffusion coefficients, listed below, have
been introduced. For the reader not well versed in the field, this could lead,
understandably enough, to some confusion. The purpose of this section is to
shed some light on the subject.

During the course of this chapter, the following diffusion coefficients
were introduced and discussed:

• Self-diffusion Dlon: This is a measure of the ease and frequency with which
A atoms hop in pure A, but it applies equally to compounds MKXj where
the species M and X form two independent sublattices.

• Tracer diffusion D*tT is a measure of the ease and frequency with which
radioactive or tagged atoms are diffusing in a matrix. It can be shown
that D*T =/corAon where /cor is a correlation coefficient that depends
on the crystal structure and diffusion mechanism.
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Defect diffusion Ddef. This is a measure of the ease and frequency
with which the defects are hopping in a solid; £>ion = AZ)def, where A is
the fraction of sites available for the diffusing atom or ions to make a
jump.
Chemical diffusion Dchem. Formally this quantity is defined as

where /, is the flux of species / and dct/dx is the gradient in its concen-
tration.112 In essence, -DChem represents the phenomenological coefficient
that describes the effective rate at which a given diffusional process is
occurring. As discussed below, to relate Dchem to more fundamental
parameters in a given system, such as the diffusion of component ions
or the diffusivities of defects, more information about the latter must
be available.

• Ambipolar diffusion coefficients Dambi and Aimbi- These diffusion co-
efficients are special cases of Dchem, and reflect the fact that in ionic
compounds, the fluxes of the ions and defects are by necessity coupled,
in order to maintain charge neutrality.

• Inter diffusion diffusion DAB- This is a measure of the rate at which a
diffusional process will occur when ions are interdiffusing.

To illustrate the subtle differences and nuances between the various
diffusion coefficients, it is instructive to take an example such as NiO,
which was considered earlier in Worked Example 7.6. To obtain a measure
of how fast Ni diffuses into NiO, one can carry out a tracer diffusion experi-
ment, as described earlier. By analyzing the concentration profile of the
radioactive tracer, it is possible to determine the so-called tracer diffusivity
Z)tr of Ni in NiO.113 The tracer diffusivity is then related to the self-diffusivity
Z>Ni by a correlation coefficient/cor. The coefficient/cor has been calculated
for many structures and can be looked up.I14

To relate Z)ion to defect diffusivities, however, more information about
the system is needed. For starters, it is imperative to know the diffusion
mechanism — if diffusion is by vacancies, their concentration or mole frac-
tion A has to be known to relate the two since, according to Eq. (7.14),
Z)vac — DS/A. Needless to say, if the number of defects is not known, the
two cannot be related. If, however, the tracer diffuses by an interstitial

This is why one strives to cast the flux equations in the form of Pick's first law [Eq. (7.81)].
Once in that form, the ratio of / to dc/dx is, by definition, a chemical D.
To measure the tracer diffusivity of oxygen, typically a crystal is exposed to a gas in which the
oxygen atoms are radioactive.
See, e.g., J. Philibert, Atom Movements, Diffusion and Mass Transport in Solids, Les Editions
de Physique, in English, trans. S. J. Rothman, 1991.
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mechanism, then it can be shown that Dint = Z)tr = Ds. Note that in this case
the correlation coefficient is unity.115

The next level of sophistication involves the determination of the nature
of the rate-limiting step in a given process, i.e., relating Dchem to Dtr or Z)lon.
For example, it was concluded, in Worked Example 7.6, that the rate-limiting
step during the oxidation of Ni was the diffusion of Ni ions through the oxide
scale.

This conclusion was only reached, however, because the nature of the
conductivity in the oxide layer was known. To generalize the argument,
consider the following two limiting cases:

1. The oxide layer that forms is predominantly an electronic conductor,
that is, te > /ion. Hence, according to Eq. (7.82), Z)^ % £>def and the
permeation is rate-limited by the diffusivity of the ionic defects. Further-
more, it can be shown that under these conditions

,|:" (7.94)

where Z)fast is the diffusion coefficient of the faster of the two ionic species
and AC/MO..-. is the free energy of formation of the MO-/2 oxide
(Eq. (7.65)). For most transition-metal oxides, Do: <c Z)M~ and
Eq. (7.94) reads

A ™ kT

which, not surprisingly, is the conclusion reached in Worked Example
7.6.

Note that measuring the electrical conductivity of NiO yields no
information about the conductivity of the ions, only about the electronic
defects.

2. The oxide layer that forms is predominantly an ionic conductor, so.
according to Eq. (7.82), /)°mbi ~ De

 or £*/> (note that in order to
determine which is the case, even more information about whether the
oxide was p or n type is required). In this situation Eq. (7.78) reads

=e

115 Only when diffusion occurs by uncorrelated elementary steps are Dmn and Z),r equal. A case
in point is interstitial diffusion where after every successful jump the diffusing particle finds
itself in the same geometric situation as before the diffusional step. However, for diffusion by
a vacancy mechanism, this is no longer true. After every successful jump, the tracer ion has
exchanged places with a vacancy, and thus the probability of the ions jumping back into the
vacant site and canceling the effect of the original jump is much greater than the probability
that the ion will move in any other direction.
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where <7e]ec is the average partial electronic conductivity across the
growing layer. Note that in contrast to the aforementioned situation,
measuring Kx yields information not about the diffusivity of the ions,
but rather about the electronic carriers, which is not too surprising
since in these circumstances the rate-limiting step is the diffusion of
the electronic defects. Information about the ionic diffusivity, however,
can be deduced from conductivity experiments by relating the con-
ductivity to the diffusivity via the Nernst -Einstein relationship (see,
e.g., Worked Example 7.5).

7.6 Summary

1. Ions and atoms will move about in a lattice if they have the requisite
energy to make the jump across an energy barrier AG*, and if the site
adjacent to them is vacant.

2. In general, diffusivity in ceramics can be expressed as follows:

D/f — A.DQ exp
RT

where A is the probability that the site adjacent to the diffusing ion is
vacant. For defects, Aw 1.0; and D0 is a temperature-independent
term that includes the vibrational frequency of the diffusing ions, the
jump distance, and the entropic effect of the atomic jump.

3. The temperature dependence of the diffusion coefficient will depend on
the diffusion mechanism. If diffusion occurs interstitially, the tempera-
ture dependence of D will include only the migration energy term,
A//*,, since the probability of the site adjacent to an interstitial atom
being vacant is wl.O.

4. For diffusion by a vacancy mechanism, the temperature dependence of
diffusivity will depend on both the migration enthalpy A//^, and the
energy required to form the vacancies if the latter are thermally acti-
vated; i.e., the concentration of intrinsic defects is much greater than
the concentration of extrinsic defects. If, however, A is fixed by
doping, it becomes a constant independent of temperature. The activa-
tion energy for diffusion in the latter case will only depend on A//^.

5. The diffusivity will also depend on the chemical environment surround-
ing a crystal. This is especially true of nonstoichiometric oxides in which
the stoichiometry and consequently the concentration of the defects are
a relatively strong function of the oxygen partial pressure. In these
instances, the partial pressure dependence of the diffusivity is the same
as that of the defects responsible for the diffusivity.

6. The presence of a potential gradient, whether chemical or electrical, will
favor jumps down that gradient and will result in an ionic flux down the
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potential gradient. Consequently, the ionic conductivity is directly
proportional to the ionic diffusivity through the Nernst-Einstein rela-
tionship.

7. The most fundamental and general equation relating the flux of an ionic
species to the gradient in its electrochemical potential is

=
k kT dx (Zke)2 dx

This expression embodies both Pick's first law and Ohm's law.
8. The total electrical conductivity is governed by

a = T\2\ecmjHdj

where cm,i and fj,d , are, respectively, the concentrations and mobilities of
the mobile species. The total conductivity is the sum of the partial elec-
tronic and ionic conductivities.

9. Since the ionic conductivity and diffusivities are related by the Nernst-
Einstein relationship, what governs one governs the other. Fast ionic
conductors are a class of solids in which the ionic conductivity is
much larger than the electronic conductivity. For a solid to exhibit
fast ion conduction, the concentration and mobility of ionic defects
must be quite large. The band gap of the material must also be quite
high to minimize the electronic contribution to the overall conductivity.

10. The electronic conductivity depends critically on the concentration of
free electrons and holes. There are essentially three mechanisms by
which mobile electronic carriers can be generated in a solid:
a. Intrinsically by having the electrons excited across the band gap of

the material. In this case, the conductivity is mostly determined by
the size of the band gap Eg and is a strong function of temperature.

b. Extrinsically by doping the solid with aliovalent impurities that
result in the generation of holes or electrons. In this case, if the
dopant is fully ionized, the conductivity is fixed by the concentra-
tion of the dopant and is almost temperature-independent.

c. As a result of departures from stoichiometry. The oxidation or
reduction of an oxide can generate electrons and holes.

11 . Exposing a binary compound to a chemical potential gradient of one of
its components results in a flux of that component through the binary
compound as a neutral species. The process, termed ambipolar diffusion,
is characterized by a chemical diffusion coefficient Dchem which is related
to the defect and electronic diffusivities by

Arhem = '/^elec + 'c^def

Since this process involves the simultaneous, coupled diffusion of ionic
and electronic defects, it is the slower of the two that is rate-limiting. To
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maximize oxidation resistance, electrochemical sensing capabilities,
and the successful use of ceramics as solid electrolytes, Dchtm should
be minimized.

12. Exposing a binary compound as a whole to a chemical potential, i.e., for
dfiMx/dx 7^ 0, results in the ambipolar migration of both constituents of
that compound down that gradient. The resulting ambipolar diffusion
coefficient for an MO oxide is given by

D AviA)

from which it can be easily shown that Aimbi >s determined by the slower
of the two components.

13. In a quasi-binary system, interdiffusion of ions also results in a so-called
interdiffusion diffusion that is also rate-limited by the diffusivity of the
slower of the two ions. This process occurs, e.g., when solid-state
reactions between ceramics or ion-exchange experiments are carried out.

14. Solid electrolytes can be used as sensors to measure thermodynamic
data, such as activities and activity coefficients. The voltage generated
across these solids is directly related to the activities of the electroactive
species at each electrode.

Appendix 7 A

Relationship Between Fick's First Law and Eq. (7.30)

The chemical potential and concentration are related [see Eq. (5.23)] by

where 7, is the activity coefficient.116 It follows that Eq. (7.22) can be written
as

NAv dx A^Av [ dx dx \ \_c dx 7

Strictly speaking, Eq. (7A.1) should read ^, = n° + RTlnx^, where xt is the mole fraction
of species /. However, c, and jc,- are related by

where Vs is the molar volume of species /. Assuming there are only two species, it follows that
for dilute concentrations Xt w c\ V\ /(c2 V2). But since V{ /(c2 V2) is approximately a constant,
it can be incorporated into fj,°.



230 Fundamentals of Ceramics

For ideal or dilute solutions, 7 is a constant and the second term inside the
brackets drops out. Substituting Eq. (7A.2) in (7.30) yields

ion /dx

which is nothing but Pick's first law. This is an important result since it indi-
cates that whenever 7 ^/(.Y), that is, it is not a function off . the generalized
flux equation [Eq. (7.30)] degenerates into Pick's first law.

If 7, is a function of concentration, then the second term in Eq. (7A.2)
cannot be ignored. Noting that

d In 7 d In 7 d In c
dx dine dx

and carrying out the same procedure to obtain to Eq. (7A.3). one obtains

^chem = ^ato

where the term in parentheses is known as the thermodynamic factor. In other
words, the self-diffusivity of the atoms is modified by a factor that takes into
account that the diffusing particles now interact with one another. Note that
since one cannot define an activity coefficient for a charged species (see
Chap. 5), this expression for Dchem is valid only for neutral species, hence
the subscript "atom".

Appendix 7B

Effective Mass and Density of States

For free electrons in a metal, it can be shown that the E-k relationship in
three dimensions is

where kf is the electron wave number in the three principal directions and mc

is the rest mass of an electron. An almost identical relationship for the density
of states in a semiconductor or insulator (see Chap. 2) is

,2
£ = —^—(*2

v + *; + *:) (7B.2)
%-jrm*
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where the effective electron mass m*e replaces the rest mass. The effective
electron mass is defined as

This is another way of saying that as the electron energy approaches that of a
band edge, its effective mass, or the force needed to accelerate the electron,
becomes very large.117

To calculate the total number of electrons in the conduction band at any
temperature 7, the following integral

rtopofcond. band
n = (density of states)

J bottom of cond. band

x (prob. of electron occupying given state) dE

or

n = ^f(E)Z(E)dE (7B.4)

has to evaluated. Here/(£") is the density of states, given by Eq. (7.47), and
Z(E) dE is the density or number of electronic states per unit volume having
energies between E and E + dE. Taking zero energy to be at the top of the
valence band, one can show that for the electrons118

~ , r x j r , r p x i / 2 jr. u 47r(2ra*)3/2

Z(E) dE — xe(E - Es) ' dE where xe
 = — /— (7B.5)

IT

For E — EF :§> kT, the Fermi function [Eq. (7.47)] may be approximated by

(7B.6)

Substituting Eqs. (7B.5) and (7B.6) in Eq. (7B.4) and integrating lead to
the final result, Eq. (7.48),

« = #fexp(-^^ (7B.7)

where
/?7rm*£T\3//2

JV, = 2p=p-) (7B.8)

117 In the limit that the electron energy satisfies the Bragg diffraction condition (i.e., at the top
of the valence band), the electron forms a standing wave, and even though it may be
experiencing a force, it is "going nowhere." In other words, it behaves as an infinitely
heavy object.

118 L. Solymar and D. Walsh, Lectures on the Electrical Properties of Materials, 4th ed. Oxford
University Press, New York, 1988.
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Z(E) f ( E ) Z(E)f(E)

Figure 7.20 (a) Dependence of the density of states near the bottom of the conduction
band on energy, (b) Probability of finding electron at energy E, that is. /(£) or
Eq. (7B.6). (c) A plot of/(£')Z(£) versus £ showing that most of the electrons are clustered
near the bottom of the conduction band. Conversely, holes would be clustered near the top
of the valence band.

Similarly, for holes

where

Ef - Ev

kT

TV,. = 2
\

(7B.9)

(7B.10)

and m*h is the effective mass of a hole.
It is important to note that while the density of states increases mono-

tonically with energy [Eq. (7B.5)], as shown in Fig. 7.20a, the probability
of occupancy of the higher levels drops rapidly (Fig. 7.206), such that in
the end the filled electron states are all clustered together near the bottom
of the conduction band (Fig. 7.20c). Finally, note that for many ceramic
materials, the effective masses of the electrons and holes are not known,
and the assumption that me — m*e = m/, is oftentimes made.

Appendix 7C

Derivation of Eq. (7.79)

In the dilute approximation regime where defect-defect interaction can be
ignored, it is possible to express their chemical potential as

(7C.1)
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and

dcM* 1 dn

.2)

Electroneutrality and mass balance dictate that cdet- = n/z — CM* from which

(7C.3)
dx z dx dx

Combining this result with Eqs. (7C.1) and (7C.2) together with Eq. (7.68),
one can easily show that

1 '^ (7C.4)
dx

which is Eq. (7.79).

Appendix 7D

Derivation of Eq. (7.92)

The situations depicted in Figs. 7.18a and 7.19c are very similar in that in
both cases a driving force exists for mass transport. The origin of this
force is the chemical potential gradient d^/dx that exists across the growing
oxide layer in one case and the solid electrolyte or sensor in the other.

The magnitudes of Na ion and electronic fluxes are given by [Eq. (7.37)]

(7D.1)& 2 lez dx

'. = -%%• (7D.2)e~ dx

Since elect roneutrality requires that /Na+ = Je, it follows that

dr+ ae df)e ^ '7^^^^
— — -j- (/LJ.3),

ax crNa+ dx

The assumption of local equilibrium implies that

^MNalelectrode = \df)e + dfj^^ |SE (7D.4)

where SE refers to the solid electrolyte. Combining this equation with (7D.3),
one obtains

. d f ] e _ 1 dr\e
I ; — j I ll-'-J)1 — i ; —dx ^"Na4 dx dx ?,on dx

which upon rearrangement and integration and by noting that
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it follows that

i -
(7D.6)

In the more generalized case, where the charge on the cation is not 1 but r and
the stoichiometry of the electroactive species is not 1 but \, the more general
result given in Eq. (7.92) holds.

Problems

7.1. (a) Calculate the activation energy at 300 K given that DQ = 10~3 m2 s
and/)= 10~17m2/s.

(b) Estimate the value of Z)0 for the diffusion of Na ions in NaCl,
and compare with the experimental value of «0.0032m2/s. State
all assumptions. (Consult Table 6.2 for most of requisite
information.)

Answer: DQ = 8.8 x 10~4m2/s.

(c) Calculate the mobility of interstitial oxygen ions in UO2 at 700"C.
The diffusion coefficient of the oxygen ions at that temperature is
10~17m2/s. State all assumptions.

Answer: 2.4 x 10~ l6m2/(V -s)

(d) Compare this mobility with electron and hole mobilities in semi-
conductors.

7.2. («) Explain why for a solid to exhibit predominantly ionic conductiv-
ity, the concentration of mobile ions must be much greater than
the concentration of electronic defects.

(b) Derive Eq. (7.46) and show that the conductivity should reach a
maximum when one-half the sites are occupied.

(c) Derive Eq. (7.54) and comment on the similarity of this expression
to that derived in part (b).

7.3. Estimate the number of vacant sites in an ionic conductor at room
temperature in which the cations are the predominant charge carriers.
Assume that at room temperature the conductivity is 10~1 7(17-m)~'
and the ionic mobility is 10~ l 7 m 2 / (V-s) . State all assumptions.

7.4. (a) What determines the type of conductivity in a ceramic (i.e..
whether it is ionic or electronic)?

(b) It is often said that reducing a ceramic will increase its electronic
conductivity. Do you agree with this statement? Explain.

(c) Distinguish between p- and «-type oxides with respect to the
oxygen partial pressure dependence of their majority carriers.
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Describe an experiment by which you could distinguish between
the two.

7.5. (a) A stoichiometric oxide M2O3 has a band gap of 5 eV. The enthalpy
of Frenkel defect formation is 2eV, while that for Schottky
defect formation is 7eV. Further experiments have shown that
the only ionic mobile species are cation interstitials, with a diffusion
coefficient £>M)int at 1000 K of 1.42 x 10~10 cm2/s. The mobilities of
the holes and electrons were found to be 2000 and 8000cm2/(V • s),
respectively. At 1000K would you expect this oxide to be an ionic,
electronic, or mixed conductor? Why? You may find this infor-
mation useful: molecular weight of oxide = 40 g/mol, density =
4g/cm3. Assume the density of states for holes and electrons to
be on the order of 10 cm"".

Answer: <7ion = 2.4 x 10~~9 S/cm, ap = 8.45 x 10"7 S/cm, an = 3.4 x
•~6 S/cm

If the oxide in part (a) is doped with 5mol% of an MbO oxide
[final composition: (MbO)oo5(M2O3)o95], write two possible
defect reactions for the incorporation of MbO in M2O3 oxide.
Calculate the molar fraction of each defect formed.

(c) Assume one of the defect reactions in part (b) involves the creation
of Mb,. Recalculate the ionic conductivity, given that the diffusiv-
ity of Mb interstitials DMb. in M2O3 at 1000 K is 10~9 cm2/s. Hint:
Start with 1 mol of final composition, and calculate the fraction of
Mb ions that go interstitially. Make sure you take the effective
charge into account.

Answer. crMb. = 7.44 x 10~6S/cm.

7.6. (a) Construct the Kroger-Vink diagrams for pure zirconia.

Answer: see Fig. 7.16(«)

(b) Repeat part (a) for calcia-doped zirconia and compare to
Fig. 7.16a. State all assumptions. On the same diagram, explain
what happens if the dopant concentration is increased.

7.7. (a) To increase the electron (n-type) conductivity of ZnO, which
would you add, A12O3 or Li2O? Explain.

Answer: A12O3 (not a typo)

(b) The resistivity of ZnO was found to decrease from 4.5 to 1.50 • cm
as the doping level was increased from 0.23 and 0.7mol%. Which
dopant do you think was used (A12O3 or Li2O) and why? Derive
an expression for the conductivity of this oxide that takes into
account the dopant concentration. Is the expression derived
consistent with the changes in conductivity observed?
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Figure 7.21 Temperature dependence of electrical conductivity of ZnO (right axis) and
charge carrier concentration (left axis).

(c) Zinc oxide is a semiconductor. Except at very high temperatures
the carrier concentration is related to the excess zinc which
dissolves into the structure as interstitials. The first ionization
energy of the Zn interstitial is 0.04 eV, the second is %1.5eV.
The electronic structure of the Zn atom is ...3d104s2. of an
oxygen atom is ... 2s22p4. The band gap is 3.2eV.

(i) Sketch schematically the band structure of ZnO. Label the
valence band, conduction band, and two zinc interstitial
defect levels.

(ii) What is the defect reaction for the incorporation of Zn vapor
into ZnO and what kind of electronic carriers result?

(iii) Samples of ZnO annealed at 1300CC in Zn vapor were
quenched to room temperature and studied in the range
-200 to +300CC. The results are shown in Fig. 7.21. What
is the reason for the decrease in the carrier concentration
below room temperature?

(iv) Is the mobility due to free carriers or to "hopping"? Explain.

7.8. Positive and negative vacancies are attracted to one another coulombi-
cally. Show that if the energy of attraction of such pairs is Ep. then the
fraction of such pairs at equilibrium is given by

Vr

(v - v,)2 = K = 6eEJRT

where Vp is the number of pairs and V = Vcat = Van. State all assump-
tions.
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7.9. Thomas and Lander119 measured the solubility and conductivity of
hydrogen in ZnO and found that they varied as P^4. Derive a model
that explains their observation. Hint: Hydrogen dissolves interstitially
and ionizes.

7.10. Undoped PbS is an «-type semiconductor and crystallizes in the NaCl
structure. The predominant defects are Frenkel defect pairs on the Pb
sublattice.
(a) Would you expect the diffusivity of Pb or S to be greater in PbS?

Why?
(6) Explain what would happen to the diffusional flux of Pb upon the

addition of Ag2S to PbS.

Answer: Pb ion flux will increase with additions (not a typo).

(c) How would Bi2S3 additions affect the diffusion of Pb?

7.11. Cuprous chloride is an electronicp-type conductor at high Cl pressures.
As the chlorine pressure decreases, ionic conductivity takes over.

(a) Suggest a mechanism or combination of mechanisms to explain
this behavior.

(b) Obtain a relationship between conductivity and the defect popu-
lation for your proposed mechanism(s) that is consistent with
the experimental observations. Hint: Consider two mechanisms,
one stoichiometric and the other nonstoichiometric.

7.12. The electrical conductivity a of a solid is predicted to vary as

Q

where C is a constant and k is Boltzmann's constant. Measurements of
a, in arbitrary units, for ice as a function of T were as follows:

a 31 135 230 630
T, K 200 220 230 250

Based on these data, what do you expect the conduction mechanism in
ice to be if the band gap of ice is 0.1 eV, proton transport involving the
breaking of a hydrogen bond is 0.25 eV, and a transfer of complex ions
requiring simultaneous breaking of four hydrogen bonds is 1 eV?

Answer: Activation energy for conduction = 0.3 => b

7.13. The functional dependence of the electrical conductivity of an oxide on
the oxygen partial pressure and temperature is shown in Fig. 7.22a.

119 D. G. Thomas and J. J. Lander, J. Chem. Phys., 25:1136–1142 (1956).
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Figure 7.22 (a) Functional dependence of log a on log PO2. (b) Effect of temperature on
conductivity at a fixed PO2.

The temperature dependence of the conductivity is shown in Fig. 7 .22b.
Answer the following questions.
(a) Is this oxide stoichiometric or nonstoichiometric? Explain.
(b) Develop the defect reaction or reactions that would explain this

behavior. Pay special attention to the slopes.
(c) What type of conductor (ionic, p-type, n-type, etc.) do you expect

this oxide to be? Elaborate, using appropriate equations.
(d) To which energy does the slope of the line in Fig. 7.22b corre-

spond? Explain, stating all assumptions.
(e) Label the curves in Fig. 7.22a in terms of increasing temperature.

Explain.
(f) Do these figures assume equilibrium of any kind? Elaborate

briefly.
(g) Describe what changes, if any, would occur to the defects in this

crystal if the temperature were suddenly changed from, say. T,
to T2 (assuming T} > T2). Elaborate on the atomic mechanisms
that would be occurring to affect the changes, if any.

7.14. (a) The tracer diffusion of coefficient of oxygen in calcia-stabilized
zirconia (CSZ) was measured to fit the relationship

-6D= 1.8 x 10~°exp
1.35eV\

kT )
m~/s

Assuming the transport number of oxygen is unity, estimate the
electrical conductivity at 1000°C. Assume the unit cell side of
513pm. State all assumptions.

Answer: ss2.81 S/m
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(b) CSZ membranes are currently being used as solid electrolytes in
fuel cells. To get maximum efficiency of the fuel cell, however, it
is imperative to reduce the permeation of oxygen across the
membrane. Assume that CSZ in part (a) has a hole transport
number of 1(T3 at 1000°C. If the thickness of the CSZ is 1 mm,
estimate the molar flux of oxygen permeating through, if the
fuel cell is operating between a Fo, °f 10~10 atm and air. State
all assumptions.

Answer: 8.33 x 10~6 mol of O/m2s

7.15. One side of an oxygen sensor is exposed to air and the other to an equi-
librium mixture of Ni and NiO. The following results were obtained at
the various temperatures indicated:

T, K 1200 1300 1400
emf, V 0.644 0.6 0.55

(a) Calculate the partial pressure of oxygen in the Ni/NiO side at
1300K.

(b) Calculate the standard free energy of enthalpy and entropy of
formation of NiO at 1300K.

Answer: Po,
 at 1300K = 1 x l(T loatrn, A(71300 = -124kJ/mol

7.16. (a) Given the results shown in Fig. 7.17, do they obey Eq. (7.62)?
(b) If your answer is yes calculate Kw, and compare to those listed in

Table 7.1.

7.17. (a) Show that in the case of oxidation, the rational rate constant is
related to the parabolic rate constant by

*-_£*_'V ~~ /-» ,

where <p is the number of equivalents (see footnote 108).
(b) Further show that Kr and Kw are related by

_
**-r *

VMO Aw2

2 Ml t 2 Ml w

where Mo is the atomic weight of oxygen. In this case z is the
valence on the anion.

(c) The time dependence of the weight gain of 6 x 3 mm Gd metal
foils at two different temperatures is shown in Fig. 7.23a.
Calculate Kw and Kr for this oxide.

(d) How long would it take to grow an oxide layer 25 urn thick at
1027°C.
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Figure 7.23 (a) Weight gain during the oxidation of Gd metal at two different tempera-
tures. (b) Weight gain during the oxidation of Gd metal at 1027 C at two different
oxygen partial pressures.120

(e) In your own words explain the oxygen partial pressure depen-
dence of the data shown in Fig. 7.236. In other words, why does
the sample gain more weight at higher partial pressures? Informa-
tion you may find useful: molecular weight of Gd2O3 = 362.5 mol,
density = 7.41 g/cm3.

Adapted from D. B. Basler and M. F. Berard. J. Amer. Cer. Soc.. 57:447 (1974).
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7.18. Based on their P-B ratio, predict which of the following metals will
form a protective oxide layer and which will not: Be, Nb, Ni, Pd,
Pb, Li, and Na.

7.19. Derive Eqs. (7.94) and (7.95).
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Chapter 8

Phase Equilibria

Like harmony in music; there is a dark inscrutable
workmanship that reconciles discordant elements,
makes them cling together in one society.

William Wordsworth

8.1 Introduction

Phase diagrams are graphical representations of what equilibrium phases
are present in a material system at various temperatures, compositions,
and pressures. A phase is defined as a region in a system in which the
properties and composition are spatially uniform. The condition for equi-
librium is one where the electrochemical gradients of all the components of
a system vanish. A system is said to be at equilibrium when there are no
observable changes in either properties or microstructure with the passing
of time, provided, of course, that no changes occur in the external conditions
during that time.

The importance of knowing the phase diagram in a particular system
cannot be overemphasized. It is the roadmap without which it is very difficult
to interpret and predict microstructure distribution and evolution, which in
turn have a profound effect on the ultimate properties of a material.

In principle, phase diagrams provide the following information:

1. The phases present at equilibrium
2. The composition of the phases present at any time during heating or

cooling
3. The fraction of each phase present
4. The range of solid solubility of one element or compound in another

Like Chaps. 2 and 5, this chapter is not intended to be a comprehensive
treatise on phase equilibria and phase diagrams. It is included more for the
sake of completeness and is to be used as a reminder to the reader of some
of the more important concepts invoked. For more information, the reader
is referred to the references listed at the end of this chapter.

242
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The subject matter is introduced by a short exposition of the Gibbs
phase rule in Sec. 8.2. Unary component systems are discussed in Sec. 8.3.
Binary and ternary systems are addressed in Sees. 8.4 and 8.5, respectively.
Sec. 8.6 makes the connection between free energy, temperature, and
composition, on one hand, and phase diagrams, on the other.

8.2 Phase Rule

As noted above, phase diagrams are equilibrium diagrams. J. W. Gibbs
showed that the condition for equilibrium places constraints on the degrees
of freedom F that a system may possess. This constraint is embodied in
the phase rule which relates F to the number of phases P present and the
number of components C

F=C+2-P (8.1)

where the 2 on the right-hand side denotes that two external variables are
being considered, usually taken to be the temperature and pressure of the
system.

The number of phases P is the number of physically distinct and, in
principle, mechanically separable portions of the system. One of the easiest
and least ambiguous methods to identify a phase is by analyzing its X-ray
diffraction pattern — every phase has a unique pattern with peaks that
occur at very well defined angles (see Chap. 4). For solid solutions and
nonstoichiometric compounds, the situation is more complicated; the
phases still have a unique X-ray diffraction pattern, but the angles at
which the peaks appear depend on composition.

In the liquid state, the number of phases is much more limited than in
the solid state, since for the most part liquid solutions are single-phase
(alcohol and water are a common example). However, in some systems,
most notably the silicates, liquid-liquid immiscibility results in the presence
of two or more phases (e.g., oil and water). The gaseous state is always
considered one phase because gases are miscible in all proportions.

The number of components C is the minimum number of constituents
needed to fully describe the compositions of all the phases present. When
one is dealing with binary systems, then perforce the number of components
is identical to the number of elements present. Similarly, in ternary systems,
one would expect C to be 3. There are situations, however, when C is only 2.
For example, for any binary join in a ternary phase diagram the number of
components is 2, since one element is common.

The number of degrees of freedom F represents the number of variables,
which include temperature, pressure, and composition, that have to be
specified to completely define a system at equilibrium.
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8.3 One-Component Systems

For a one-component system C — 1, and the degrees of freedom F = 2. In
other words, to completely define the system, both temperature and pressure
must be specified. If two phases are present, F = 1, and either pressure or
temperature needs to be specified, but not both. For example, at 1 atm
pressure, water and ice can coexist at only one temperature (0CC). At the
triple point, three phases coexist, and there are no degrees of freedom left
— the three phases must coexist at a unique temperature and pressure.

As single-phase substances are heated or cooled, they can undergo a
number of polymorphic transformations. Polymorphs are different crystal-
line modifications of the same chemical substance. These transformations
are quite common and include crystallization of glasses, melting, and
many solid-solid phase transformations, some of which are described
below. In general, there are two types of polymorphic transformations,
displacive and reconstructive.

8.3.1 Reconstructive Transformations

As shown schematically in Fig. S.I a, reconstructive transformations involve
the breaking and rearrangement of bonds. Such transformations usually
occur by nucleation and growth, which in turn usually depend on the rate
at which atoms diffuse and consequently are relatively sluggish and easily
suppressed (see Chap. 9). The reconstructive transformations that occur in
quartz, specifically the a-/3 transformation (see below), are good examples.

8.3.2 Displacive Transformations

In contrast to reconstructive transformations, displacive transformations do
not involve the breaking of bonds, but rather occur by the displacement of
atomic planes relative to one another, as illustrated in Fig. 8.\b. These
reactions occur quite rapidly, and the resulting microstructures are usually
heavily twinned. In these transformations, the role of thermal entropy is
important since the enthalpies of the phases on either side of the
transformation temperature are quite comparable. It follows that the transfor-
mation usually results in the formation of more open (less dense) structures at
higher temperatures, for reasons that were touched upon in Chap. 5, namely
that the more open structures have higher thermal entropies.121

Martensitic transformations in steel are probably the most studied of
these transformations. Examples in ceramic systems of technological
importance include the tetragonal-to-monoclinic transformation in ZrO2.

121 Note that there are exceptions; for example, the tetragonal to monoclinic transformation of
ZrO2 is one where the more "open" structure is more stable at lower temperatures.
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Figure 8.1 Schematic of (a) reconstructive and (b) displacive transformations.

the cubic-to-tetragonal transformation in BaTiO3, and numerous transfor-
mations in silica. In the remainder of this section, for the sake of illustration,
each is discussed in greater detail.

Zirconia

Upon heating under 1 atm pressure, zirconia goes through the following
transformations:

Monoclinic —> tetragonal —* cubic —> liquid
1170°C 2370° C 2680° C

It exhibits three well-defined polymorphs: a monoclinic phase, a tetrago-
nal phase, and a cubic phase. The low-temperature phase is monoclinic,
stable to 1170°C at which temperature it changes reversibly to the tetragonal
phase, which in turn is stable to 2370°C. Above that temperature the cubic
phase becomes stable up to the melting point of 2680°C. The tetragonal-
to-monoclinic (t =£• m) transformation is believed to occur by a diffusionless
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shear process that is similar to the formation of martensite in steels. This
transformation is associated with a large volume change and undergoes
extensive shear which is the basis for transformation toughening of zirconia.
addressed in greater detail in Chap. 11.

Barium titanate

Barium titanate goes through the following phase transitions upon heating:

Rhombohedral —> orthorhombic —> tetragonal —> cubic
-90CC 0"C 130 C

Above 130°C, the unit cell is cubic, and the Ti ions are centered in the
unit cell. Between 130 and 0CC, however, BaTiO3 has a distorted perovskite
structure with an eccentricity of the Ti ions. As discussed in greater detail in
Chaps. 14 and 15, it is this eccentricity that is believed to be the origin of the
main technical application of BaTiO3 as a capacitor material with a high
dielectric constant.

Silica

Silica has a multitude of polymorphs that undergo a number of both displa-
cive and reconstructive transformations, the most important of which are
summarized in Fig. 8.2. The displacive transformation from high to low
quartz is associated with a large volume change (see Fig. 4.5) which, upon
cooling, can create large residual stresses and result in a loss of strength
(see Chap. 13). The best way to avoid the problem is to ensure that during

High
quartz

Reconstructive
867CC

High
tridymite

Reconstructive
1470^

Displacive Displacive
573t 160°C

Low
quartz

k
Middle

tridymite

Displacive
105°C

f
Low

tridymite

High
cristobalite

y
Displacive

20O-270°C

Low
cristobalite

Figure 8.2 Polymorphic transformations in silica.
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processing all the quartz is converted to cristobalite, which because of its
sluggish reconstructive transformation is metastable at room temperature.
The volume change from high to low cristobalite is not as severe as that
for quartz.

8.4 Binary Systems

A binary system consists of two components and is influenced by three
variables: temperature, pressure, and composition. When two components
are mixed together and allowed to equilibrate, three outcomes are possible:

1. Mutual solubility and solid solution formation over the entire composi-
tion range, also known as complete solid solubility.

2. Partial solid solubility without the formation of an intermediate phase
3. Partial solid solubility with the formation of intermediate phases

One objective of this section is to qualitatively describe the relationship
between these various outcomes and the resulting phase diagrams. First,
however, it is important to appreciate what is meant by a solid solution in
a ceramic system and the types of solid solutions that occur — a topic that
was dealt with indirectly and briefly in Chap. 6. The two main types of
solid solutions, described below, are substitutional and interstitial.

Substitutional solid solutions

In a substitutional solid solution, the solute ion directly substitutes for the
host ion nearest to it in electronegativity, which implies, as noted in
Chap. 6, that cations will substitute for cations and anions for anions.
Needless to say, the rules for defect incorporation reactions (see Chap. 6)
have to be satisfied at all times. For instance, the incorporation reaction of
NiO in MgO would be written as

NiO —+ 0X
0 + Ni£iR

MgO

where the Ni2+ ions substitute for Mg2+ ions. The resulting substitutional
solid solution is denoted by (Ni1__v-Mgx)O. The factors that determine the
extent of solid solubility are discussed shortly.

Interstitial solid solutions

If the solute atoms are small, they may dissolve interstitially in the host
crystal. The ease with which interstitial solid solutions form depends on
the size of the interstitial sites in the host lattice relative to that of the
solute ions. For example, in a close-packed structure such as rock salt, the
only available interstitial sites are small tetrahedral sites, and interstitial
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Figure 8.3 (a) Representative unit cell of an (Mgo5Ni05)O solid solution, (b) Represen-
tative unit cell for a 0.25 mol fraction of YF, in CaF-, solid solution.

solid solubility is not very likely. In contrast, in ThO2 with its fluorite
structure and TiO2 where the interstitial sites are quite large, interstitial
solid solutions form more easily. For example, it has been established that
when YF3 is dissolved in CaF2, the appropriate incorporation reaction is

YF3—>Y^ a + F; + 2Fx
F

CaF:

In other words, to maintain charge neutrality, the F ions reside on inter-
stitial sites (see Fig. 8.3&). Another example involves the dissolution of
ZrO2 in Y2O3, where it has been established that the appropriate defect
reaction is

2ZrO2 —> 2Zr^ + 3O^ + O"
Y-.CK

WORKED EXAMPLE 8.1

(a) Draw a representative unit cell for an (Mgo5Ni0.5)O solid solution, (b)
Repeat part (a) for a 0.25 mol fraction of YF3 in CaF2.

Answer

(a) A representative unit cell for this solid solution must contain 2Ni2+ and
2Mg2+ cations. It is left as an exercise to the reader to show that the unit cell
in Fig. 8.3a fulfills that condition.
(b) A representative unit cell, the chemistry of which must reflect the composi-
tion of the solid solution, that is, Y)Ca3F9, is shown in Fig. 8.36. Note that
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the excess F ion occupies the large central interstitial octahedral site that is
normally vacant in the fluorite structure.

After this brief introduction to solid solutions, it is instructive to
consider the type of phase diagrams expected for each of the three possible
outcomes outlined above.

8.4.1 Complete Solid Solubility

For complete solid solubility to occur between two end members, the follow-
ing conditions have to satisfied:

1. Structure type. The two end members must have the same structure type.
For instance, SiO2 and TiO2 would not be expected to form complete
solid solubility.

2. Valency factor. The two end members must have the same valence. If
this condition is not satisfied, compensating defects form in the host
crystal in order to maintain charge neutrality. Given that the entropy
increase associated with defect formation is not likely to be compensated
for by the energy required to form them over the entire composition
range, complete solid solubility is unlikely.

3. Size factor. As a result of the mismatch in size of the solvent and solute
ions, strain energy will develop as one is substituted for the other. For
complete solid solubility to occur, that excess strain energy has to be
low. Hence, in general, the size difference between the ions has to be
less than 15 percent.

4. Chemical affinity. The two end members cannot have too high a chemi-
cal affinity for each other. Otherwise the free energy of the system will be
lowered by the formation of an intermediate compound.

A typical phase diagram for two compounds that form a complete solid
solubility over their entire composition range is shown in Fig. 8.4. Both NiO
and MgO crystallize in the rock salt structure, and their cationic radii are
very similar.

To illustrate the use and usefulness of phase diagrams, it is instructive
to take a composition in Fig. 8.4, say, 60 mol % MgO, and examine what
happens as it is cooled from the melt. At T\, a solid solution of MgO and
NiO (roughly 80 mol % Mg2+) will start solidifying. At T2 « 2500°C, two
phases coexist: a solid solution of composition Z (see top of Fig. 8.4) and
a liquid solution of composition X. The relative amounts of the each phase
are given by the lever rule:

Mole fraction liquid = — and mole fraction solid = '-—
xz xz

Note that as the temperature is lowered, the composition of the solid
solution moves along the solidus line toward NiO, while that of the liquid
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moves along the liquidus line.122 At T3 w 2400°C, the final liquid solidifies,
and the composition of the solid solution is now the same as the initial
composition.

Sometimes systems that exhibit complete solid solubility will also exhibit
either a maximum (rare in ceramic systems) or a minimum, as shown in
Fig. 8.5.
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Figure 8.4 MgO-NiO phase diagram exhibiting solid solubility over entire composition
range. Note liquidus and solidus lines.
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Figure 8.5 System with complete solid solubility with a minimum in temperature.

122 The line separating the single-phase liquid region from the two-phase (S -*- L) region is
the liquidus line. Similarly, the line separating the single-phase solid region from the two-
phase region is the solidus line.
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8.4.2 Eutectic Diagrams with Partial Solid Solubility and No Intermediate
Compounds

Given the numerous restrictions needed for the formation of complete solid
solutions, they are the exception rather than the rule — most ceramic binary
phase diagrams exhibit partial solubility instead. Furthermore, the addition
of one component to another will lower the freezing point of the mixture
relative to the melting point of the end members. The end result is lowered
liquidus curves for both end members which intersect at a point. The point
of intersection defines the lowest temperature at which a liquid can exist
and is known as the eutectic temperature TE. This type of diagram is well
illustrated by the MgO-CaO system shown in Fig. 8.6, where MgO dissolves
some CaO and vice versa. The limited solubility comes about mostly because
the size difference between the Ca and Mg ions is too large for complete solid
solubility to occur. Beyond a certain composition, the increase in strain
energy associated with increasing solute content can no longer be compen-
sated for by the increase in configuration entropy.

To illustrate the changes that occur upon cooling consider what happens
when a 40 mol % CaO composition, depicted by the dotted vertical line in
Fig. 8.6, is cooled from the melt. Above 2600°C the liquid phase is stable.
Just below 2600°C, a MgO solid solution («95 mol % MgO saturated with
CaO) will start to precipitate out. At 2500°C, two phases will coexist: an
MgO-CaO solid solution and a liquid that is now richer in CaO («55 mol
% CaO) than the initial composition. Upon further cooling, the composition
of the liquid follows the liquidus line toward the eutectic composition,
whereas the composition of the precipitating solid follows the solidus line

2800

2600

o „ 2400

2 2200

i
£ 2000

1800

1600
0

MgO
20 40 60

Mol % CaO

CaO (

80 100

CaO

Figure 8.6 MgO-CaO phase diagram, which exhibits partial solid solubility of the end
members for each other and a single eutectic.
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toward the point of maximum solubility. Just above TE, that is, at TE + 6, a
solid solution of CaO in MgO and a liquid with the eutectic composition
XE w 65% CaO coexist.

Just below TE, however, the following reaction

L =>• S, + S2 (8.2)

known as a eutectic reaction, occurs, and the liquid disproportionates
into two phases of very different compositions123 — a calcia-rich and a
magnesia-rich solid solution.

It is important to note here that the solution of one compound in
another is unavoidable — a perfectly pure crystal is a thermodynamic impos-
sibility for the same reason that a defect-free crystal is impossible.124 The
only legitimate question therefore is, How much solubility is there? In
many binary systems, the regions of solid solution that are necessarily present
do not appear on the phase diagrams. For example, according to Fig. 8.7a or
8.8, one could conclude incorrectly that neither Na2O nor A12O3 dissolves in
SiO2. This is simply a reflection of the scale over which the results are plotted
— expanding the .Y axis will indicate the range of solubility that must be
present. Note that in many applications and processes, this is far from
being a purely academic question. For example, as noted in the previous
chapter, the electrical and electronic properties of a compound can be
dramatically altered by the addition of a few parts per million of impurities.
Optical properties and sintering kinetics are also strongly influenced by small
amounts of impurities. This is especially true when, as noted in Chap. 6, these
impurities tend to segregate at grain boundaries.

8.4.3 Partial Solid Solubility with Formation of Intermediate Compounds

One of the conditions for the existence of a wide solid solution domain is the
absence of a strong affinity of the end members for one another. That is not
always the case — in many instances, the two end members react to form
intermediate compounds. For instance, the compound AVB,O2 can be
formed by the reaction

.vAO1/Y + vBO,/,. =*• AVB,O2

where the free energy change for the reaction exceeds that for the simple
mixing of the two end members to form a solid solution. Under these

123 At the eutectic temperature, three phases coexist and there are no degrees of freedom left. In
other words, the coexistence of three phases in a two-component system can occur only at a
unique temperature, pressure, and composition.

124 The decrease in free energy due to the increase in entropy associated with the mixing process
is infinitely steep as the concentration of the solute goes to zero; that is. d AG/dn goes to — oc
as n —» 0 [see Eq. (6.6)].



Phase Equilibria 253

conditions, intermediate compounds appear in the phase diagram, which in
analogy to the end members either can be line compounds (i.e., solubility of
end members in the intermediate compound is small) or can have a wide
range of stoichiometry. Furthermore, these intermediate phases can melt
either congruently or incongruently.

(a) |j

30 40 50 60 70 80 90 100

3000

/ Spind and liquid. Corundum and liquid

(h) 2000
<u

Mole fraction A12O3

Figure 8.7 (a) Na2O - SiO2 phase diagram, (b) MgO — A12O3 phase diagram.
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Congruently melting intermediate phases

Na2O-2SiO2 and Na2O-SiO2, shown in Fig. 8.7a, are examples of line
compounds that melt congruently, i.e., without a change in composition.
Note that in this case the resulting phase diagram is simply split into a
series of smaller simple eutectic systems (e.g.. Fig. 8.70, for compositions
greater than 50 mol % silica).

Spinel, MgO-Al2O3, however, which also melts congruently and
splits the phase diagram into two simple eutectic systems (Fig. 8.7b), is not
a line compound but readily dissolves significant amounts of MgO. and
A12O3.

Incongruently melting intermediate phases

If the intermediate compound melts incongruently, i.e., the compound
dissociates before melting into a liquid and another solid, then the phase
diagram becomes slightly more complicated. A typical example of such a
system is the SiO2 - A12O3 system (Fig. 8.8) where mullite, 2SiO2 • 3A12O3.
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Figure 8.8 SiO2 - A12O3 phase diagram.125

125 I. Aksay and J. Pask, Science, 183:69 (1974). See also October issue of J. Amer. Cer. Soc..
74:2341 (1991), dedicated to the processing, structure and properties of mullite.
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Figure 8.9 Li2O — B2O3 phase diagram.

melts at« 1828°C, by the formation of a liquid containing «40 mol % A12O3

and "pure" alumina according to the reaction

S{ =* L + S2 (8,3)

This reaction is known as a peritectic reaction and is quite common in
ceramic systems. Other examples of incongruently melting ternary com-
pounds are 2Na2O-SiO2 (Fig. 8.7a) and 3Li2O-B2O3 (Fig. 8.9).

This brings up the topic to be considered in this section which is nothing
but a variation of the aforementioned case, and in which a ternary compound
will dissociate into two other solid phases upon either cooling or heating. For
example, according to Fig. 8.9, at about 700°C, 2Li2O • 5B2O3 will dissociate
into the 1 :2 and 1:3 compounds.

8.5 Ternary Systems

Ternary phase diagrams relate the phases to temperature in a three-
component system, and the four variables to be considered are temperature,
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pressure, and the concentration of two components (the composition of the
third is fixed by the other two). A graphical representation is possible if
the three components are represented by an equilateral triangle, where the
apexes of the triangle represent the pure components, and temperature on
a vertical axis as shown in Fig. 8.10a. The two-dimensional representation
of the same diagram is shown in Fig. 8.10c, where the intersection of two
surfaces is a line, the intersection of three surfaces is a point, and the
temperature is represented by isotherms. The boundary curves represent
equilibrium between two solids and the liquid, and the intersection of the
boundary curves represents four phases in equilibrium (three solid phases
and a liquid). This point is the lowest temperature at which a liquid
can exist and, in complete analogy to the binary case, is called the ternary
eutectic.

Figure 8.10 (a) Three-dimensional representation of a ternary phase diagram, (h)
Triangular grid for representing compositions in a three-component system, (c) Two-
dimensional representation of part (a) where boundary curves between two surfaces are
drawn as heavy lines and temperature is represented by a series of lines corresponding
to various isotherms.126 (d) Isothermal section of a ternary system that includes a ternary
AO • BO and a quaternary phase AO • 2MO • BO. The compatibility triangles are drawn
with solid lines.

To those familiar with topographical maps, height and temperature are analogous.
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The composition at any point is found by drawing lines parallel to the three
sides of the triangle. For example, the composition of point X in Fig. 8.106 is
40 mol % AO, 20mol % BO, and 40mol % MO, while that at point Y is
80mol% MO, 10 mol% AO, with a balance of BO. The temperature of
the liquidus surface is depicted by isothermal contours, as shown in
Fig. 8.10c.

Any ternary phase diagram that does not include a solid solubility
region will consist of a number of compatibility triangles, shown as solid
lines in Fig. 8.10d, with the apexes of the triangles representing the solid
phases that would be present at equilibrium. For example, if the starting
mixture is point X in Fig. 8.10d, then at equilibrium the phases present
will be MO, 2AO • MO, and AO • BO. Similarly, for an initial composition
at point Z, MO, BO, and the quaternary phase AO • 2BO • 2MO are the
equilibrium phases, and so forth. This does not mean that the composition
of any of the phases that appear or disappear during cooling has to remain
inside the triangle, but simply that at the end, any phases that are not
within the boundaries of the original triangle have to disappear.

Once the compatibility triangles are known, both the phases present at
equilibrium and their relative amounts can be determined. Refer once more
to Fig. 8.l0d. At equilibrium, composition X would comprise the phases
MO, 2AO • MO, and AO • BO in the following proportions:

Mol fraction MO =

Mol fraction of 2AO • MO =

Mol fraction of AO • BO =

/ -MO
Xk

k - 2AO • MO
Xh

h - AO • BO

Note that in going from a ternary to a binary representation, a dimen-
sion is lost; planes become lines and lines become points. Thus a quaternary
phase is a point, and the edges of the triangles represent the corresponding
binary phase diagrams (compare Fig. 8.10a and c).

8.6 Free-Energy Composition and Temperature Diagrams

The previous sections dealt with various types of phase diagrams and their
interpretations. What has been glossed over, however, is what determines
their shape. In principle, the answer is simple: the phase or combination of
phases for which the free energy of the system is lowest is by definition the
equilibrium state. However, to say that a phase transformation occurs
because it lowers the free energy of the system is a tautology, since it
would not be observed otherwise — thermodynamics forbids it. The more
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germane question, and one that is much more difficult to answer, asks, why
does any given phase have the lower free energy at any given temperature,
composition, or pressure? The difficulty lies in the fact that to answer the
questions, precise knowledge of all the subtle interactions between all the
atoms that make up the solid and their vibrational characteristics, etc., is
required. It is a many-body problem that is very sensitive to many variables.
the least of which is the nature of the interatomic potentials one chooses to
carry out the calculations.

The objective of this section is much less ambitious and can be formu-
lated as follows: If the free-energy function for all phases in a given system
were known as a function of temperature and composition, how could one
construct the corresponding phase diagram? In other words, what is the
relationship between free energies and phase diagrams? Two examples are
considered below: polymorphic transformation in unary systems and
complete solid solubility.

8.6.1 Polymorphic Transformations in Unary Systems

Congruent melting of a compound, or any of the polymorphic transfor-
mations discussed earlier, is a good example of this type of transformation.
To illustrate, consider the melting of a compound. The temperature
dependence of the free-energy functions for the liquid is

while that for the solid phase is

GT.S — HT_S - TSS

where H and S are the enthalpy and entropy of the solid and liquid phases,
respectively. The two functions are plotted in Fig. 9.1, assuming they are
linear functions of temperature, which is only valid as long as ( 1 ) the heat
capacities are not strong functions of temperature and (2) the temperature
range considered is not too large.

Griiq is steeper than GT s because the entropy content of the liquid is
larger (more disorder) than that of the solid. The salient point here is that
at the temperature above which the lines intersect, the liquid has the lower
energy and thus is the more stable phase, whereas below that temperature
the solid is. Not surprisingly, the intersection temperature is the melting
point of the solid.

8.6.2 Complete Solid Solutions

The free-energy versus composition diagram for a system that exhibits
complete solid solubility is shown in Fig. 8.11. The components of the
diagram are the two vertical axes that represent pure AO (left) and pure
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Figure 8.11 Free-energy versus composition diagram for an AO-BO mixture exhibiting
complete solid solubility at a temperature that is lower than the solidus line.

BO (right). The point labeled /J,°AO represents the molar free energy of forma-
tion AGform of AO from its elements, and similarly, uBO for BO. In this case
AO has a lower free energy of formation than BO. If, for simplicity's sake,
the solution is assumed to be ideal, that is, A//mix = 0, then the free energy
of mixing of AO and BO is given by

(8.4)

iix [seewhere X-, represents the mole fraction of i. The entropy of mixing
Eq. (5.11)] is given by

BO, (8.5)

Combining these two equations and plotting AGmix versus composition
yields the curve ^AO — M — ̂ o shown in Fig. 8.11.

Using the same arguments, a free-energy versus composition function
for the liquid solution can be determined. Superimposing the two functions
as a function of temperature results in the curves depicted in Fig. 8.12£ to d.
It is, in principle, from these types of curves that the corresponding phase
diagram shown in Fig. 8.12a can be plotted. At T} the free energy of the
liquid solution is lowest at all compositions (Fig. 8.12Z>) and is the only
phase that exists at that temperature. Conversely, at T3, the solid solution
is the most stable phase (Fig. 8.12<f). At some intermediate temperature
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Figure 8.12 Temperature versus composition phase diagram and corresponding free-
energy composition diagrams at various temperatures. In the two-phase region, a mixture
of the solid and liquid solution is the lowest-energy configuration.

T2, the free-energy versus composition curves have to intersect (Fig. 8.12c),
from which it is obvious that, as depicted in Fig. 8.12a,

• Between pure AO and point M, the lowest energy of the system is that of
the liquid solution.

• Between BO and N, the solid solution has the lowest energy.
• Between compositions M and N, the system's lowest energy state is given

by the common tangent construction. In other words, the system's lowest
free energy occurs when two phases (a solid phase and a liquid phase)
coexist.
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8.6.3 Stoichiometric and Nonstoichiometric Compounds Revisited

In Chap. 6, the notions of stoichiometry and nonstoichiometry were discussed
at some length, and it was noted that a nonstoichiometric compound was one
in which the composition range over which the compound was stable was not
negligible. In the context of this chapter, the pertinent question is, How does
one represent such a compound on a free-energy versus composition diagram?
To answer the question, consider Fig. 8.13, where a nonstoichiometric
compound A1/2 B1/2O is presumed to exist between two Stoichiometric
compounds, namely, A3/4B1/4O and A1/4B3/4O. The latter are drawn as
straight vertical lines, indicating that they exist only over a very narrow
composition range; i.e., they are Stoichiometric or line compounds. Note that
the two tangents to the nonstoichiometric phase from the adjacent phases
do not meet at a point, implying that there is a range of compositions over
which the nonstoichiometric phase has the lowest free energy and thus exists.

In comparing Figs. 8.11 and 8.13, the similarities between the non-
stoichiometric compound and solid solution free-energy versus composition
curves should be obvious. It follows that an instructive way to look at the
nonstoichiometric phase A^Bj^O is to consider it to be for XBO < 1/2 a
solid solution between A3/4B1/4O and Aj^B^O, and for A"BO > 1/2 a
solid solution between A1/4B3/4O and A^Bi^O. Note that for this to
occur, the cations in the nonstoichiometric phase must exist in more than
one oxidation state.

0

Stoichiometric
compound
AO \ Y

Stoichiometric
compound

/ BO

Nonstoichiometric
compound

Range of
stability

Figure 8.13 Free-energy versus composition curves of a nonstoichiometric compound
Ai/2Bi/2O that exists between two Stoichiometric or line compounds, namely, A3/4BJ/4O
a n d A I O .
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Experimental Details: Determining Phase Diagrams

Probably the simplest method to determine phase diagrams is to hold a carefully
prepared mixture of known composition isothermally at elevated temperatures
until equilibrium is achieved, quench the sample to room temperature rapidly
enough to prevent phase changes during cooling, and then examine the
specimen to determine the phases present. The latter is usually carried out by
using a combination of X-ray diffraction and microscopy techniques.

And while in principle the procedure seems straightforward enough, it is
a major problem encountered in all phase diagram determinations to ensure
that equilibrium has actually been achieved. The most extensive and up-to-
date set of phase diagrams for ceramists is published by the American
Ceramic Society.

8.7 Summary

Equilibrium between phases occurs at specific conditions of temperature
composition and pressure. Gibbs' phase rule provides the relationship
between the number of phases that exist at equilibrium, the degrees of
freedom available to the system, and the number of components making
up the system.

Phase diagrams are the roadmaps from which the number of phases, their
compositions, and their fractions can determined as a function of temperature.
In general, binary-phase diagrams can be characterized as exhibiting complete
or partial solid solubility between the end members. In case of the latter, they
will contain one or both of the following reactions depending on the species
present. The first is the eutectic reaction is which a liquid becomes saturated
with respect to the end members such that at the eutectic temperature two
solids precipitate out of the liquid simultaneously. The second reaction is
known as the peritectic reaction in which a solid dissociates into a liquid and
a second solid of a different composition at the peritectic temperature. The
eutectic and peritectic transformations also have their solid state analogues,
which are called eutectoid and peritectoid reactions, respectively.

Ternary-phase diagrams are roadmaps for three component systems,
where the major difference between them and binary-phase diagrams lies
in how the results are presented. In ternary diagrams, the apexes of an
equilateral triangle represent the compositions of the pure components,
and the temperature appears as contour lines.

In principle, were one to know the dependence of the free energy of each
phase as a function of temperature and composition, it would be possible to
predict the phase diagram. The number of phases present at any temperature
are simply the ones for which the total free energy of the system is at a
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minimum. Given that the free-energy versus composition information is,
more often than not, lacking it follows that to date most phase diagrams
are determined experimentally.

Problems

8.1. Which of the following transformations can be considered displacive
and which can be considered reconstructive? Explain.
(a) Melting
(/>) Crystallization
(c} The tetragonal-to-monoclinic transformation in zirconia

8.2. (a) Explain why complete solid solubility can occur between two
components of a substitutional solid solution but not an inter-
stitial solid solution.

(b) Can NaCl and CsCl form an extensive solid solution? Explain.
(r) What type of solid solutions would you expect to be more likely in

yttria? Magnesia? Explain.

8.3. The CaO-ZrO2 phase diagram is shown in Fig. 8.14. What range of
initial compositions can be used to manufacture toughened zirconia?
Explain. See Chap. 11.

U

<u
H

2500 -

2000 -

— CO) + CaZr4O9

CaZr4O9 + CaZrO 3

1500 -

1000

Mol % CaO

Figure 8.14 ZrO2-CaZrOj phase diagram.
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8.4. Starting with stoichiometric spinel, write the incorporation reactions
for both alumina and magnesia. Why do you think that spinel has
such a wide range of solubility for its end members as compared to,
say, Na2O. SiO2?

8.5. (a) Show geometrically that the range of nonstoichiometry of a
compound is related to the sharpness of the free-energy versus
composition diagram; i.e., show that as dG/dX approaches infi-
nity, one obtains a line compound.

(b) From a structural point of view, what factors do you think are
likely to determine dG/dXI Consider strain effects and defect
chemistry.
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Chapter 9

Prince Glass, Ceramic's son though crystal-clear
Is no wise crystalline. The fond Voyeur
And Narcissist alike devoutly peer
Into Disorder, the Disorderer
Being Covalent Bondings that prefer
Prolonged Viscosity and spread loose nets
Photons slip through. The average Polymer
Enjoys a Glassy state, but cools, forgets
To slump, and clouds in closely patterned Minuets.

John Updike, Dance of the Solids^

9.1 Introduction

From the time of its discovery, thousands of years ago (perhaps on a beach
somewhere in ancient Egypt after the campfire was put out) to this day,
glass has held a special fascination. Originally, the pleasure was purely
aesthetic — glasses, unlike gems and precious stones for which the colors
were predetermined by nature, could be fabricated in a multitude of shapes
and vivid, extraordinary colors. Today that aesthetic appeal is further
enhanced, scientifically speaking, by the challenge of trying to understand
their structures and properties.

Numerous X-ray diffraction studies of glasses have shown that while
glasses have short-range order, they clearly lack long-range order and can
therefore be classified as solids in which the atomic arrangement is more
characteristic of liquids. This observation suggests that if a liquid is cooled
rapidly enough such that the atoms do not have enough time to rearrange
themselves in a crystalline pattern before their motion is arrested, a glass is

1 J. Updike, Midpoint and other Poems, A. Knopf, Inc., New York, New York, 1969. Reprinted
with permission.
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formed. As a consequence of their structure, glasses exhibit many properties
that crystalline solids do not; most notably, glasses do not have unique
melting points but rather soften over a temperature range. Similarly, their
viscosity increases gradually as the temperature is lowered.

This chapter will focus on why glasses form, their structure, and the
properties that make them unique, such as their glass transition temperature
and viscosity. In Sec. 9.2 the question of how rapidly a melt would have to
be cooled to form a glass is addressed. Section 9.3 briefly describes glass struc-
ture. In Sec. 9.4, the focus is on trying to understand the origin of the glass
transition temperature and the temperature and composition dependence of
viscosity. Section 9.5 deals with another technologically important class of
materials, namely glass-ceramics, their processing, advantages, and properties.
Other properties such as mechanical, optical, and dielectric, that show simila-
rities to those of crystalline solids are dealt with in the appropriate chapters.

9.2 Glass Formation

Most liquids, when cooled from the melt, will, at a very well-defined tempera-
ture, namely, their melting point, abruptly solidify into crystalline solids.
There are some liquids, however, for which this is not the case; when
cooled, they form amorphous solids instead. Typically, the transformation
of a liquid to a crystalline solid occurs by the formation of nuclei and their
subsequent growth — two processes that require time. Consequently, if
the rate of removal of the thermal energy is faster than the time needed for
crystallization, the latter will not occur and a glass will form. It follows
that it is only by understanding the nucleation and growth kinetics that the
critical question concerning glass formation, namely, how fast a melt must
be cooled to result in a glass, can be answered.

9.2.1 Nucleation

The two main mechanisms by which a liquid crystallizes are homogeneous
and heterogeneous nucleation. Homogeneous nucleation refers to nucleation
that occurs without the benefit of preexisting heterogeneities. It is considered
first and in some detail because of its simplicity. Heterogeneous nucleation
occurs at heterogeneities in the melt such as container walls, insoluble inclu-
sions, and free surfaces. And even though the vast majority of nucleation
occurs heterogeneously, it is not as well understood or amenable to analysis
as homogeneous nucleation, a fact reflected in the following discussion.

Homogeneous nucleation

Consider the crystallization of a melt with a freezing point Tm. At Tn, the
free-energy change per mole AGf associated with the solid-to-liquid
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T_ Tm Temperature
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Figure 9.1 Schematic of free-energy changes as temperature is lowered below the
equilibrium temperature Tm.

transformation is zero, and

- A///
./' ~ ~T

1 m

where A///- and AS1/- are the enthalpy and entropy of fusion per unit mole,
respectively.

For temperatures T < Tm, the solid phase with its lower free energy will
be more stable and will tend to form. The free-energy change A(7t, for the
transformation is the difference in energy between the undercooled liquid
and the solid (Fig. 9.1). Assuming that for small undercooling AHf and
ASV remain essentially unchanged, A<7.(; at T is given by

A(7r - AHf -
T

ATI
T~\1 m J

(9.1)

which implies that the driving force increases linearly with increasing under-
cooling, AT = Tm — T.

The energy changes that have to be considered during homogeneous
nucleation include

• The volume or bulk free energy released as a result of the liquid-to-solid
transformation at T < Tm

• The surface energy required to form the new solid surfaces
• The strain energy associated with any volume changes resulting from the

transformation

If one assumes spherical nuclei with a solid-liquid interfacial energy
between the growing nucleus and the melt 7sl and radius r, and if one ignores
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Surface energy term

Volume term

Small undercoolin

Large undercooling

(a) (b)

Figure 9.2 (a) Free energy versus embryo radius for a given T < Tm. Note that AGexc

goes through a maximum at r = rc. (b) Effect of undercooling on AGexc. With larger
undercooling both AG( and rc decrease.

strain effects, the energy changes that accompany their formation are

Volume free energy = - - nr3 —- = - - Trr3 —— — (9.2)
3 ' m * V m L /»J

Surface energy = 47ir27sl (9.3)

where Vm is the molar volume of the crystal phase. The sum of Eqs. (9.2) and
(9.3) represents the excess free-energy change (denoted by AGexc) resulting
from the formation of a nucleus, or

AGexc -
A7

'»

(9.4)

The functional dependence of A(/exc on r is plotted in Fig. 9.2. Since the
energy needed for the creation of new surfaces (top curve in Fig. 9.2)
scales with r2 whereas the volume energy term scales with r\ this function
clearly goes through a maximum at a critical radius rc, which implies that
the formation of small clusters with r < rc locally increases the free energy
of the system.127 Differentiating Eq. (9.4), equating to zero, and solving for
rc gives

r =' c - T/Tm]
(9.5)

127 Equation (9.4) represents the local increase in free energy due to the formation of a nucleus,
and not the total free energy of the system. The latter must include the configurational
entropy of mixing of n nuclei in the liquid. When that term is included, the total free
energy of the system decreases as it must (see App. 9A).
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which, when substituted back into Eq. (9.4), yields the height of the energy
barrier A(7£. (Fig. 9.2a)

AGC= (9.6)

Small clusters with r < rc, are called embryos and are more likely to
redissolve than grow. Occasionally, however, an embryo becomes large
enough (r w rc) and is then called a nucleus with an equal probability of
growing or decaying. It is important to note that both AGC and rc are
strong functions of undercooling as shown in Fig. 9.2b.

By minimizing the free energy of a system containing Nv total number of
molecules or formula units of nucleating phase per unit volume, it can be
shown (see App. 9A) that the metastable equilibrium concentration (per
unit volume) of nuclei A^q is related to AG> by

(9.7)

The rate of nucleation per unit volume (number of nuclei per cubic meter per
second) can be expressed by

, = (9.8)

where v is the frequency of successful atom jumps across the nucleus liquid
interface or the rate at which atoms are added onto the critical nucleus,
given by

(9.9)

where t>Q is the vibrational frequency of an atom and AG>, is the free energy
of activation needed for an atom to jump across the nucleus-liquid inter-
face128 (Fig. 9.3). Combining Eqs. (9.7)-(9.9) yields the final expression for
the rate of homogeneous nucleation

kT
(9.10)

The first exponential term is sometimes referred to as the kinetic barrier
to nucleation, whereas the second exponential term is known as the thermo-
dynamic barrier to nucleation. And although it is not immediately obvious

128 The implicit assumption here is that every atom that makes the jump sticks to the interface
and contributes to the growth of the nucleus. In other words, a sticking coefficient of 1 is
assumed.
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Growing interface-^

Solid

Figure 9.3 Schematic of growing nucleus or growing crystal. The atoms or molecules that
result in growth of the crystal or nucleus jump a distance A across an energy barrier A(J",
down the chemical potential gradient A<7,./A to the growing interface.

from Eq. (9.10), 7r goes through a maximum as a function of undercooling
for the following reason: Increased undercooling reduces both rc and AG(

(Fig. 9.26), which in turn strongly enhances the nucleation rate but
simultaneously severely reduces atomic mobility and the rate of attachment
of atoms to the growing embryo (see Prob. 9.20). The net effect is that a
maximum is expected and is well established experimentally (see Fig. 9.4a).

Experimentally, it is much easier to measure the viscosity r\ of an
undercooled liquid than it is to measure v. It is therefore useful to relate
the nucleation rate to the viscosity, which is done as follows: Given the
similarity between the elementary jump shown in Fig. 9.3 and a diffusional
jump, the two can be assumed to be related by

Z)iiq = const. t>\2 = const. VQ>C exp ( - ——- J (9.11)
V kT J

where D\iq is the diffusion coefficient of the "formula units" in the liquid and
A is the distance advanced by the growing interface (Fig. 9.3) in a unit kinetic
process usually taken as that of a molecular or formula unit diameter.
Usually A is taken to equal (VnjNfa}1^, where Vm is the molar volume of
the crystallizing phase. If it is further assumed that Z)liq is related to the
viscosity of the melt by the Stokes-Einstein relationship, namely.
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Figure 9.4 (a) Steady state nucleation rate as a function of temperature for a glass close to
the Li2O • 2SiO2 composition, (b) Reflection optical micrograph of a BaO • 2SiO2 glass
after heat treatment.129

P. James, Chap. 3 in Glasses and Glass-Ceramics, M. H. Lewis, ed., Chapman & Hall, New
York, 1989. Reprinted with permission.
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then by combining Eqs. (9.10) to (9.12), one obtains

^NvkT .
/„ = (const)-—j-exp -

37rAJT7
(9.13)

With both the viscosity (see below) and the exponential term in Eq. (9.13)
increasing at differing rates with decreasing temperature, it should once
again be apparent why /,. goes through a maximum as a function of under-
cooling.

In deriving Eqs. (9.10) and (9.13), the following assumptions were
made:

• Nucleation is homogeneous. This is very seldom the case. As discussed
below, crystal nucleation occurs almost always heterogeneously on
impurity particles or container walls at relatively low undercoolings.

• The rate given in Eq. (9.7) is a steady-state rate. In other words, density
fluctuations develop and maintain an equilibrium distribution of sub-
critically sized embryos. As nucleation drains offcritically sized embryos,
new ones are produced at a rate sufficiently fast to maintain the
equilibrium distribution.

• Nucleation occurs without a change in composition. If a change in
composition accompanies the formation of a nucleus, the expression
for the energy gained [i.e., Eq. (9.2)] changes and is no longer simply
AHf but must now include the free-energy change associated with the
formation of the new phase(s) (see Chap. 8).

• Nucleation occurs without a change in volume. In other words, the strain
energy was ignored. If there is a volume change and the associated strain
energy is known, it is simply added to Eq. (9.3).

WORKED EXAMPLE 9.1

(a) If the enthalpy of fusion of a glass-forming liquid is 53 kJ/mol. its molar
volume is 60 cm3/mol, the solid liquid interface energy is 150 mJ/m:. and its
melting point is 1034°C, calculate the size of the critical radius, the height of
the barrier to nucleation, and the steady-state metastable equilibrium concentra-
tion of nuclei at an undercooling of 500°C. (b) Repeat part (a) for a solid-liquid
interface energy of 130 mJ/m2.

Answer

(a) Converting to SI units and applying Eq. (9.5), one obtains

2(150 x 10"3)(60 x 10"6)
&Hf(\ - T/Tm] 53.000(0.38)
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Given that the Si-Si distance in silicates is on the order of 3 x l(T10m, this result
is not unreasonable — the critical radius would appear to be made of a few SiC>4
tetrahedra. The corresponding AG(. [(Eq. (9.6)] is

167r73,K2, 16(3.14)(150 x 10~3)3(60 x 1(T6)2

AG( = -
- T/Tm}2 3(53,000)2(0.38)2

«5x 10~I9J

With 1 mol as a basis, Nv is simply NAv/Vm, or 1 x 1022 molecular units per
cubic centimeter; it follows [Eq. (9.7)] that

"»q = *"[eXP ('IF)] = ' X 1022eXP (-USxIo'-'CsO?)

= 317 nuclei/cm3

(b) Repeating the calculation while using the slightly lower interface energy of
130mJ/m2 yields A^q « 1.8 x 109, which is more than 5 orders of magnitude
higher than that calculated in part (a)! This simple calculation makes amply
clear the paramount importance of the surface energy term during nucleation.
It is worth mentioning at this point that surface energies, in general, and
solid-liquid interface energies, in particular, are fiendishly difficult to measure
accurately and repeatedly.

Heterogeneous nucleation

Technologically, the vast majority of nucleation occurs heterogeneously at
defects such as dislocations, interfaces, pores, grain boundaries, and
especially free surfaces. These sites present preferred nucleation sites for
three reasons. First, they are regions of higher free energy, and that excess
energy becomes available to the system upon nucleation. Second, and
more importantly, the heterogeneities tend to reduce 7, which allows
nucleation to occur at relatively small undercoolings where homogeneous
nucleation is unlikely. Third, the presence of pores or free surfaces will
reduce any strain energy contribution that may suppress the nucleation or
growth process.

It can be shown that the steady-state heterogeneous rate of nucleation of
a supercooled liquid on a flat substrate is given by130

AC?* M T / AG,exp -—- exp
kT J\ L V kT

where Ns is the number of atoms or formula units of the liquid in contact
with the substrate per unit area, and A(7het = AC?,.(2 - 3 cos # +cos3 0)/4,

130 For more details, see J. W. Cahn, Acta Met., 4:449 (1956) and 5:168 (1957). See also J. W.
Christian, The Theory of Transformations in Metals and Alloys, 2d ed., Pergamon Press,
London, 1975.
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where 9 is the contact angle between the crystalline nucleus and the substrate
(see Chap. 10). Note that in the limit of a complete wetting, that is, 0 = 0, the
thermodynamic barrier to nucleation vanishes.

Experimental Details: Measuring Nucleation Rates

As noted above, the overwhelming majority of glasses usually nucleate
heterogeneously at surfaces; homogeneous or volume nucleation is rarely
observed. There are a few glass systems, however, which nucleate homo-
geneously, and they have been studied in order to test the validity of
Eq. (9.10) or (9.13). Of these, probably lithium disilicate, Li2O-2SiO2. has
been one of the most intensively studied. In a typical nucleation experiment,
the glass is heat-treated to a certain temperature for a given time, cooled, and
sectioned. The number of nuclei is then counted by using optical or electron
microscopy, and, assuming steady-state nucleation, the nucleation rate is
calculated.131 When the nucleation rate is plotted versus temperature, the
typical bell-shaped curve (Fig. 9.4«) predicted from nucleation theory is
obtained. A typical reflection optical micrograph of a glass after heat treat-
ment to induce nucleation is shown in Fig. 9.4b.

It should be pointed out, however, that while Eq. (9.13) correctly
represents the temperature dependence of the nucleation rate, the measured
rates are 20 orders of magnitude larger than predicted! The reason for this
huge discrepancy is not entirely clear, but it has been explained by allowing
the surface energy term to be weakly temperature-dependent.132

9.2.2 Crystal Growth

Once the nuclei are formed, they will tend to grow until they start to impinge
upon each other. The growth of the crystals depends on the nature of the
growing interface which has been related to the entropy of fusion.133 It can
be shown that for crystallization processes in which the entropy change is
small, that is, AS1/ < 27?, the interface will be rough and the growth rate
will be more or less isotropic. In contrast, for large entropy changes
ASy > 4R the most closely packed faces should be smooth and the less
closely packed faces should be rough, resulting in large-growth-rate

131 Sometimes if the size of the nuclei that form is too small to observe, a second heat treatment
at a higher temperature is carried out to grow the nuclei to an observable size. Implicit in this
latter approach is that the nuclei formed at the lower temperatures do not dissolve during the
second heat treatment.

132 P. James, Chap. 3 in Glasses and Glass-Ceramics. M. H. Lewis, ed.. Chapman and Hall. New
York, 1989.

133 K. A. Jackson in Progress in Solid State Chemistry, vol. 3. Pergamon Press. New York. 1967.
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anisotropies. Based on these notions, various models of crystal growth have
been developed, most notably:

Standard growth, ASy < 2R

In this model, the interface is assumed to be rough on the atomic scale, and
a sizable fraction of the interface sites are available for growth to take place.
Under these circumstances, the rate of growth is solely determined by the rate
of atoms jumping across the interface (that is, the assumption is the process is
controlled by the surface reaction rate and not diffusion). Using an analysis
that is almost identical to the one carried out in Sec. 7.2.3, where the net rate
of atom movement down a chemical potential gradient was shown to be
[Eq. (7.26)]

where 5 was defined by Eq. (7.23), it is possible to derive an expression for
the growth rate as follows. Comparing Figs. 7.5 and 9.3, the equivalence
of S and AC?.,, is obvious. Hence, the growth rate u of the interface is given by

M = Al/net = Az/0< CXp - (9.14)

where AG.t, is given by Eq. (9.1), It is left as an exercise to the reader to show
that in terms of viscosity, this equation can be rewritten as

u i~ (c ^r

3-7TT/A2

Ar \i
; T^TT?;] (9.15)

when the growth is occurring at temperature T, with an undercooling of AT.
This is an important result because it predicts that the growth rate, like

the nucleation rate, should also go through a maximum as a function of
undercooling. The reason, once more, is that with increasing undercooling,
the driving force for growth AGV increases, while the atomic mobility,
expressed by r\, decreases exponentially with decreasing temperature. It is
important to note that the temperature at which the maximum growth rate
occurs is usually different from that at which the nucleation rate peaks.

For small AT values, a linear relation exists between the growth rate
and undercooling (see Prob. 9.2b}. Conversely, for large undercooling the
limiting growth rate

kT Dr
u = (const) T = (const) —^- (9.16)

37T77A" A

is predicted. Once a stable nucleus has formed, it will grow until it encounters
other crystals or until the molecular mobility is sufficiently reduced that
further growth is cut off.



276 Fundamentals of Ceramics

Surface nucleation growth, AS/ > 4R

In the normal growth model, the assumption is all the atoms that arrive at the
growing interface can be incorporated in the growing crystal. This will occur
only when the interface is rough on an atomic scale. If, however, the interface
is smooth, growth will take place only at preferred sites such as ledges or
steps. In other words, growth will occur by the spreading of a monolayer
across the surface.

Screw dislocation growth

Here the interface is viewed as being smooth but imperfect on an atomic
scale. Growth is assumed to occur at step sites provided by screw dislocations
intersecting the interface. The growth rate is given by

u=fg\v\ - e x p - A t y - - (9.17)

where fg is the fraction of preferred growth sites. It can shown that134 the
fraction of such sites is related to the undercooling by

f ~ —
Jg

Hence in this model, at small undercoolings, the growth rate is expected
to be proportional to AT2.

WORKED EXAMPLE 9.2

Empirically, it has been determined that for a given oxide glass, the constant in
Eq. (9.15) is 10. Furthermore, the temperature dependence of the viscosity of
that same glass is measured to be:

T, C 1400 1300 1200 1000
77, Pa-s 10 250 1000 104

and its melting point is 1300°C. The entropy effusion is 8 J/(mol • K). Assume a
concentration of nucleation sites to be a constant equal to 106cnrT3, for how
long can a 1 cm3 sample be held at 1000°C without sensible bulk crystallization?
Assume a molar volume of % 10cm3/mol. State all assumptions.

Answer

Since the number of nuclei is fixed and constant, the growth rate u of the nuclei
will determine the extent of crystallization. Once u is calculated, the size of the

W. B. Hillig and D. Turnbull, J. Chem. Phys.. 24: 914 (1956).
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nuclei after a given time can easily be calculated. By rewriting Eq. (9.15) in terms
of ASy

AS/ATN
RT~)

the jump distance can be approximated by

M(6.021x0lo4/3=2-55xl°'">Cm

Inserting the appropriate values gives a linear growth rate of

10(1.38 x 1Q"23)(1273) r / 8 x 300 V
"~3(3.14)(104)(2.55x l0"10)2 [ ~ C X P V ~ 8.314 x 1273,1.

= 5.7x 10"6m/s

Take 1 cm3 as a basis and assume that the nuclei would be detected when
they reached a volume fraction of, say, 10" , that is, when their volume
= 10"4 x 1 = 10~~4cm3. Further assume that the nuclei grow as spheres, with a
volume (4/3) Tir3. Solving for r shows that the nuclei would be detected when
they reached a radius of w 3um. Based on their growth rate, the time to reach
that size would be (3 x 10~6)/(5.7 x 10"6) « 0.5s.

9.2.3 Kinetics of Glass Formation

At this point, the fundamental question, posed at the outset of this section,
namely, How fast must a melt be cooled to avoid the formation of a
detectable volume fraction of the crystallized phase? can be addressed some-
what more quantitatively. The first step entails the construction of a time-
temperature-transformation (TTT) curve for a given system. Such a curve
defines the time required, at any temperature, for a given volume fraction
to crystallize. Here the procedure, not unlike that used to solve Worked
Example 9.2, is generalized.

If at any time t, in a total volume V, the nucleation rate is /„, it follows
that the number Nt of new particles formed in time interval dr is

For a time-independent constant growth rate u and assuming isotropic
growth (i.e., spheres), the radius of the sphere after time / will be

u(t - r] for t > T

,0 for t < T

and its volume will be
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where r is the time at which a given nucleus appears. Hence the total volume
transformed after time /, denoted by V,, is given by the number of nuclei at
time t multiplied by their volume at that time, or

- r3V, = VTN, = \ VT /,, Vdr = P ' Vlv (\ ™?\
J J T =0 V3 /

Upon integration and rearranging, this gives

4

An implicit assumption made in deriving this expression is that the trans-
formed regions do not interfere or impinge on one another. In other
words, this expression is valid only for the initial stages of the transforma-
tion. A more exact and general analysis which takes impingement into
account, but which will not be derived here, yields

(9.19)

This is known as the Johnson-Mehl-Avrami equation.1*5 This equation
reduces to Eq. (9.18) at small values of time. These assumptions are made
in deriving this equation:

1. Both the nucleation rate and the growth rate follow Boltzmann distribu-
tions.

2. The growth rate is isotropic and linear (i.e., surface reaction rate
controlled) and three-dimensional with time. If the growth were
diffusion-limited, the growth rate would be not linear with time but
parabolic.

3. Nucleation rate is random and continuous.

Given the nucleation and growth rates at any given temperature, the
fraction crystallized can be calculated as a function of time from Eq. (9.19).
Repeating the process for other temperatures and joining the loci of points
having the same volume fraction transformed yield the familiar TTT
diagram, shown schematically in Fig. 9.5. Once constructed, an estimate of
the critical cooling rate (CCR) is given by

T — T

135 For an excellent derivation, see K. Tu, J. Mayer, and L. Feldman. Electronic Thin Film
Science for Electrical and Materials Engineers; Macmillan, New York. 1992. Chap. 10.
For the original references, see W. L. Johnson and R. F. Mehl. Trans. A1ME. 135:416
(1936), and M. Avrami. J. Chem. Phys.. 7:1103 (1937). 8:221 (1940). 9:177 (1941).
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Figure 9.5 Isothermal TTT diagram.

where rL is the temperature of the melt and Tn and tn are the temperature
and time corresponding to the nose of the TTT curve, respectively (see
Fig, 9.5). The critical cooling rates in degrees Celsius per second for a
number of silicate glasses are shown in Fig. 9.6, where the salient feature is
the strong (note the log scale on y axis) functionality of the CCR on glass
composition.
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Mol % M2O —

70 80

Figure 9.6 Critical cooling rates as a function of glass composition.136

136 A. C. Havermans, H. N. Stein, and J. M. Stevels, /. Non-Cryst. Solids, 5:66-69 (1970).
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9.2.4 Criteria for Glass Formation

The question of glass formation can now be restated: why do some liquids
form glasses while others do not? Based on the foregoing discussion, for a
glass to form, the following conditions must exist:

1 . A low nucleation rate. This can be accomplished by having either a small
AS1/- or a large crystal/liquid interfacial energy. The lower ASy and/or
the higher 7s], the higher AG, and consequently the more difficult the
nucleation.

2. High viscosity r]n, at or near the melting point. This ensures that the
growth rate will be small.

3. The absence of nucleating heterogeneities that can act as nucleating
agents, the presence of which can reduce the size of the critical nucleus
and greatly enhance the nucleation kinetics.

Based on items 1 and 2 above, a useful criterion for the formation of a
glass is the ratio

The smaller the product, the more likely a melt will form a glass, and vice
versa. Table 9. 1 shows that to be the case, indeed. Further inspection reveals
that atom mobility as reflected in rjm at the melting point is by far the
dominant factor. It follows that a melt must have a high viscosity at its liquidus
temperature or melting point if it is to form a glass.

9.3 Glass Structure

In principle, if the requisite data were available, the TTT diagram for any
material could be generated, and the CCR that would be required to keep

Table 9.1 Summary of glass-forming ability of various compounds

Compound

B2O3

SiO2

Na2Si2O5

Na2SiO3

GeO,
P205

NaAlSi3O8

CaSiO,
NaCl

Melting
point CC

450
1423
874

1088
1116
569

1544
800

AS,
J/(mol • K)

33.2
4.6

31.0
38.5
10.8

31.0
25.9

1m-

Pa-s

5000
2.3 x 105

200
20

71,428

3.2 x 105

1
2 x 10~3

AS, x \/T)m

0.0066
2.0 x 10~5

0.155
1.9

2 x 10"4

31.0
1.3 x 104

Comments

Excellent glass former
Excellent glass former
Good glass former
Poor glass former
Excellent glass former
Glass former
Glass former
Difficult to form glass
Not a glass former
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it from crystallizing could be calculated. In other words, if cooled rapidly
enough, any liquid will form a glass, and indeed glasses have been formed
from ionic, organic, and metallic melts. What is of interest here, however,
is the so-called inorganic glasses formed from covalently bonded, and for
the most part silicate-based, oxide melts. These glass-forming oxides are
characterized by having a continuous three-dimensional network of linked
polyhedra and are known as network formers. They include silica, boron
oxide (B2O3), phosphorous pentoxide (P2O5), and germania (GeO2).
Commercially, silicate-based glasses are by far the most important and the
most studied and consequently are the only ones discussed here.137

Since glasses possess only short-range order, they cannot be as elegantly
and succinctly described as crystalline solids — e.g., there are no unit cells.
The best way to describe a glass is to describe the building block that
possesses the short-range order (i.e., the coordination number of each
atom) and then how these blocks are put together. The simplest of the
silicates is vitreous silica (SiO2), and understanding its structure is funda-
mental to understanding the structure of other silicates.

Vitreous silica SiO2

The basic building block for all crystalline silicates is the SiO4 tetrahedron
(see Chap. 3). In the case of quartz, every silica tetrahedron is attached to
four other tetrahedra, and a three-dimensional periodic network results
(see top of Table 3.4). The structure of vitreous silica is very similar to that
of quartz, except that the network lacks symmetry or long-range periodicity.
This so-called random network model, first proposed by Zachariasen,138 is
generally accepted as the best description of the structure of vitreous or
fused silica and is shown schematically in two-dimensions in Fig. \.\b.
Quantitatively it has been shown that the Si-O-Si bond angle in vitreous
silica while centered on 144°, which is the angle for quartz (see Prob. 9.5),
has a distribution of roughly ±10 percent. In other words, most of the
Si-O-Si bond angles fall between 130° and 160°, which implies the structure
of fused silica is quite uniform at a short range, but that the order does not
persist beyond several layers of tetrahedra.

Multicomponent silicates

In Sec. 3.6, the formation of nonbridging oxygens upon the addition of alkali
or alkaline earth oxides to silicate melts was discussed in some detail.
Because, as discussed shortly, these oxides usually strongly modify the
properties of a glass, they are referred to as network modifiers. The resulting

13 See Kingery et al. for descriptions of the structure of other glasses or most of the references
listed at the end of this chapter.

138 W. H. Zachariasen, /. Amer. Chem. Soc., 54:3841 (1932).
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Figure 9.7 Two-dimensional schematic diagram of the silicate glass structure in the
presence of modifier ions such as Na+ and the formation of nonbridging oxygens.

structure is not unlike that of pure silica, except that now the continuous
three-dimensional network is broken up due to the presence of nonbridging
oxygens, as shown in Fig. 9.7.

Table 9.2 lists typical compositions of some of the more common
commercial glasses and their softening points. Most of these glasses are
predominantly composed of oxygen and silicon. Alumina is interesting in
that it behaves sometimes as a glass network and sometimes as a glass
modifier; either the aluminum ion can substitute for a Si ion and become
part of the network, or it can form nonbridging oxygens and thus act as a
modifier (see Sec. 3.6). Which role the alumina plays is usually a complex
function of glass chemistry.

It should be pointed out that whereas this network model of silicate
structures was very useful during the earlier stages of development of the

Table 9.2 Approximate compositions (wt %) and softening temperatures of some common
glasses

Network formers

Fused silica
Vycor
Pyrex
Soda silica
Lead silica
Window
E glass

SiO2 B2O3

99.8
96.0 3
81.0 13
72.0
63.0
72.0 1
55.0 7

A12O3

1
2
1
1
2

15

Network modifiers

Na2O

3.5
20.0
8.0

15.0
1.0

K2O

0.5

6.0
1.0
1.0

MgO

0.1

3.0

4.0

CaO PbO

0.1

4.0
1.0 21
5.0

21.0

Softening
- s~~-temp. C

1600

830

700
830
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theory of glasses, it does not fully explain several experimental facts. For
example, it has been observed that significant structural changes occur at
about l0 mol % alkali, and it is well documented that the molar volume of
silicate melts remains fairly constant over a wide range of alkali concentra-
tions — both observations at odds with the simple network model described
above. As a result, other models have been suggested such as the discrete
polyanions and "iceberg" models which seem to better fit the experimental
results. In the discrete polyanion model, it is assumed that between 0 and
0.1 mol fraction alkali oxide bonds are broken by the formation of non-
bridging oxygens, whereas between 0.1 and 0.33 mol fraction M2O, discrete
six-member rings (Si6O15)

6~ exist. Between 0.33 and 0.5, a mixture of
(Si6O15)6~ and (Si3O9)

6~~ or (Si4O12)8~ and (Si6O20)
8~ rings are presumed

to exist.
A further complication, which is beyond the scope of this book but is

mentioned for the sake of completeness, is the fact that in the composition
range between 12 and 33 percent, M2O and SiO2 are not completely miscible
in the liquid state.

9.4 Glass Properties

The noncrystalline nature of glasses endows them with certain characteristics
unique to them as compared to their crystalline counterparts. Once formed,
the changes that occur in a glass upon further cooling are quite subtle and
different from those that occur during other phase transitions such as
solidification or crystallization. The change is not from disorder to order,
but rather from disorder to disorder with less empty space. In this section,
the implication of this statement on glass properties is discussed.

9.4.1 The Glass Transition Temperature

The temperature dependencies of several properties of crystalline solids and
glasses are compared schematically in Fig. 9.8. Typical crystalline solids will
normally crystallize at their melting point, with an abrupt and significant
decrease in the specific volume and configuration entropy (Fig. 9.8a and
b}. The changes in these properties for glasses, however, are more gradual,
and there are no abrupt changes at the melting point, but rather the
properties follow the liquid line up to a temperature where the slope of
the specific volume or entropy versus temperature curve is markedly decreased.
The point at which the break in slope occurs is known as the glass transition
temperature and denotes the temperature at which a glass-forming liquid trans-
forms from a rubbery, soft plastic state to a rigid, brittle, glassy state. In other
words, the temperature at which a supercooled liquid becomes a glass, i.e., a
rigid, amorphous body, is known as the glass transition temperature or Tg.
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Figure 9.8 Schematic of property changes observed as a glass is cooled through Tg. (a)
Specific volume; (b) configurational entropy; (c) heat capacity; and (d) thermal expansion
coefficient.

In the range between the melting and glass transition temperatures, the
material is usually referred to as a supercooled liquid.

Thermodynamic considerations

Given that (see Fig. 9.8) at the glass transition temperature, the specific volume
Vs and entropy S are continuous, whereas the thermal expansivity a and heat
capacity cp are discontinuous, at first glance it is not unreasonable to character-
ize the transformation occurring at Tg as a second-order phase transformation.
After all, recall that, by definition, second-order phase transitions require that
the properties that depend on the first derivative of the free energy G such as

v -~-f*2\ and 5 = — I -r—dp
be continuous at the transformation temperature, but that the ones that
depend on the second derivative of (?, such as

and cn = [ —-I = -a V \dTjp V \3PdT dT)

be discontinuous.
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What is occurring at 7^, however, is more complex, because it is
experimentally well established that Tg is a function of the cooling rate, as
shown in Fig. 9.8a; the transition temperature Tg shifts to lower temperatures
with decreasing cooling rates. This implies that with more time for the atoms
to rearrange, a denser glass will result and strongly suggests that Tg is not a
thermodynamic quantity, but rather a kinetic one.

Further evidence for this conclusion includes the changes in a and cp.
The abrupt decrease in these properties at Tg has to be related to a sudden
inability of some molecular degrees of freedom to contribute to these thermo-
dynamic quantities. It is this "freezing out" of molecular degrees of freedom
that is responsible for the observed behavior. As discussed below, the
viscosity of a glass at Tg is quite large and on the order of 1015Pa-s,
which in turn implies that atomic mobility is quite low. It follows that if
the time scale of the experiment is smaller than the average time for an
atom to move, then that atom will not contribute to the property being
measured and, for all practical purposes, the glass transition would appear
as a relatively abrupt phenomenon, as observed.

Interestingly enough, if a glass-forming liquid were cooled slowly
enough (at several times the age of the universe!) such that it follows the
dotted line shown in Fig. 9.8b at a temperature rKAU the entropy of the
supercooled liquid would become lower than that of the crystal — a clearly
untenable situation first pointed out by Kauzmann and referred to since as
the Kauzmann paradox. This paradox is discussed in greater detail in
Sec. 9.4.2.

Effect of composition on Tg

In a very real sense, Tg is a measure of the rigidity of the glass network; in
general, the addition of network modifiers tends to reduce Tg, while the
addition of network formers increases it. This observation is so universal
that experimentally one of the techniques of determining whether an oxide
goes into the network or forms nonbridging oxygen is to follow the effect
of its addition on Tg.

Experimental Details: Measuring The Glass Transition
Temperature

Temperature Tg can be determined by measuring any of the properties shown
in Fig. 9.8 as a function of the cooling rate. The temperature at which the
property changes slope whether continuously or abruptly is defined as the
glass transition temperature.

One of the more common techniques used to measure Tg employs
differential thermal analysis (DTA) (see Experimental Details in Chap. 4).
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Figure 9.9 Typical DTA traces for the heating of a glass that (a) does not crystallize (note
lack of endotherm at melting temperature) and (b) crystallizes somewhere between 7"e and
the melting point.

Upon heating of a glass, Tg, being a weak endothermic process, appears as a
broad anomaly in the baseline of the DTA curves, as shown in Fig. 9.9a. If a
glass does not crystallize upon further heating, then this anomaly is the only
signature of the glass. If, however, the glass crystallizes at some temperature
between Tg and the melting point, then two extra peaks emerge (Fig. 9.9b):
the first is due to the crystallization or devitrification of the supercooled
liquid and the second to the melting of these same crystals.

9.4.2 Viscosity

The viscosity of a glass and its temperature dependence are very important
from a manufacturing point of view because they determine the melting
conditions, the time and temperature required to homogenize a melt, the
working and annealing temperatures, the rate of devitrification and thus
the critical cooling rate, as well as the temperature of annealing of residual
stresses.

Viscosity rj is the ratio of the applied shear stress to the rate of flow, v, of
a liquid. If a liquid contained between two parallel plates of area A and a
distance d apart is subjected to a shear force F. then

1 = £M (9.20)Av E

where I is the strain rate (s~') and rv the applied shear stress. The units of
viscosity are pascal-seconds.

As noted above, upon solidification, the viscosity of a crystalline solid
will vary abruptly, and over an extremely narrow temperature range,
change by orders of magnitude. The viscosities of glass-forming liquids,
however, change in a more gradual fashion. A schematic of the effect of
temperature on the viscosity of a glass-forming liquid is shown in Fig. 9.10.
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Figure 9.10 Functional dependence of viscosity on temperature. Note the log scale on the

where in addition to TB, four other temperatures are of practical importance.
» r c

The strain point is defined as the temperature at which r/ — 10 ' Pa-s. At
this temperature, any internal strain is reduced to an acceptable level
within 4 h.139 The annealing point is the temperature at which the viscosity
is 10 l4Pa-s and any internal strains are reduced sufficiently within about
15 min. The softening point is the temperature at which the viscosity is
108'6 Pa • s. At that temperature, a glass article elongates at roughly 3 percent
per second. Finally the working point is the temperature at which the viscosity
is 105 Pa • s, and glass can be readily shaped, formed, or sealed, etc.

Effect of temperature on viscosity

The functional dependence of viscosity on temperature has been measured in
a large number of glass-forming liquids, and phenomenologically it has been

139 For the sake of comparison, water, motor oil no. 10, chocolate syrup, and caulking paste
have viscosities of 0.001, 0.5, 50, and >1000 Pa-s, respectively. In cgs units, viscosity is
given in poise (abbreviated P). 1 centipoise (cP) = 0.01 P —0.1 Pa-s.
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determined that the most accurate three-parameter fit for the data over a wide
temperature range is given by the Vogel-Fulcher-Tammann (V-F-T)

I4Oequation

(9.21)T - T O

where A, B, and T0 are temperature-independent adjustable parameters and
T is the temperature of interest.

A number of theories have been proposed to explain this behavior, most
notable among them being the free volume theory141 and the configuration
entropy theory.142 The former predicts that the transition occurring at re

is a first-order phase transition and cannot account for the fact that in
some systems Tg has been found to increase with increasing pressure, and
thus will not be discussed further. The remainder of this section is devoted
to the configuration entropy model, which while not perfect, succeeds
rather well in explaining many experimental observations and at this time
appears to be the most promising.

It was established in Chaps. 5 and 6 that the entropy of a crystal is the
sum of the vibration and configuration entropies — the latter due to mixing
of either defects and/or impurities. The entropy of a liquid or glass contains,
in addition, a term reflecting its ability to change configurations. In the
configuration entropy model, a simplified version of which is presented
here, the liquid is divided into Nc blocks, each containing // = N/h\.
atoms, where W is the total number of atoms in the system. These blocks
are termed cooperatively rearranging regions and are defined as the smallest
region that can undergo a transition to a new configuration without a
requisite simultaneous configuration change at its boundaries. It is further
assumed, for the sake of simplicity, that for each block only two con-
figurations exist. The total entropy of each block is thus k In 2, and the
total configuration entropy of the supercooled liquid (SCL) is simply
ASconflg = Nck\n2. Replacing Nc by N/n and rearranging give

(9.22)

If it is assumed that at T = Tk, where Tk is an adjustable parameter, the
entropies of the SCL and the glass are identical and, further, that the heat
capacity difference between the glass and the SCL. denoted by Ac^. is a

140 G. Fulcher, J. Amer. Cer. Soc., 75:1043-1059 (May 1992). Commemorative reprint.
141 M. Cohen and D. Turnbull, J. Chem. Phys.. 31:1164169 (1959). and D. Turnbull and M.

Cohen, J. Chem. Phys., 34:120125 (1961).
142 G. Adams and J. Gibbs. J. Chem. Phys.. 43:139 (1965).
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T > Te T~Tg T = Tk

Figure 9.11 Schematic model of effect of temperature on number of blocks and their size.
As temperature decreases from left to right, the number of blocks decreases but the number
of atoms in each block increases. Shown in the corner of the middle diagram is what is
meant by the two configurations that the atoms in a given cell block can have. That
number was chosen to be 2 for simplicity; the original model does not make that simplify-
ing assumption.

constant and independent of temperature (that is, Acp at Tg is equal to its
value at Tk, see Fig. 9.8c), then it can be shown that for any temperature
T > Tk (see Prob. 9.7)

AS,config
~,SCL
^config

glass _ T_
T~k

Combining Eqs. (9.22) and (9.23) yields

n —
Ac

(9.23)

(9.24)

This expression predicts that n increases with decreasing temperature. The
situation is depicted schematically in Fig. 9.11, for three different tempera-
tures T > Tg, T K, Tg, and T = Tk. As the temperature is lowered and vari-
ous configurations are frozen out, the cooperatively rearranging regions
decrease in number and increase in volume until at Tk only one configuration
remains, at which point there is a total loss of configurational entropy.

The major tenet of the model is that there is a direct relationship
between the configuration entropy and the rate of molecular transport. In
other words, it is postulated that as the blocks become larger, it takes
more time for them to switch configurations. It follows that the relaxation
time • r can be assumed to be proportional to n,

r = (const.) exp[("«] (9.25)

The barrier to rearrangement increases in proportion to n because the potential energy
increase of barrier A£ scales as «A/u, where A/i is the potential barrier per molecule
hindering rearrangement.
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where £ is an undetermined factor. Since T represents a characteristic time for
structural relaxation, it is not unreasonable to assume that it is proportional
to the viscosity. Putting all the pieces together, one sees that the viscosity can
be related to temperature by

/"\/M« T
(9.26)

where K^ is a constant. Taking the natural logarithm of both sides yields

where A1 and El are constants. And while at first glance this equation does
not appear to have the same temperature dependence as Eq. (9.21), it can
be easily shown that when T % Tk. that dependence is indeed recovered
(see Prob. 9.7).

Regardless of whether the two expressions are mathematically equiva-
lent, both are equally good at describing the temperature dependence on visc-
osity. This is clearly shown in Fig. 9.12, where the temperature dependence of
the viscosity is plotted for a number of sodium silicate melts and B2O3 glass.
The data points of the silicates were generated by using Eq. (9.21), which in
turn were best fits of the experimental results (see Fulcher). The lines are
plotted using Eq. (9.27). In the case of B2O3, the points are experimental
points, and the line is again plotted using Eq. (9.27). The fit in all cases is
excellent, using the single adjustable parameter, namely, Tk.

Finally, it is worth noting that the values of T0 or Tk needed to fit the
viscosity data are close to the temperature at which the Kauzmann tempera-
ture, TKAU is estimated from extrapolations of other properties such as those
shown in Fig. 9.8, lending credence to the model. This model also provides a
natural way out of the Kauzmann paradox, since not only do the relaxation
times go to infinity as T approaches Tk, but also the configuration entropy
vanishes since in glass at T = Tk only one configuration is possible.

Effect of composition on viscosity

For pure SiO2 to flow, the high-energy directional Si-O-Si bonds have to be
broken. The activation energy for this process is quite large (565 kJ/mol), and
consequently, the viscosity of pure liquid SiO2 at 1940CC is 1.5 x 104Pa-s.
which is quite high, considering the temperature.

As discussed earlier, the addition of basic oxides to a melt (a basic oxide
is an oxide which when dissolved in a melt contributes an oxygen ion to the
melt, such as Na2O and CaO) will break up the silicate network by the forma-
tion of nonbridging oxygens. Increasing additions of the base oxides thus
result in breakdown of the original three-dimensional network into progres-
sively smaller discrete ions. As a result, the number of Si-O bonds needed to
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Figure 9,12 Temperature dependence of viscosity for a number of glasses. Data for the
silicates are from Fulcher144 and for B2O3 from Macedo and Napolitano.145 The solid
lines are fit according to Eq. (9.27). For all except the highest alkali concentration (for
which Tk was chosen to be 136 K, compared to 0 K by Fulcher), Tk in Eq. (9.27) was
identical to that used by Fulcher. For B2O3, the best fit was obtained for Tk — 445 K.

be broken during viscous flow decreases, and the shear process becomes
easier. The dramatic effects of basic oxide additions on viscosity are shown
in Fig. 9.13. (Note the log scale of the y axis.)

Experimental Details: Measuring Viscosity

The technique used to measure viscosity usually depends on the viscosity
range of the glass. In the range up to « 107Pa • s, one uses what is known
as a viscometer, shown schematically in Fig. 9.140. The fluid for which the
viscosity is to be measured is placed between two concentric cylinders of
length L that are rotated relative to each other. Usually, one of the cylinders,
say, the inner one, is rotated at an angular velocity uja, while the outer

144 G. S. Fulcher, /. Amer. Cer. Soc., 8 (6):339355 (1925). Reprinted in J. Amer. Cer. Sot:, 75
(5):1043–1059(1992).

145 P. B. Macedo and A. Napolitano, J. Chem. Phys., 49:1887–1895 (1968).
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Figure 9.13 Dramatic effect of modifier metal oxide content on the viscosity of fused silica
at various temperatures. The addition of about 10 mol % of modifier results in a 5 order-of-
magnitude drop in the viscosity of pure silica.146

cylinder is held stationary by a spring that measures the torque T acting upon
it. It that case, it can be shown that the viscosity is given by147

(b2-a2)T
(9.28)

where a and b are defined in Fig. 9.14a.
As noted above, viscometers are usually good up to about 107 Pa • s. For

higher values the fiber elongation method is usually used. In this method
(Fig. 9.146), a load is attached to the material for which the viscosity is to
be measured and the material is heated to a given temperature. The strain
rate at which the fiber elongates is then measured. It can be shown148 that
the rate of energy dissipation Ev as a result of viscous flow of a cylinder of
height L and radius R is given by

E,.= (9.29)

146 J. O'M. Bockris, J. D. Mackenzie, and J. A. Kitchener, Faraday Soc., 51:1734 (1955).
147 R. Feynman, R. Leighton, and M. Sands, The Feynman Lecture on Physics, vol. 2. Addison-

Wesley, Reading, Massachusetts, 1964, pp. 41-43.
148 J. Frenkel, J. Phys. (Moscow), 9 (5):385–391 (1945).
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Figure 9.14 (a) Schematic cross section of viscometer. (b) Fiber elongation method.

Integrating this equation with respect to time, assuming a constant strain
rate, equating it to the decrease in potential energy of the system, and ignor-
ing surface energy changes, one can show that

77 =
mg

(9.30)

where AL is the elongation in a given time t and L0 is the original length of
the fiber. Here it was also assumed that AL « LQ.

9.4.3 Other Properties

As any phase diagram will show, nonstoichiometry notwithstanding, most
crystalline phases exist over a very narrow range of compositions with limited
solubility for other compounds. All this tends to limit the possibilities for
property tailoring. But glasses are not subject to this constraint — they
can be thought of a "garbage can" for other compounds or as a "universal
solvent." Needless to say, it is this degree of freedom that has rendered
glasses very useful as well as fascinating materials.

9.5 Glass-Ceramics

Glass-ceramics are an important class of materials that have been com-
mercially quite successful. They are polycrystalline materials produced by
the controlled crystallization of glass and are composed of randomly
oriented crystals with some residual glass, typically between 2 and 5 percent,
with no voids or porosity.
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9.5.1 Processing

A typical temperature versus time cycle for the processing of a glass-ceramic
is shown in Fig. 9.15, and it entails four steps.

1. Mixing and melting. Raw materials such as quartz, feldspar, dolomite,
and spodumene are mixed with the nucleating agents, usually TiO2 or
ZrO2, and melted.

2. Forming. As noted below, one of the major advantages of glass-ceramics
lies in the fact that they can be formed by using conventional glass-
forming techniques such as spinning, rolling, blowing, and casting; so
complex-shaped, pore-free articles can be easily manufactured. The
cooling rate during the formation process, however, has to be rapid
enough to avoid crystallization or growth.

3. Ceraming. Once formed, the glass body is heated to a temperature high
enough to obtain a very large nucleation rate. Efficient nucleation is the
key to success of the process. The nucleation is heterogeneous, and the
crystals grow on the particles of the nucleating agents, typically TiO2 or
ZrO2, that are added to the melt. To obtain crystals on the order of
1 urn, the density of nucleating agents has to be on the order of 1012

to 1015cm~3.
4. Growth. Following nucleation, the temperature is raised to a point where

growth of the crystallites occurs readily. Once the desired microstructure
is achieved, the parts are cooled. During this stage the body usually
shrinks slightly — by about 1 to 5 percent.

9.5.2 Properties and Advantages

Glass-ceramics offer several advantages over both the glassy and crystalline
phases, including these:

Growth

Time

Figure 9.15 Temperature versus time cycle for controlled crystallization of a glass-
ceramic bodv.
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1. The most important advantage of glass-ceramics over crystalline
ceramics is the ease of processing. As discussed in Chap. 10, viscous
sintering is much easier and faster than solid-state sintering. The
motive for using glass-ceramics is to take advantage of the ease of
processing inherent in the glass to shape and form complex shapes,
followed by transforming the glass phase to a more refractory solid in
which the properties can be tailored by judicious crystallization.
Unlike ceramic bodies made by conventional pressing and sintering,
glass-ceramics tend to be pore-free. This is because during crystalliza-
tion the glass can flow and accommodate changes in volume.

2. Usually the presence of the crystalline phase results in much higher
deformation temperatures than the corresponding glasses of the same
composition. For example, many oxides have T? values of 400 to
450°C and soften readily at temperatures above 600°C. A glass-ceramic
of the same composition, however, can retain its mechanical integrity
and rigidity to temperatures as high as 1000 to 1200°C.

3. The strength and toughness of glass-ceramics are usually higher than
those of glasses. For example, the strength of a typical glass plate is
on the order of 100 MPa, while that of glass-ceramics can be several
times higher. The reason, as discussed in greater detail in Chap. 11, is
that the crystals present in the glass-ceramics tend to limit the size of
the flaws present in the material, increasing its strength. Furthermore,
the presence of the crystalline phase enhances toughness (see Chap. 11).

Figure 9.16 LiO2-SiO2 phase diagram.149

149 F. C, Kracek,,/. Phys. Chem., 34:2645, Part II (1930).
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4. As with glasses, the properties — most notably the thermal expansion
coefficients — of glass-ceramics can be controlled by adjusting the
composition. In many applications, such as glass-metal seals and the
joining of materials, it is very important to match the thermal expansion
coefficients to avoid the generation of thermal stresses.

The most important glass-ceramic compositions are probably based on
lithium silicates. The phase diagram of the Li2O-SiO2 system is shown in
Fig. 9.16. The commercial compositions usually contain more than about
30 percent lithia which upon crystallization yields Li2Si2O5 as the major
phase with some SiO2 and Li2SiO3.

9.6 Summary

Glasses are supercooled liquids that solidify without crystallizing. They are
characterized by having short-range but no long-range order. To form a
glass, a melt has to be cooled rapidly enough that there is insufficient time
for the nucleation and growth of the crystalline phases to occur.

Low atom mobility, i.e., high 77, at or around the melting point, together
with the absence of potent nucleating agents, is a necessary condition for
glasses to form at moderate cooling rates. By far the most important predic-
tor of whether a glass will form at a given cooling rate is the viscosity at or
near the melting point.

Upon cooling of a glass melt, the driving force for nucleation increases,
but atom mobility decreases. These two counteracting forces result in
maxima for both the nucleation and growth rates. The convolution of the
two functions results in the familiar temperature-time-transformation
diagrams, from which one can, in principle, quantify the critical cooling
rate that would yield a glass.

Glass structure is best described by the random network model.
At the glass transition temperature Tg the supercooled liquid

transforms to a solid. The transformation that occurs at that point is kinetic
and reflects the fact that, on the time scale of the observation, the
translational and rotational motions of atoms or molecules which con-
tribute to various properties "freeze out." In other words, they cease to
contribute to the properties measured. Below TK the glass behaves as an
elastic solid.

Glass viscosity is a strong, but smoothly changing, function of tempera-
ture. The relationship between viscosity and temperature, for the most part,
cannot be described by a simple Arrhenian equation. The gradual change of
glass viscosity with temperature is very important from a processing point of
view and allows glasses to be processed rapidly and relatively easily into
pore-free complex shapes.
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Both the glass transition temperature and the viscosity are reduced when
nonbridging oxygens form.

Glass-ceramics are processed in the same way as glasses, but are then
given a further heat treatment to nucleate and grow a crystalline phase,
such that the final microstructure is composed of crystals with a glass
phase in between. The possibility of tailoring both the initial composition
and size and the volume fraction of the crystalline phase allows for precise
tailoring of properties.

Appendix 9A

Derivation of Eq. (9.7)

Consider a homogeneous phase containing Nv atoms per unit volume in
which in a smaller volume, containing n atoms, the density fluctuates to
form a new phase. As discussed in Sec. 9.2, the formation of these embryos
results in a local increase in the free energy AGC. So the reason the nuclei
form must be related to an increase in the entropy of the system. This increase
is configurational and comes about because once the nuclei have formed, it is
possible to distribute Nn embryos on any of Nv possible sites.

The free energy of the system can be expressed as

AGsys = Nn6Gc -kTlnto (9A. 1 )

where i7 is the number of independent configurations of embryos and host
atoms, with each configuration having the same energy, and k and T have
their usual meaning. The number of configurations of distributing Nn

embryos on A*",, sites is

" = (9A'2)

By combining Eqs. (9A. 1) and (9A.2) it can be easily shown that at equilibrium
(i.e., dGsys/dNn — 0) the number of nuclei is

kT

The similarity between this problem and that of determining the
equilibrium number of defects should be obvious at this point.

Problems

9.1. (a) The water-ice interface tension was measured to be 2.2 x 10~3J/m2.
If the water is exceptionally clean, it is possible to undercool it by
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40°C before it crystallizes. Estimate the size of the critical nucleus if
the enthalpy of fusion of ice is 6 kJ/mol.

Answer: 0.9 A

(b) Discuss what you think would happen if the water were not clean.
Would the undercooling increase or decrease? Explain.

9.2. (a) Making use of the values used in Worked Example 9.1 and
assuming AG*7 = 50kJ/mol, plot /,. as a function of temperature.

(b) Starting with Eq. (9.14) or (9.15), show that for small under-
coolings, a linear relationship should exist between the growth
rate and the degree of undercooling.

9.3. (a) Take AS1 to be on the order of 2R, and assume growth is occurring
at 1000°C. For a liquid that melts at 1500CC, estimate what would
represent a small undercooling. State all assumptions.

Answer: AT < 100°C

(b) Repeat part (a) for NaCl. Based on your answer, decide whether it
would be easy or difficult to obtain amorphous NaCl. Explain.
State all assumptions.

9.4. Based on your knowledge of the silicate structure, would you expect
the viscosity of Na2Si2O5 to be greater or smaller than that of
Na2SiO3 at their respective melting points? Which would you expect
to be the better glass former? Explain.

9.5. (a) Show that for quartz the Si-O-Si bond angle is 144C.
(b) Classify the following elements as modifiers, intermediates, or

network formers in connection to their role in oxide glasses:
Si ; Na ; P ; Ca ; Al .

9.6. The nucleation rate of an amorphous solid [i.e., Eq. (9.13)] can be
expressed as lv = /„ Oexp(—A//v/A:r). For a given solid.
lv.o(rrT3 • s"1) was measured to be

/,AO = 0.8 x 105

and the nucleation rate was measured to be 16.7 m~ -s^1 at 140CC.
The growth rates of the crystals were measured to be 7 x 10~7 and
3 x 10~6m/s at 140 and 160°C, respectively. How long would it take
to crystallize 95 percent of this solid at 165°C? Assume that growth
rate is isotropic and linear with time and that nucleation is random
and continuous.

Answer: 1.7 h

9.7. Show that the entropy change between the supercooled liquid and the
glass can be expressed by Eq. (9.23). Also show that when T « Tk,
Eq. (9.21) is recovered from Eq. (9.27). Hint: \n(T/Tk) w (r - Tk)/Tk.
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Figure 9.17 Two-dimensional simulation of nucleation and growth of a second phase as a
function of time.

9.8. The activation energy for viscosity of pure silica drops from 565 to
163 kJ/mol upon the addition of 0.5 mol fraction MgO or CaO. The
addition of alkali oxides has an even more dramatic effect, lowering
the activation energy to 96 kJ/mol for 0.5 mol fraction additions.
Explain, using sketches, why this is so.

9.9. Shown in Fig. (9.17) are the results of a two-dimensional simulation of
nucleation and growth. The nucleation rate was assumed to be
constant and equal to 0.0015 per square millimeter per second. The
growth rate was assumed to be 1 mm/s. Repeat the experiment on
your computer, and compare the surface fraction crystallized that
you obtain from the simulation to one that you would derive
analytically for this particular problem.

9.10. Material A has two allotropic forms: a high temperature /3-phase and a
lower temperature a-phase. The equilibrium transformation occurs at
1000 K. Consider two separate cases in each of which A is initially at
some temperature above 1000 K and as such exists purely as (3.
Case 1: The sample of A contains inclusions in the amount of 108 cm"3.
These inclusions act as heterogeneous nuclei in the phase transforma-
tion. The sample is quenched to 980 K and held at that temperature
while the transformation to the a-phase occurs.
Case 2: The sample of A is sufficiently clean that nucleation of a is
homogeneous. The sample is quenched to 800 K and held at that
temperature while the transformation to a occurs.
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(a) In which case will the sample take longer to transform, i.e., go to
99% completion? You can assume that the thermal conductivity is
high and that normal growth occurs.

(b) If the growth were not normal, would this change your ranking in
part (#)? Explain.

Data you may find useful:
enthalpy of transformation A// = Q.5RTe where Tc is

transformation temp.
molar volume of a Vm — 10cm3/rnol
lattice parameter in a a = 3 x 10~8cm
surface energy along a-0 7a_j = 0.05 J/m2

lattice diffusivities D = 10~8 cnr/s at 980 K
D= 10'10 cnr/s at 800 K

diffusivity across a-(3 interface D = 10~7cm2/s at 980 K
D= 10~9cm2 /sat800K

9.11. Loehman150 reported on the formation of oxynitride glasses in the
system Y-Si-Al-O-N. The silica-rich glasses contained up to 7%
nitrogen. The changes in thermal expansion coefficient and the glass
transition temperature are tabulated below.
(a) Discuss the incorporation of nitrogen in the oxide glass. Where is

it located, and how does it affect the properties?
(b) Does the data have any technological implications?

Atomic % Nitrogen
Thermal expansion ( x 1 0~6 : C~ ' )
Glass transition, °C
Microhardness (Vickers)

0.0
7.5

830
1000

1.5
6.8

900
1050

7
4.5

920
1100
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Chapter 10

Sintering and Grain Growth

All sintering data can be made to fit all sintering models.

Anonymous

10.1 Introduction

The effect of microstructure on properties has been neglected up to this point,
mainly because the properties discussed so far, such as Young's modulus,
thermal expansion, electrical conductivity, melting points, and density,
are to a large extent microstructure-insensitive. In the remainder of this
book, however, it will become apparent that microstructure can and does
play a significant role in determining properties. For example, as shown in
Table 10.1, the optimization of various properties requires various micro-
structures.

And while metals and polymers are usually molten, cast, and. when
necessary, machined or forged into the final desired shape, the processing
of ceramics poses more of a challenge on account of their refractoriness
and brittleness. With the notable exception of glasses, few ceramics are
processed from the melt — the fusion temperatures are simply too high.
Instead, the starting point is usually fine powders that are milled, mixed,
and molded into the desired shape by a variety of processes and subsequently
heat-treated or fired to convert them to dense solids. Despite the fact that the
details of shaping and forming of the green (unfired) bodies can have a
profound influence on the final microstructure, they are not directly
addressed here, but will be touched upon later. The interested reader is
referred to a number of excellent books and monographs that have been
written on the subject, some of which are listed in Additional Reading at
the end of this chapter.

As noted above, once shaped, the parts are fired or sintered. Sintering is
the process by which a powder compact is transformed to a strong, dense
ceramic body upon heating. In an alternate definition given by Herring,151

151 C. Herring. J. Appl. Phys.. 21:301–303 (1950).
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Table 10.1 Desired microstructures for optimizing properties

Property Desired microstructure

High strength Small grain size, uniform microstructure, and flaw-free
High toughness Duplex microstructure with high aspect ratios
High creep resistance Large grains and absence of an amorphous grain boundary

phase
Optical transparency A pore-free microstructure with grains that are either much

smaller or much larger than wavelength of light being
transmitted

Low dielectric loss Small, uniform grains
Good varistor behavior Control of grain boundary chemistry
Catalyst Very large surface area

sintering is ". . . understood to mean any changes in shape which a small
particle or a cluster of particles of uniform composition undergoes
when held at high temperature." As will become clear in this chapter,
sintering is a complex phenomenon in which several processes are occurring
simultaneously. There are many papers in the ceramic literature devoted to
understanding and modeling of the sintering process; and if there were
such a thing as the holy grail of ceramic processing science, it probably
would be how consistently to obtain theoretical density at the lowest
possible temperature. The main difficulty in achieving this goal, however,
lies in the fact that the driving force for sintering is quite small, usually
on the order of a few joules per mole, compared to a few kilojoules
per mole in the case of chemical reactions (see Worked Example 10.1).
Consequently, unless great care is taken during sintering, full density is
difficult to achieve.

Sintering can occur in the presence or absence of a liquid phase. In
the former case, it is called liquid-phase sintering, where the compositions
and firing temperatures are chosen such that some liquid is formed during
processing, as shown schematically in Fig. 10.1a. This process is of para-
mount importance and is technologically the process of choice. In the
absence of a liquid phase, the process is referred to as solid-state sintering
(Fig. 10.1b}.

This chapter is mainly devoted to understanding the science behind the
sintering process. In the next section, the driving forces and atomic mechan-
isms responsible for solid sintering are examined. Section 10.3 deals with
sintering kinetics, and the factors affecting solid-state sintering are elucidated
on the basis of the ideas presented in Sec. 10.2. In Sec. 10.4, liquid-phase
sintering is discussed, and in Sec. 10.5, hot pressing and hot isostatic pressing
are briefly touched upon.
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Figure 10.1 (a) Liquid-phase sintering; (b) Solid-state sintering.

10.2 Solid-State Sintering

The macroscopic driving force operative during sintering is the reduction of
the excess energy associated with surfaces. This can happen by (1) reduction
of the total surface area by an increase in the average size of the particles,
which leads to coarsening (Fig. 10.2b), and/or (2) the elimination of
solid/vapor interfaces and the creation of grain boundary area, followed
by grain growth, which leads to densification (Fig. 10.2a). These two
mechanisms are usually in competition. If the atomic processes that lead to

Coarsening |

(a ) (b )

Figure 10.2 Schematic of two possible paths by which a collection of particles can lower
its energy, (a) Densification followed by grain growth. In this case, shrinkage of the
compact has to occur, (b) Coarsening where the large grains grow at the expense of the
smaller ones.
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(a) (b)

Figure 10.3 (a) Equilibrium dihedral angle between grain boundary and solid/vapor
interfaces, (b) Equilibrium dihedral angle between grain boundary and liquid phase.

densification dominate, the pores get smaller and disappear with time and the
compact shrinks. But if the atomic processes that lead to coarsening are
faster, both the pores and grains get larger with time.

A necessary condition for densification to occur is that the grain boundary
energy 7gb be less than twice the solid/vapor surface energy 7SV. This implies
that the equilibrium dihedral angle 0 shown in Fig. 10.3a and defined as

= 27svcos- (10.1)

has to be less than 180°. For many oxide systems,152 the dihedral angle is
around 120°, implying that Agb/7sv « 1.0, in contrast to metallic systems
where that ratio is closer to between 0.25 and 0.5.

WORKED EXAMPLE 10.1

(a) Calculate the enthalpy change for an oxide as the average particle diameter
increases from 0.5 to 10 jam. Assume the molar volume of the oxide to be
10 cm3/mol and a surface energy of 1 J/m2. (b) Recalculate the enthalpy
change if, instead of coarsening, the 0.5 um spheres are sintered together as
cubes, given that the dihedral angle for this system was measured to be 100°.

Answer

(a) Take 1 mol or 10 cm3 to be the basis and assume monosize spheres of 0.
diameter. Their number N is given by

N =
(4/37r)(0.25 x 1Q-6)J = 1.5 x 10'

52 See, e.g., C. Handwerker, J. Dynys, R. Cannon, and R. Coble. J. Amer. Cer. Soc., 73:1371 (1990).
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Their corresponding surface area S is

S = (47rr)(1.5x 1014) = 120 m2

The total surface energy of the 0.5 um spheres:

-,o,5 = S x N = (120 m 2 ) ( l J/m2) = 120J.

Similarly, it can be shown that the total surface energy of the 10 (am spheres
is ^6 J. The change in enthalpy associated with the coarsening is

6 – 1 2 0 = -114J/mol

In other words, the process is exothermic.
(b) Given that the dihedral angle is 100 . applying Eq. (10.1). one obtains

7gb — 27SVcos— = 2 x 1 x cos 50 = 1.28 J/m2

Mass conservation requires that a3 = 4/37ir3, or a % 0.4 um, where a is the
length of the side of the cubes. The total grain boundary area (neglecting free
surface) is

Sgb^(0.4x 10 - 6)2(1.5 x 1014) = 72 m2

Thus the energy of the system after sintering is 1.28 x 72 « 92.16 J. which is less
than the original of 120 J. The difference between the two is the driving force for
densification.

Experimental Details: Sintering Kinetics

Based on the foregoing discussion, to understand what is occurring during
sintering, one needs to measure the shrinkage, grain, and pore sizes as a
function of the sintering variables, such as time, temperature, and initial
particle size. If a powder compact shrinks, its density will increase with
time. Hence, densification is best followed by measuring the density of the
compact (almost always reported as a percentage of the theoretical density)
as a function of sintering time. This is usually carried out dilatometrically
(see Fig. 4.9), where the length of a powder compact is measured as a
function of time at a given temperature. Typical shrinkage curves are
shown in Fig. 10.4 for two different temperatures T2 > T1. For reasons
that will become clear shortly, the densification rate is a strong function of
temperature, as shown in the figure.

In contradistinction, if a powder compact coarsens, no shrinkage is
expected in a dilatometric experiment. In that case, the coarsening kinetics
are best followed by measuring the average particle size as a function of
time via optical or scanning electron microscopy.

It is useful to plot the resultant behavior in what is known as grain size
versus density trajectories, such as those shown in Fig. 10.5a and b. Typically,
a material will follow the path denoted by curve v, where both densification
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10 20

Time (minutes)

Figure 10.4 Typical axial shrinkage curves during sintering as a function of temperature,
where T2 > T1.

and coarsening occur simultaneously. However, to obtain near-theoretical
densities, coarsening has to be suppressed until most of the shrinkage has
occurred; i.e., the system should follow the trajectory denoted by curve z.
A powder that follows trajectory x, however, is doomed to remain porous
— the free energy has been expended, large grains have formed, but more
importantly so have large pores. Once formed, these pores are kinetically
very difficult to remove, and as discussed below, they may even be thermo-
dynamically stable, in which case they would be impossible to remove.

An alternate method of presenting the sintering data is shown in Fig.
10.5b, where the time evolution of the grain and pore sizes is plotted; coarsening
leads to an increase in both, whereas densification eliminates pores.

100
Percent of theoretical density

Grain growth

Coarsening

Densification /

Initial configuration

Pore size

Figure 10.5 (a) Grain size versus density trajectories for densification (curve z) and
coarsening (curve x). Curve y shows a powder for which both coarsening and densification
are occurring simultaneously. (/?) Alternate scheme to represent data in terms of grain and
pore size trajectories.
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Figure 10.6 (a—f) Microstructure development for an MgO-doped alumina sintered in air
at 1600°C as a function of time.
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Figure 10.6 (continued) (g) Grain size trajectory for undoped and 250 ppm MgO-doped
alumina sintered in air at 1600°C.153

In Fig. 10.6a-f, the time dependence of the microstructural development of
an MgO-doped A12O3 compact sintered in air at 1600°C is shown. Note that as
time progresses, the average grain size increases whereas the average pore size
decreases. The corresponding grain size versus density trajectory is shown in
Fig. 10,6g; which is typical for many ceramics that sinter to full density.

A good example of a powder that coarsens without densification is
Fe2O3 sintered in HCl-containing atmospheres. The final microstructures
after firing for 5h at 1200°C in air and Ar-10%HCl are shown in
Fig. 10.7a and b, respectively. The corresponding time dependence of the
relative density as a function of HC1 content in the gas phase is shown
Fig. 10.7c. These results clearly indicate that whereas Fe2O3 readily sinters
to high density in air, in an HC1 atmosphere it coarsens instead.

Full density is thus obtained only when the atomic processes associated
with coarsening are suppressed, while those associated with densification
are enhanced. It follows that in order to understand and be able to control
what occurs during sintering the various atomic processes responsible for
each of the aforementioned outcomes are identified and described. Before
that, however, it is imperative to understand the effect of curvature on the
chemical potential of the ions or atoms in a solid.

10.2.1 Local Driving Force for Sintering

As mentioned earlier, the global driving force operating during sintering is
the reduction in surface energy, which manifests itself locally as curvature

K. A. Berry and M. P. Harmer, J. Amer. Cer. Soc., 69:143–149 (1986). Reprinted with
permission.
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Figure 10.7 (a) Microstructure of air-sintered Fe2O3. (b) Microstructure of Fe2O3

sintered in HCl-containing atmospheres. Note that in the latter case, significant coarsening
of the microstructure occurred, (c) Effect of atmosphere on relative density versus time for
FeO sintered at 1000°C.154

differences. From the Gibbs-Thompson equation (see App. 10A for deriva-
tion), it can be shown that the chemical potential difference per formula
unit A^ between atoms on a flat surface and under a surface of curvature
K is

A/u = //curv - //nat = TSV^MX* (10..2)

where QMX is the volume of a formula unit. For simplicity in the following
discussion, it will be assumed that one is dealing with an MX compound.

154 D. Ready, Sintering of Advanced Ceramics, Ceramic Trans., vol. 7, C. A. Handwerker. J. E.
Blendell, and W. Kayser, eds., American Ceramic Society. Westerville. Ohio. p. 86. 1990.
Reprinted with permission.
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Curvature K depends on geometry; e.g., for a sphere of radius p, K = 2/p (see
App. 10B for further details). Equation (10.2) has two very important
ramifications that are critical to understanding the sintering process. The
first is related to the partial pressure of a material above a curved surface,
and the second involves the effect of curvature of vacancy concentration.

Effect of curvature on partial pressure

At equilibrium, this chemical potential difference translates to a difference in
partial pressure above the curved surface, i.e.,

(10.3)
Pflat

Combining the two equations reveals that

ln^v = K«M^v {,0.4)
/Via, Kl

If ^curv ~ jPfiau then Eq. (10.4) simplifies to the more common expression,
namely,

curv ~~ ' f la t _ ^MX7sv /1A <-\
— K T^T ( ^ l U . J j

-Pflat ^flat kT

As noted above for a sphere of radius p, K — 2/p, and Eq. (10.5) can be
written as

n
flat pkT

(10.6)

Given that the radius of curvature is defined as negative for a concave
surface and positive for a convex surface, this expression is of fundamental
importance because it predicts that the pressure of a material above a
convex surface is greater than that over a flat surface, and vice versa for a
concave surface. For example, the pressure inside a pore of radius p would
be less than that over a flat surface; conversely, the pressure surrounding a
collection of fine spherical particles will be greater than that over a flat
surface.155

It is only by appreciating this fact that sintering can be understood.
Given the importance of this conclusion, it is instructive to explore what
occurs on the atomic level that allows this to happen. To do so, consider
the following thought experiment: Place each of three different-shaped
surfaces of the same solid in a sealed and evacuated chamber, as shown
in Fig. 10.8, and heat until an equilibrium vapor pressure is established.
Examining the figures shows that PI < P2 < P3,, since on average the

155 Implicit in this result is that the MX compound is evaporating as MX molecules.
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Concave Flat Convex

Figure 10.8 Effect of surface curvature on equilibrium pressure. At this scale it is easy to
appreciate why P1, < P2 < P3 .

atoms on a convex surface are less tightly bound to their neighbors than
atoms on a concave surface and will thus more likely escape into the gas
phase, resulting in a higher partial pressure.

Effect of curvature on vacancy concentrations

The other important ramification of Eq. (10.2) is that the equilibrium
vacancy concentration is also a function of curvature. In Chap. 6, the
relationship between the equilibrium concentration of vacancies C0. their
enthalpy of formation Q, and temperature was given by

(10.7)

In this equation, the entropy of formation and all preexponential terms are
included in the constant K'. An implicit assumption made to derive this
expression was that the vacancies formed under a flat, stress-free surface.

Since the chemical potential of an atom under a curved surface is either
greater or smaller than that over a flat surface by A/z, this energy has to be
accounted for when one is considering the formation of a vacancy. Hence
it follows that

= A exp - = C0 exp - (10.8)
kT J ~»--r\ kT

And since for the most part 7SV^MXK <^ kT, then with little loss in accuracy

*--curv 1 -
kT

which is identical to

— CCUFV ~~ M) — — CQ
kT

(10.9)

(10.10)

It is left as an exercise for the reader to show that the vacancy concentra-
tion under a concave surface is greater than that under a flat surface, which in
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turn is greater than that under a convex surface.156 The physics can be
explained as follows: given that a good measure of the enthalpy of formation
of a vacancy is the difference in bonding between an atom in the bulk of the
solid versus when it is on the surface, referring once again to Fig. 10.8 and
focusing on the shaded atoms will make it obvious why it costs less energy
to create a vacancy in the vicinity of a concave surface than a convex one.

To recap: curvature causes local variations in partial pressures and
vacancy concentrations. The partial pressure over a convex surface is
higher than that over a concave surface. Conversely, the vacancy concentra-
tion under a concave surface is higher than that below a convex surface. In
either case, a driving force is present that induces the atoms to migrate
from the convex to the concave areas, i.e., from the mountaintops to the
valleys. Given these conclusions, it is now possible to explore the various
atomic mechanisms taking place during sintering.

10.2.2 Atomic Mechanisms Occurring during Sintering

There are basically five atomic mechanisms by which mass can be transferred
in a powder compact:

1. Evaporation—condensation, depicted as path 1 in Fig. 10.9a.
2. Surface diffusion, or path 2 in Fig. 10.9a.
3. Volume diffusion. Here there are two paths. The mass can be transferred

from the surface to the neck area — path 3 in Fig. 10.9a — or from the
grain boundary area to the neck area — path 5 in Fig. 10.9b.

4. Grain boundary diffusion from the grain boundary area to the neck area
— path 4 in Fig. 10.9b.

5. Viscous or creep flow. This mechanism entails either the plastic defor-
mation or viscous flow of particles from areas of high stress to low
stress and can lead to densification. However, since it is essentially the
same process that occurs during creep, it is dealt with in Chap. 12.

Consider now which of these mechanisms leads to coarsening and which
to densification.

Coarsening

At the outset, it is important to appreciate that any mechanism in which the
source of material is the surface of the particles and the sink is the neck area
cannot lead to densification, because such a mechanism does not allow the

156 An important assumption made in deriving Eq. (10.10) is that under the curved surface, the
defects form in their stoichiometric ratios; i.e., the defect concentrations are dictated by the
Schottky equilibrium [VM] = [V X ] .
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Note shrinkage

Figure 10.9 Basic atomic mechanisms that can lead to (a) coarsening and change in pore
shape and (b) densification. (c) Thought experiment illustrating how removal of material
from the area between particles into the pore leads to shrinkage and densification.

particle centers to move closer together. Consequently, evaporation—
condensation, surface diffusion, and lattice diffusion from the surface to
the neck area cannot lead to densification. They do, however, result in a
change in the shape of the pores, a growth in the neck size, and a concomitant
increase in compact strength. Moreover, the smaller grains, with their smaller
radii of curvature, will tend to "evaporate" away and plate out on the larger
particles, resulting in a coarsening of the microstructure.

The driving force in all cases is the partial pressure differential associated
with the local variations in curvature. For instance, the partial pressure at
point s in Fig. 10.9a is greater than that at point n. which in turn results in
mass transfer from the convex to the concave surfaces. The actual path
taken will depend on the kinetics of the various paths, a topic that will be
dealt with shortly. At this point, it suffices to say that since the atomic
processes are occurring in parallel, at any given temperature, it is the fastest
mechanism that will dominate.

Densification

If mass transfer from the surface to the neck area or from the surface of
smaller to larger grains does not lead to densification, other mechanisms
have to be invoked to explain the latter. For densification to occur, the
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source of material has to be the grain boundary or region between powder
particles, and the sink has to be the neck or pore region. To illustrate why
this is the case, consider the thought experiment illustrated in Fig. 10.9c:
Cut a volume (shaded area in Fig. 10.9c) from between two spheres, bring
the two spheres closer together, and then place the extra volume removed
in the pore area. Clearly such a process leads to shrinkage and the elimination
of pores. Consequently, the only mechanisms, apart from viscous or plastic
deformation, that can lead to densification are grain boundary diffusion and
bulk diffusion from the grain boundary area to the neck area (Fig. 10.9b).

Atomistically, both mechanisms entail the diffusion of ions from the
grain boundary region toward the neck area, for which the driving force is
the curvature-induced vacancy concentration. Because there are more vacan-
cies in the neck area than in the region between the grains, a vacancy flux
develops away from the pore surface into the grain boundary area, where
the vacancies are eventually annihilated. Needless to say, an equal atomic
flux will diffuse in the opposite direction, filling the pores.

10.3 Sintering Kinetics

Based on the foregoing discussion, a powder compact can reduce its energy
by following various paths, some of which can lead to coarsening, others to
densification. This brings up the central and critical question in sintering:
What governs whether a collection of particles will densify or coarsen? To
answer the question, models for each of the paths considered above must
be developed and compared, with the fastest path determining the behavior
of the compact. For instance, a compact in which surface diffusion is much
faster than bulk diffusivity would tend to coarsen rather than densify.

In practice, the question is much more difficult to answer, however,
because the kinetics of sintering are dependent on many variables, including
particle size and packing, sintering atmosphere, degree of agglomeration,
temperature, and presence of impurities. The difficulty of the problem is
best illustrated by comparing the densification kinetics of an "as-received"
yttria-stabilized zirconia powder compact to that of the same powder that
was rid of agglomerates before sintering (Fig. 10.10). The marked reduction
in the temperature, by about 300°C, needed to fully densify the compact
which was prepared from an agglomerate-free compact is obvious.

In this section, some of the many sintering models proposed over the
years to model this complex process are outlined. Because of the complex
geometry of the problem, analytic solutions are only possible by making
considerable geometric and diffusion flow field approximations, which are
rarely realized in practice. Consequently, the models discussed below have
limited validity and should be used with extreme care when one is trying to
predict the sintering behavior of real powders. Much of the usefulness of
these sintering models thus lies more in appreciating the general trends
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D Agglomerate-free powders
As-received powder

1100 1300

Temperature, (°C)
1500

Figure 10.10 Temperature dependence of sintered density for an agglomerated or "as-
received" and agglomerate-free yttria-stabilized zirconia powder (1 h). Eliminating the
agglomerates in the green body resulted in a powder compact that densified much more
readily.157

that are to be expected and identifying the critical parameters than in their
predictive capabilities.

Sintering stages

Coble158 described a sintering stage as an "interval of geometric change in
which pore shape is totally defined (such as rounding of necks during the
initial stage sintering) or an interval of time during which the pore remains
constant in shape while decreasing in size." Based on that definition, three
stages have been identified: an initial, an intermediate, and a final stage.

During the initial stage, the interparticle contact area increases by neck
growth (Fig. 10.11b) from 0 to «0.2, and the relative density increases from
about 60 to 65 percent.

The intermediate stage is characterized by continuous pore channels that
are coincident with three-grain edges (Fig. 10.11c). During this stage, the
relative density increases from 65 to about 90 percent by having matter
diffuse toward, and vacancies away from the long cylindrical channels.

The final stage begins when the pore phase is eventually pinched off and
is characterized by the absence of a continuous pore channel (Fig. 10.11d).
Individual pores are either of lenticular shape, if they reside on the grain
boundaries, or rounded, if they reside within a grain. An important charac-
teristic of this stage is the increase in pore and grain boundary mobilities,
which have to be controlled if the theoretical density is to be achieved.

157 W. H. Rhodes, J. Amer. Cer. Soc., 64:19 (1981). Reprinted with permission.
158 R. L. Coble. J. Appl. Phys.. 32:787-792 (1961); R. L. Coble. J. Appl. Phys.. 36:2327 (1965).
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growth

Sinter body

Pore space

isolated pores

Figure 10.11 (a) Initial stage of sintering model represented by spheres in tangential
contact, (b) Near end of initial stage; spheres have begun to coalesce, (c) Intermediate
stage; grains adopted shape of dodecahedra, enclosing pore channels at grain edges, (d)
Final stage; pores are tetrahedral inclusions at corners where four dodecahedra meet.

Clearly, the sintering kinetics will be different during each of the afore-
mentioned stages. To further complicate matters, in addition to having to
treat each stage separately, the kinetics will depend on the specific atomic
mechanisms operative. Despite these complications, most, if not all, sintering
models share the following common philosophy:

1. A representative particle shape is assumed.
2. The surface curvature is calculated as a function of geometry.
3. A flux equation that depends on the rate-limiting step is adopted.
4. The flux equation is integrated to predict the rate of geometry change.

In the following subsections, this approach is used to predict the rates of
various processes occurring during various stages. In particular, Sec. 10.3.1
deals with the initial stage, while Sec. 10.3.2 addresses the kinetics of
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densification. Coarsening and grain growth, because of their similarities, are
discussed in Sec. 10.3.3.

10.3.1 Initial-Stage Sintering

Given the multiplicity of paths available to a powder compact during this
stage, it is impossible to address them all in detail. Instead, the following
approach has been adopted: The rate of neck growth by evaporation conden-
sation (path 1 in Fig. 10.9a) is worked out in detail; the final results for the
other mechanisms, namely, surface, grain boundary, lattice diffusion, and
viscous sintering, are given without proof.159

Evaporation-condensation model (path 1 in Fig. 10.9a)

In this mechanism, the pressure differential between the surface of the parti-
cle and the neck area results in a net matter transport, via the gas phase from
the surface to the neck. The evaporation rate (in molecules of MX per square
meter per second), is given by the Langmuir expression

(10.11)

where a and mMX are, respectively, the evaporation coefficient and the mass
of the evaporating gas molecules; AP is the pressure differential between the
surface and neck areas. By applying Eq. (10.5), it can be easily shown that the
pressure differential between these two regions is

/\n --IVIA.- nai /sv - ^ "IMA.- nai /sv i\f\ 1")\
<-** — PF ~ T^r ( I V . l ^ . )kT [p r\ pkT

where p and r, defined in Fig. 10.12a, are, respectively, the radius of curvature
of the neck area and the sphere radius. Furthermore, according to this figure.

(r + p)2 = (x + p)2 + r2

where x is the neck radius. For x <c /', this equation simplifies to

Multiplying the flux of material arriving to the neck area by fJMX yields
the rate at which the neck will grow, or

(10.14)

159 For a summary and a critical analysis of the initial-stage sintering models, see. e.g.. W. S.
Coblenz, J. M. Dynys, R. M. Cannon, and R. L. Coble, in Sintering Processes. G. C.
Kuczynski, ed.. Plenum Press, New York. 1980.
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(a) (b) (c)

Figure 10.12 (a) Sphere tangency construction used for initial-stage sintering modeling.
(b) Spherical particles held together by liquid capillary pressure, (c) Sphere tangency
construction during hot pressing. The ratio of applied stress to boundary stress is
proportional to (x/r2) (see Sec. 10.5).

Combining Eqs. (10.11) to (10.14) and integrating yields
1 " i nr v^v \ /.» *•%.? fn J i

t (10.15)

This equation predicts that the rate of growth of the neck region (1) is initi-
ally quite rapid but then flattens out, (2) is a strong function of initial particle
size, and (3) is a function of the partial pressure PRai of the compound, which
in turn depends exponentially on temperature.

To recap: Equation (10.15) was derived by assuming a representative
shape (Fig. 10.12a), from which the surface curvature was calculated as a
function of geometry [Eq. (10.13)]. A flux equation [Eq. (10.11)] was then
assumed and integrated to yield the final result. By using essentially the
same procedure, the following results for other models are obtained.

Lattice diffusion model (path 5, Fig. 10.9b)

If it is assumed that material diffuses away from the grain boundary area
through the bulk and plates out in an area of width 2p, the following
expression for the neck growth is obtained:160

where Dambi is the ambipolar diffusivity, given by Eq. (7.87). It is important
to note that the use of Dambi in Eq. (10.16) implies that the compound is pure
and stoichiometric, with the dominant defects being Schottky defects.161 It is
also implied that the two component fluxes are both diffused through the

160 D. L. Johnson, J. Appl. Phys., 40:192 (1969).
161 The situation gets much more complicated very rapidly if the oxide is impure. See, e.g., D. W.

Ready, J. Amer. Cer. Soc., 49:366 (1966).
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bulk. In general, however, it is important to appreciate that it is the slowest
species diffusing along its fastest path that is rate-limiting, a conclusion that
applies to all mechanisms discussed below as well.

Grain boundary diffusion model (path 4, Fig. 10.9b)

In this model, the mass is assumed to diffuse from the grain boundary area
radially along the grain boundary of width <52h and plate out at the neck
surface. The neck growth is given by162

which leads to the following linear shrinkage:

(—Y - [
\ L j - [

where Dgb is the grain boundary diffusivity of the rate-limiting ion.

Surface diffusion model (path 2, Fig. 10.9a)

In this model, the atoms are assumed to diffuse along the surface from an
area that is near the neck region toward the neck area. The appropriate
expression for the growth of the neck with time is163

where Dss and <5S are, respectively, the surface diffusivity and surface thick-
ness.

Viscous sintering

The shrinkage of two glass spheres during the initial stage is given by the
Frenkel equation164

A A -i^
-^ t (10.19)

L

16~ W. S. Coblenz, J. M. Dynys, R. M. Cannon, and R. L. Coble, in Sintering Processes. G. C.
Kuczynski, ed.. Plenum Press. New York. 1980. See also: R. L. Coble. J. Am. Cer. Soc.. 41:55
(1958).

163 W. S. Coblenz, J. M. Dynys. R. M. Cannon, and R. L. Coble, in Sintering Processes. G C.
Kuczynski, ed. Plenum Press, New York. 1980.

164 J. Frenkel. J. Phys. (USSR). 9:305 (1945).
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Figure 10.13 Micrograph of glass spheres that sinter by heating in air at a temperature
range at which viscous flow can occur.

where n is the viscosity of the glass, A micrograph of glass spheres that sinter
by viscous flow upon heating is shown in Fig. 10.13.

General remarks

Usually the activation energies for surface, grain boundary, and lattice
diffusivity increase in that order. Thus surface diffusion is favored at lower
temperatures and lattice diffusion at higher temperatures. By comparing
Eqs. (10.16), (10.17), and (10.19), it should be obvious why grain boundary
and surface diffusion are preferred over lattice diffusion for smaller particles.
Lattice diffusion, however, is favored at long sintering times, high sintering
temperatures, and larger particles. However, by far the most forgiving
mechanism with respect to particle size is viscous sintering (see Worked
Example 10.2). It is important to note that these general trends also extend
through the intermediate- and final-stage sintering stages.

WORKED EXAMPLE 10.2

It takes 0.2 h for the relative density of a 0.1 um average diameter powder to
increase from 60 to 65 percent. Estimate the time it would take for a powder
of l0um average diameter to achieve the same degree of densification if the
rate-controlling mechanism were (a) lattice diffusion and (b) viscous flow.

Answer

(a) If one assumes that the ratio x/r does not vary much as the density increases
from 60 to 65 percent, which is not a bad assumption, it follows that Eq. (10.16)
for lattice diffusion can be recast to read

a^V...*7*1-. »*.;
r
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If the 0.1 urn particles densify by lattice diffusion, the time needed to go from 60
to 65 percent will be given by Ar = K' • r3, from which

K' = °'2 , - = 1.6 x 1021 h/m3

(0.05 x 10-6)3

The 10 \im particles will densify by the same amount after a time At given by

Af = K'r* = 1.6 x 102I(5 x 10-6)3 = 2 x 105 hours!

(b) In the case of viscous flow a similar analysis shows that since t scales with r
[Eq. (10.19)], A/ in this case is of about 20 h.

This calculation makes clear that viscous phase sintering is much more
forgiving concerning the initial particle size. It also explains the absolute need
to start with very fine crystalline powders if densification is to occur in reasonable
times.

10.3.2 Densification Kinetics

Intermediate sintering model

Most of the densification of a powder compact occurs during the intermedi-
ate stage. Unfortunately, this stage is the most difficult to tackle because it
depends strongly on the details of particle packing — a variable that is
quite difficult to model. To render the problem tractable. Coble made the
following assumptions:

1. The powder compact is composed of ideally packed tetrakaidecahedra
of length ap separated from each other by long porous channels of
radii rc (Fig. 10.14a).

2. Densification occurs by the bulk diffusion of vacancies away from the
cylindrical pore channels toward the grain boundaries (curved arrows
in Fig. 10.14b).

3. A linear, steady-state profile of the vacancy concentration is established
between the source and the sink.

4. The vacancies are annihilated at the grain boundaries; i.e., the grain
boundaries act as vacancy sinks. It is also assumed that where the vacan-
cies are annihilated, their concentration is given by C0 [Eq. (10.7)]. i.e..
under a stress-free planar interface.

Making these assumptions, one can show (App. 10C) that during
the intermediate-stage sintering, the fractional porosity Pc should decrease
linearly with time according to

/>, « (const) %* ^^(tf - /) (10.20)
(i K1

where tf is the time at which the cylindrical channels vanish and d is the
average diameter of the sintering particles, which is assumed to scale with ap.
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Figure 10.14 (a) Tetrakaidecahedron model of intermediate-stage sintering, (b) Expanded
view of one of the cylindrical pore channels. The vacancies can diffuse down the grain bound-
ary (dashed arrow) or through the bulk (solid arrows). Note that in both cases the vacancies
are annihilated at the grain boundaries.

Repeating the procedure used to arrive at Eq. (10.20) but assuming
densification takes place by grain boundary diffusion (straight arrows in
Fig. 10.14b), one can show that (see Prob. 10.6)

where <5gt, is the width of the grain boundary shown in Fig. 10.14b.
It is rather unfortunate that of all the sintering stages the most important

is also the most difficult to model. For example, any intermediate-stage
model that does not take into account the details of particle packing has
very limited validity. A cursory examination of the results shown in
Fig. 10.10 should make this point amply clear.

What is interesting about this process is that it is self-accelerating, since
as the cylinder gets smaller in diameter, its curvature increases and the
vacancy concentration gradient also increases. This process cannot and
does not go on indefinitely; as the cylindrical pores get longer and thinner,
at some point they become unstable and break up into smaller spherical
pores along the grain boundary and/or at the triple points between grains
(see Fig. 10.11d). It is at this point that the intermediate sintering stage
gives way to the final-stage sintering, where both the annihilation of the
last remnants of porosity and the simultaneous coarsening, i.e., grain
growth, of the microstructure occur. The next subsection deals with the
elimination of porosity; grain growth is dealt with later in Sec. 10.3.3.

Pore elimination

When atoms diffuse toward the pores and vacancies are transported away
from the pores to a sink such as grain boundaries, dislocations, or external
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Figure 10.15 Geometric constructions used to model porosity elimination, assuming (a)
bulk diffusion, where the vacancies are assumed to be eliminated at the grain surface, and
(b) grain boundary diffusion, where vacancies are restricted to diffusing along a grain
boundary of width 8fb.

surfaces of the crystal the pores will be eliminated. Consider the two follow-
ing representative mechanisms.

Volume diffusion. In this model, the vacancy source is the pore surface of
radius pp and the sink is the spherical surface of radius R, where R » pr

(Fig. 10.15a). By solving the flux equation, subject to the appropriate bound-
ary conditions, it can be shown that (see App. 10D)

3 3 ~—aniDi /SV--IVIA . MA T>\
PP ~ Pp.o = -j^p ' (10.22)

where ppQ is the initial size of the pores at t — 0. To relate the radius of the
pore to the porosity Pc, use is again made of the model shown in
Fig. 10.14a. A pore is assumed to be present at the vertices of each tetrakai-
decahedron; and since there are 24 vertices and each pore is shared by four
polyhedra, it follows that the fraction porosity is given by

where the denominator represents the volume of the tetrakaidecahedron.
Combining this result with Eq. (10.22), and noting that the grain size d
scales with ap yields

Pc - P0 = -(const) ^mb.7^MX , (1Q 24)

where P0 is the porosity at the beginning of the final stage of sintering. This
model predicts that the porosity during this stage will decrease linearly with
time and inversely as d3. In other words, smaller grains should result in much
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faster porosity elimination, which was expected since it was assumed that
grain boundaries act as sinks.

Grain boundary diffusion. Equation (10.24) has limited validity, however,
because as discussed in greater detail below, the elimination of the last
remnants of vacancies usually occurs only if they remain attached to and
are eliminated at the grain boundaries. The appropriate geometry is shown
schematically in Fig. 10.156, and by following a derivation similar to the
one carried out in App. 10D, it can be shown (see Prob. 10.7) that

where Rgb is defined in Fig. 10.15b. In other words, if grain boundary diffu-
sion is the operative mechanism, the average pore size should shrink with t1/4

rather than the t1/3 dependence expected if bulk diffusion were important
[i.e., Eq. (10.22)]. Unfortunately, no simple analytic expression exists relating
the porosity to pp, and numerical methods have to be used instead.

Effect of dihedral angle on pore elimination

It should be clear by now that pore shape and volume fraction continually
evolve during sintering, and understanding that evolution is critical to under-
standing how high theoretical densities can be achieved. An implicit and
fundamental assumption made in the foregoing analysis is the existence of
a driving force to shrink the pores at all times — an assumption that is
not always valid. As discussed below, under some conditions, the pores
can be thermodynamically stable.

To demonstrate the conditions for which this is the case, consider the
four grains that intersect as shown in Fig. 10.16a. Referring to the figure,
if the pore is allowed to shrink by an amount equal to the shaded area, the
excess energy eliminated is proportional to 2F7SV while the excess energy
gained will be proportional to A7gb, where F and 7 are defined in the
figure. It follows that the ratio of the energy gained to that lost is

Energy gained = 2F7SV (1026)
Energy lost A7gb

Combining this result with Eq. (10.1) and the fact that cos(</?/2) = F/A
(see Fig. 10.16a), one can easily show that the right-hand side of Eq. (10.26)
equals 1.0, when (p = (j>. In other words, when the grains around a pore
meet such that 7gb = 27svcos(0/2), the driving force for grain boundary
migration and pore shrinkage goes to zero.

This is an important conclusion since it implies that if pores are to be
completely eliminated, their coordination number has be less than a critical
value nc. It can be further shown (see Prob. 10.8) that nc is related to the
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dihedral angle by nc < 360/( 180 - 4>). It is left as an exercise for the reader to
determine which of the three pores in Fig. 10.16 is stable and which is not.

Based on these results, one may conclude that increasing the dihedral
angle should, in principle, aid in the later stages of sintering. The situation
is not so simple, however, since it can also be shown that the attachment
of pores to boundaries is stronger for lower 0's. Given that in order to
eliminate pores, they have to remain attached to the grain boundary, this

Original shape

grain #1

grain #4

Actual curvature of boundary needed to maintain dihedral angle equilibrium assumed to be y.

(*) (O
Figure 10.16 Effect of pore coordination on pore shrinkage for a system for which the
dihedral angle o = 7r/2. (a) Intersection of four grains around a pore, (h) Intersection of
six grains; that is, (f = 120=. Note that to maintain the equilibrium dihedral angle, the surfaces
of the grains surrounding the pore have to be convex, (c) Same system with ^ = 60 . Here the
pore surface has to be concave in order to maintain the equilibrium dihedral angle.
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latter property would tend to suggest that low dihedral angles would aid in
the prevention of boundary-pore breakaway and thus be beneficial. Finally,
note that channel breakup at the end of the intermediate-stage sintering
occurs at smaller volume fractions of pores as the dihedral angle decreases,
which again is beneficial.

10.3.3 Coarsening and Grain Growth Kinetics

Any collection of particles will coarsen with time, kinetics permitting, where
coarsening implies an increase in the ensemble's average particle size
with time. Comparing Fig. 10.2a and b shows the clear similarity between
coarsening and grain growth. This section deals with the kinetics of the
microstructural evolution of a collection of particles during sintering
(Fig. 10.2b) and the grain growth kinetics associated with the final stages
of sintering (Fig. 10.2a).

Coarsening

To model coarsening, consider a powder compact consisting of a distribution of
particles, with an average particle radius rav. Assuming all particles to be
spheres, the average partial pressure over the ensemble is given by Eq. (10.6), or

— ^flat ;i0.27)

Similarly, the partial pressure Pr over any particle of radius r ^ rav is also
given by Eq. (10.6), using the appropriate radius. Consequently, grains
that are smaller than the average will "evaporate" away, while those that
are larger will grow with time (Fig. 10.17a).

(a) (b)
Figure 10.17 (a) Schematic of coarsening problem, showing how grains that are smaller
than the average shrink at the expense of larger grains that grow, (b) Plot of Eq. (10.29).
The lower curve has an average radius that is twice that of the top curve.
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If the interface kinetics are rate-limiting, it follows that the velocity v of
the solid/gas interface is linearly dependent on the driving force, and

v = ̂  = Kr(Pav-Pr) (10.28)

where Kr is a proportionality constant related to the mobility of the
interface.165 Combining Eqs. (10.6), (10.27) and (10.28), one obtains

dr „(!> P\ 2QMX^nat^r7.~-Kr(Pav-Pr)= —

A plot of this equation is shown in Fig. 10.17b for two different average
particle sizes. In addition to demonstrating that small particles shrink and
larger ones grow, the figure also shows that smaller grains (r < rav) disappear
much faster than larger grains grow. Furthermore, as time progresses and the
average grain size increases, the growth rate for all particles is reduced and
eventually goes to zero.

The model can be taken further by making the simplifying assumption
that the rate of increase of the average particle size is identical to that of parti-
cles that are twice the average size. In other words, by assuming

drav dr
-~ = — at r = 2rav

Eq. (10.29) can be integrated to yield the final result

(10.30)2 _ 2 _ ^ /sv^MX^flat^/
'"av ''O.av i y

where r0.av is the average particle size at t = 0. A more rigorous treatment166

gives a value of 64/81 instead of 2. Equation (10.30) predicts a parabolic
increase in the average grain size with time. It also predicts that the
coarsening kinetics are enhanced for solids with high vapor/surface interface
energies and high vapor pressures, both predictions in fair agreement with
experimental observations. For example, it is now well established that
covalently bonded solids such as Si3N4, SiC, and Si coarsen, rather than
densify, because they have relatively high vapor pressures.

Grain growth

As noted above, during the final stages of sintering, in addition to the
elimination of pores, a general coarsening of the microstructure by grain
growth occurs. During this process the average grain size increases with
time as the smaller grains are consumed by larger grains as shown in

165 The reader will note that for a process that is evaporation-controlled. K, = o/>
[see Eq. (10.11)].

166 C. Wagner. Z. Electrochem., 65:581 (1961).
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Fig. 10.18. Controlling and understanding the processes that lead to grain
growth are important for two reasons. The first, discussed in greater detail
in subsequent chapters, is related to the fact that grain size is a major
factor determining many of the electrical, magnetic, optical, and mechanical

Figure 10.18 Time evolution of microstructure of CsI hot-pressed at 103 MPa at 100°C
for (a) 5 min, (b) 20 min, (c) 1 h, and (d) 120 min. (e) Fractured surface of a, (/) fractured
surface of d.167

167 H-E. Kim and A. Moorhead, J. Amer. Cer. Soc., 73:496 (1990). Reprinted with permission.
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(a) (b)

Figure 10.19 (a) Grain shape equilibrium and direction of motion of grain boundaries in
a two-dimensional sheet (the grains are cylinders in this case). Note that grains with six
sides are stable, while those with less than six sides shrink and those with more than six
sides will grow, (b) Atomic view of a curved boundary. Atoms will jump from right to
left, and the grain boundary will move in the opposite direction.

properties of ceramics. The second is related to suppressing what is known as
abnormal grain growth, which is the process whereby a small number of
grains grow very rapidly to sizes that are more than an order of magnitude
larger than average in the population (Fig. 10.21b). In addition to the
detrimental effect that the large grains have on the mechanical properties
(see Chap. 11), the walls of these large grains can pull away from porosities,
leaving them trapped within them, which in turn limits the possibility of
obtaining theoretical densities in reasonable times.

Before one proceeds with the model, it is important to appreciate the
origin of the driving force responsible for coarsening. Consider the schematic
microstructure composed of cylindrical grains of varying curvatures, shown
in Fig. 10.19a. Since in this structure the dihedral equilibrium angle has to be
120°, it follows that grains with more than six sides will tend to grow, while
those with less than six sides will tend to shrink.168 This occurs by migration of
grain boundaries in the direction of the arrows (Fig. 10.19a). To appreciate the
origin of the driving force, consider the atomic-scale schematic of such a
boundary (Fig. 10.19b). At this level, it should be obvious why an atom on
the convex side of the boundary would rather be on the concave side — it
would, on average, be more tightly bound, i.e., have lower potential energy.
Consequently, the atoms will jump from right to left, which means that the
grain boundary will move from left to right, as shown in Fig. 10.19a. Looking
at the problem at that level, one can easily see why straight (i.e., no curvature)
grain boundaries would be stable and would not move.

168 The reason a grain that has less than six sides shrinks is the same as the reason the pore shown
in Fig. 10.16c does.
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More quantitatively, the driving forces per MX molecule A/zgb across
the grain boundary is given by

AMgb = 7gAix« (10.31)

where 7gb is the grain boundary energy and K its radius of curvature.
To model the process, one needs to obtain a relationship between the

grain boundary velocity «gb and the driving force acting on the boundary.
And since the situation is almost identical to that encountered during the
growth of a solid/liquid interface (Fig. 9.3), Eq. (9.14) is directly applicable
and

«gb = A,net = Ai/o exp - ^ 1 - exp - =?3i (10.32)
\ Kl / I \ Kl J )

where A(7t. is replaced by A/^gb. Expanding the term within braces in
Eq. (10.32), for the usual case when A^gb < kT, one obtains

A/*Rb (10.33)

This expression is usually abbreviated to

Mgb = MA/*gb (10.34)

where

Comparing Eqs. (10.33) and (10.28) reveals the similarities between this
problem and that of coarsening worked out in the previous section. So by
modifying Eq. (10.30) to the problem at hand, the final result for grain
growth is

dl-diav,0
4M7gbOMX

(10.36)

where c/av 0 is the average grain size at / = 0, and 13 is a geometric factor
that depends on the curvature of the boundary. For example, for a solid
that is made up entirely of straight, noncurved grain boundaries, no grain
growth would occur and ft would be infinite. The process just described is
sometimes referred to as Ostwald ripening and is characterized by a parabolic
dependence of grain size on time.

Effect of microstructure and grain boundary chemistry on boundary mobility

In deriving Eq. (10.36), the implicit assumption that the grain boundaries
were pore-, inclusion-, and essentially solute-free — a very rare occurrence,
indeed — was made, and as such Eq. (10.36) predicts the so-called intrinsic
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grain growth kinetics. Needless to say, the presence of "second phases" or
solutes at the boundaries can have a dramatic effect on their mobility, and
from a practical point of view it is usually the mobility of these phases that
is rate-limiting. To illustrate the complexity of the problem, consider just a
few possible rate-limiting processes:

1. Intrinsic grain boundary mobility discussed above.
2. Extrinsic or solute drag. If the diffusion of the solute segregated at the

grain boundaries is slower than the intrinsic grain boundary mobility,
it becomes rate-limiting. In other words, if the moving grain boundary
must drag the solute along, that tends to slow it down.

3. The presence of inclusions (basically second phases) at the grain bound-
aries. It can be shown that larger inclusions have lower mobilities than
smaller ones, and that the higher the volume fraction of a given
inclusion, the larger the resistance to boundary migration.

4. Material transfer across a continuous boundary phase. For instance, in
Si3N4 boundary movement can occur only if both silicon and oxygen
diffuse through the thin, glassy film that usually exists between grains.

5. In some cases, the redissolution of the boundary-anchoring second
phase inclusions into the matrix can be rate limiting.

In addition to these, the following interactions, between pores and grain
boundaries can occur:

1. What is true of second phases is also true of pores. Pores cannot enhance
boundary mobility; they only leave it unaffected or reduce it. During
the final stages of sintering as the pores shrink, the mobility of the
boundaries will increase (see below).

2. The pores do not always shrink — they can also coarsen as they move
along or intersect a moving grain boundary.

3. The pores can grow by the Ostwald ripening mechanism.
4. Pores can grow by reactive gas evolution and sample bloating.

To discuss even a fraction of these possibilities in any detail is clearly not
within the scope of this book. What is attempted instead is to consider in
some detail one of the more important grain boundary interactions
namely, that between the grain boundary and pore.

As the grains get larger and the pores fewer, the grain mobility increases
accordingly. In some cases, at a combination of grain size and density, the
mobility of the grain boundaries becomes large enough that the pores can
no longer keep up with them; the boundaries simply move too fast for the
pores to follow and consequently unpin themselves. This region is depicted
on the grain size versus density trajectory in the upper right-hand corner
of Fig. 10.20a.

If theoretical density is to be achieved, it is important that the grain
boundary versus density trajectory not intersect this separation region. The
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importance of having the pores near grain boundaries is illustrated in
Fig. 10.20b; the migration of the boundary downwards has swept and elimi-
nated all the pores in its wake. Pores that are trapped within the grains will
remain there because the diffusion distances between sources and sinks
become too large.

Figure 10.20 (a) Grain size versus densification trajectory including region where separa-
tion of boundaries and pores will occur. In that region, the grain boundaries will break
away from the pores, entrapping them within the grains. To achieve full density, path 1
has to followed. Path 2 will result in entrapped pores, (b) Micrograph of the sweeping
out of pores by the migration of grain boundaries. The original position of the boundary
is depicted by the dotted line.169

169 J. E. Burke, J. Amer. Cer. Soc., 40:80 (1957). Reprinted with permission.
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There are essentially two strategies that can be employed to prevent pore
breakaway, namely, reduce grain boundary mobility and/or enhance pore
mobility. An example of how slowing grain boundary mobility enhances
the final density is shown in Fig. 10.6g, where the grain size versus density
trajectories for two aluminas, one pure and the other doped with 250 ppm
MgO, are compared. It is obvious from the results that the doped alumina
achieves higher density — the reason is believed to be the result of impurity
drag on the boundary by the MgO.

Abnormal grain growth

In some systems, it has been observed that a small number of grains in the
population grow rapidly to very large sizes relative to the average size of
the population (see Fig. 10.21b). This phenomenon is referred to as abnormal
grain growth (AGG). AGG is to be avoided for the same reason as pore—
grain boundary unpinning.

Although it is not entirely clear as to what results in AGG, there is
mounting evidence that it is most likely associated with the formation of a
liquid phase, or very thin liquid films at the grain boundaries. These can
result from dopants intentionally added or simply from impurities in the
starting powder. The effect of having small amounts of liquid during solid
state sintering and its effect on the sintering and grain growth kinetics are
discussed in the next section. There is little doubt, however, that small
amounts of liquid can result in substantial coarsening of the microstructure.
as shown in Fig. 10.24.

10.3.4 Factors Affecting Solid State Sintering

Typically a solid-state sintered ceramic is an opaque material containing
some residual porosity and grains that are much larger than the starting
particle sizes. On the basis of the discussion and models just presented, it
is useful to summarize the more important factors that control sintering.
Implicit in the following arguments is that theoretical density is desired.

1. Temperature. Since diffusion is responsible for sintering, clearly
increasing temperature will greatly enhance the sintering kinetics,
because D is thermally activated. As noted earlier, the activation
energies for bulk diffusion are usually higher than those for surface and
grain boundary diffusion. Therefore, increasing the temperature usually
enhances the bulk diffusion mechanisms which lead to densification.

2. Green density. Usually a correlation exists between the green (prior to
sintering) density and the final density, since the higher the green
density, less pore volume has to be eliminated.

3. Uniformity of green microstructure. More important than the green
density is the uniformity of the green microstructure and the lack of



Sintering and Grain Growth 335

agglomerates (see Fig. 10.10). The importance of eliminating agglomer-
ates is discussed in greater detail below.

4. Atmosphere. The effect of atmosphere can be critical to the densifica-
tion of a powder compact. In some cases, the atmosphere can enhance
the diffusivity of a rate-controlling species, e.g., by influencing the
defect structure. In other cases, the presence of a certain gas can
promote coarsening by enhancing the vapor pressure and totally

Figure 10.21 Microstructures showing (a) normal and (b) abnormal grain growth in
Ti3SiC2,
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suppressing densification. An excellent example of the effect of atmos-
phere was shown in Fig. 10.7: Fe2O3 will readily densify in air but not
in HCl-containing atmospheres.

Another important consideration is the solubility of the gas in the
solid. Because the gas pressure within the pores increases as they
shrink, it is important to choose a sintering atmosphere gas that readily
dissolves in the solid.

5. Impurities. The role of impurities cannot be overemphasized. The key
to many successful commercial products has been the identification of
the right pinch of magic dust. The role of impurities has been extensively
studied, and to date their effect can be summarized as follows:

a. Sintering aids. They are purposefully added to form a liquid
phase (discussed in the next section). It is also important to
note that the role of impurities is not always appreciated. The
presence of impurities can form low-temperature eutectics and
result in enhanced sintering kinetics, even in very small concentra-
tions.

b. Suppress coarsening by reducing the evaporation rate and lowering
surface diffusion. A classic example is boron additions to SiC. with-
out which SiC will not densify.

c. Suppress grain growth and lower grain boundary mobility
(Fig. 10.6).

d. Enhance diffusion rate. Once the rate-limiting ion during sintering
is identified, the addition of the proper dopant that will go into
solution and create vacancies on that sublattice should, in principle,
enhance the densification kinetics.

6. Size distribution. Narrow grain size distributions will decrease the
propensity for abnormal grain growth.

7. Particle size. Since the driving force for densification is the reduction
in surface area, the larger the initial surface area, the greater the driving
force. Thus it would seem that one should use the finest initial particle
size possible, and while in principle this is good advice, in practice
very fine particles pose serious problems. As the surface/volume ratio
of the particles increases, electrostatic and other surface forces become
dominant, which leads to agglomeration. Upon heating, the agglo-
merates have a tendency to sinter together into larger particles, which
not only dissipates the driving force for densification but also creates
large pores between the partially sintered agglomerates which are
subsequently difficult to eliminate. The dramatic effect of ridding a
powder of agglomerates on the densification kinetics is well illustrated
in Fig. 10.10.

The solution lies in working with nature instead of against it. In
other words, make use of the surface forces to colloidally deflocculate
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the powders and keep them from agglomerating.170 However, once
dispersed, the powders should not be dried, but piped directly into a
mold or a device that gives them the desired shape. The reason is
simple. In many cases, drying reintroduces the agglomerates and defeats
the purpose of colloidal processing.

To avoid excessive shrinkage during fluid removal requires pour-
able slurries with a high volume fraction of particles. Once the slurry
has been molded, its rheological properties must be dramatically
altered to allow shape retention during unmolding. What is required
in this stage is to change the viscous slurry to an elastic body without
fluid-phase removal. The basic idea is to avoid, at all costs, passing
through a stage where a liquid/vapor interface exists. The presence of
liquid/vapor interfaces can result in strong capillary forces that can
cause particle rearrangement and agglomeration. And whereas this is
desirable during liquid-phase sintering (see next section), it is undesir-
able when a slurry is dried because it is uncontrollable and can result in
shrinkage stresses, which in turn can result in the formation of either
agglomerates or large cracks between areas that shrink at different
rates. The crazing of mud upon drying is a good example of this
phenomenon.

Another possible source of flaws can be introduced during the cold
pressing of agglomerated powders as a result of density differences
between the agglomerates and the matrix. When the pressure is
removed, the elastic dilation of the agglomerates and the matrix may
be sufficiently different to cause cracks to form; i.e., the springback
of the agglomerates will be different from the matrix as a result of
differences in their density.

10.4 Liquid-Phase Sintering

The term liquid-phase sintering is used to describe the sintering process when
a proportion of the material being sintered is in the liquid state (Fig. 10.la).
Liquid-phase sintering of ceramics is of major commercial importance since a
majority of ceramic products are fabricated via this route and include ferrite
magnets, covalent ceramics such as silicon nitride, ferroelectric capacitors,
and abrasives, among others. Even in products that are believed to be
solid-state sintered, it has been demonstrated that in many cases the presence
of liquid phases at grain boundaries probably plays a significant role.

Liquid-phase sintering offers two significant advantages over solid-state
sintering. First, it is much more rapid; second, it results in uniform densifica-
tion. As discussed below, the presence of a liquid reduces the friction between

170 See, e.g., F. Lange, .J. Amer. Cer. Soc.. 72:3 (1989).
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particles and introduces capillary forces that result in the dissolution of sharp
edges and the rapid rearrangement of the solid particles.

During liquid-phase sintering, the compositions of the starting solids are
such as to result in the formation of a liquid phase upon heating. The liquid
formed has to have an appreciable solubility of the solid phase and wet the
solid. In the next sections, the reasons these two requirements should be
met and the origin of the forces at play during liquid-phase sintering are
elucidated.

10.4.1 Surface Energy Considerations

As discussed in detail in the preceding sections, the driving force during
sintering is the overall reduction in surface energy of the system. In solid-
state sintering, the lower-surface-energy grain boundaries replace the
higher-energy solid/vapor surfaces. The presence of a liquid phase introduces
a few more surface energies that have to be considered, namely, the liquid
vapor 7iv and the liquid/solid 7|S interface energies.

When a liquid is placed on a solid surface, either it will spread and wet
that surface (Fig. 10.22a) or it will bead up (Fig. 10.22b). The degree of
wetting and whether a system is wetting or nonwetting are quantified by
the equilibrium contact angle 9 that forms between the liquid and the solid
and is defined in Fig. 10.22a and b. A simple balance of forces indicates
that at equilibrium

Tsv = 7is + 7iv cos 9 (10.37)

from which it is clear that high values of 7SV and low values of 7)s and'or
7lv promote wetting. By using an argument not unlike the one used to
derive Eq. (10.26), it can be shown that a necessary condition for liquid-
phase sintering to occur is that the contact angle must lie between 0 and
7T/2, that is, the system must be wetting. For nonwetting systems, the
liquid will simply bead up in the pores, and sintering can only occur by
one of the solid-state mechanisms discussed previously.

Vapor
Vapor

Figure 10.22 (a) Wetting system showing forces acting on the liquid drop. (b) Nonwetting
system with 0 > 90 .
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The complete penetration of grain boundaries with a liquid is also
important for microstructural development (e.g., it could lead to the breakup
of agglomerates). It can be shown (Prob. 10.11b) that a necessary condition
for the penetration and separation of the grains with a thick liquid film is
7gb > 2%. This implies that the equilibrium dihedral angle *, shown in
Fig. 10.36, and defined as

7gb = 27slcos| (10.38)

must be zero. In this context, it follows that high values of 7gb and low values
of 7ls are desirable.

10.4.2 Capillary Forces

When solids and liquids are present together, capillary forces that result from
surface tension are generated. These forces, as discussed below, can give rise
to strong attractive forces between neighboring particles, which when
combined with the lubricating potential of the liquid, can lead to very
rapid and significant particle rearrangement and densification.

The origin of the attractive forces is twofold: the force exerted by the
pressure differential across the meniscus that results from its curvature and
the component of the liquid/vapor surface energy normal to the two surfaces.
To better appreciate these two forces, consider the thought experiment
illustrated in Fig. 10.23. Here a solid cylinder of radius X is placed between
two plates, and the system is heated so as to melt the solid. Consider what
happens in the following three cases.

1. Contact angle — 90° (Fig. 10.23b). Here it is assumed that the cylindrical
shape is retained upon melting (it is a thought experiment, after all).
Upon melting, 7lv will exert an attractive force given by

Fatt = -27r*7iv (10-39)

Simultaneously, as a result of its radius of curvature, a positive pressure
(see App. 10B)

will develop inside the cylinder, which will repel the plates by a force

(10.40)

Subtracting Eq. (10.40) from (10.39) yields a net attractive force
Fnet = —TrXjh that will pull the plates together.

2. Contact angle > 90° (Fig. 10.23c). In this case the liquid will bead up and
push the plates apart. This simple experiment makes it clear why a wetting
system is a necessary condition for liquid-phase sintering to occur.
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Figure 10.23 Thought experiment illustrating the origin of the two forces acting on a
liquid drop for (a) wetting, 6 < 90°, (b) 9 = 90C, and (c) 0 > 90C. For the first two cases
the net force is attractive.

3. Contact angle < 90° (Fig. 10.23a). This is the most interesting case.
Upon melting, the liquid will spread and pull the plates closer as a
result of two forces. The first component is due to negative pressure
that develops in the meniscus as a result of its negative curvature, or

Fatt = *)

where AP is the pressure across the curved surface (App. 10B)

(10.41)
P2

171where p2 is defined in Fig. 10.23a. The second component, also attrac-
tive, is once again due to the component of 7lv in the direction normal to
the two plates, given by

(10.42)

In general, this component is always small compared to the first and can
be ignored, except when 6 approaches 90°.

171 In general, A.P is related to the two principal radii of curvature of the saddle, as shown in
Fig. 10.26b in App. 10B. In most cases, however, p] ~S> />> and Eq. (10. 41) is a very good
approximation.
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Another way to think of the problem is to assume that the negative
pressure in the pores is pulling the liquid into them and hence pulling the
particles together.172 Typically, the pores during liquid-phase sintering are
on the order of 0.1 to 1 um. For a liquid with a 7lv on the order of 1 J/ni2,
this translates to compressive stresses [Eq. (10.41)] between particles on the
order of 1 to l0MPa. These stresses together with the greatly enhanced
diffusion rates in the liquid (see below) are key to the process.

10.4.3 Liquid-Phase Sintering Mechanisms

Upon melting, a wetting liquid will penetrate between grains, as shown in
Fig. 10.12b, and exert a attractive force, pulling them together. The combina-
tion of these forces and the lubricating effect of the liquid as it penetrates
between grains leads to the following three mechanisms that operate in
succession:

Particle rearrangement

Densification results from particle rearrangement under the influence of
capillary forces and the filling of pores by the liquid phase. This process is
very rapid, and if during the early stages of sintering, the liquid flows and
completely fills the finer pores between the particles, 100 percent densification
can result almost instantaneously.

Solution reprecipitation

At points where the particles touch, the capillary forces generated will
increase the chemical potential of the atoms at the point of contact relative
to areas that are not in contact. The chemical potential difference between
the atoms at the two sites is given by (see Chap. 12)

A t - / z o = fcrin—= APftMX (10.43)
a0

where A/* is given by Eq. (10.41), a is the activity of the solid in the liquid at the
point of contact, and a0 is the same activity under no stress, i.e., at the surface
of the pore. This chemical potential gradient induces the dissolution of atoms
at the contact points and their reprecipitation away from the area between the
two particles, which naturally leads to shrinkage and densification. Further-
more, the kinetics of densification will be much faster than in the case of
solid-state sintering, because diffusion is now occurring in the liquid where
the diffusivities are orders of magnitude higher than those in the solid state.
Obviously, for this process to occur, there must be some solubility of the
solid in the liquid — but not vice versa — and wetting. It is worth noting
172 For example, it is this force that results in the strong cohesion of two glass slides when a thin

layer of water is inserted between them.
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Figure 10.24 Effect of small amounts of liquid on coarsening of microstructure.173

here that in addition to densification, coarsening or Ostwald ripening will
occur simultaneously by the dissolution of the finer particles and their repreci-
pitation on the larger particles. The dramatic effect of having a small amount
of liquid on the final microstructure is shown in Fig. 10.24.

Solid-state sintering

Once a rigid skeleton is formed, liquid-phase sintering stops and solid-state
sintering takes over, and the overall shrinkage or densification rates are
significantly reduced.

A schematic of a typical shrinkage curve for the three phases of sintering
is shown in Fig. 10.25 (note the log scale on the x axis). Relative to the other
two processes, particle rearrangement is the fastest, occurring in the time
scale of minutes. The other two processes take longer since they depend on
diffusion through the liquid or solid.

Based on the discussion so far and numerous studies, it is now appreciated
that for rapid densification to occur during liquid-phase sintering, the follow-
ing conditions have to be met:

• There must be an appreciable solubility of the solid in the liquid in order
for material transfer away from the contact areas to occur.

• Since the capillary pressure is proportional to 1/p2, which in turn scales
with the particle diameter, it follows that the finer the solid phase, the

173 T. Lien, MSc. thesis. Drexel University, 1992.
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Figure 10.25 Time dependence of shrinkage evolution as a result of the mechanisms
discussed in text.

higher the capillary pressures that can develop and the faster the densifi-
cation rate.

• Wetting of the solid phase by the liquid is needed.
• Sufficient amount of liquid to wet the solid phase must be present.

Clearly liquid-phase sintering of ceramics is more forgiving in terms of
powder packing, more rapid, and hence more economical than the solid-state
version. Indeed, most commercial ceramics are liquid-phase sintered. And
even some of the more advanced materials such as Si3N4 could not be
densified without the presence of a liquid phase. If the properties required
of the part are not adversely affected by the presence of a liquid, then it is
the preferred route. However, for many applications, the presence of a
glassy film at the grain boundaries can have a very detrimental effect on
properties. For example, creep resistance can be significantly compromised
by the presence of a glassy phase that softens upon heating. Another
application in which the presence of an ionically conducting glassy phase is
intolerable is in the area of ceramic insulators. Consequently, in the pro-
cessing of today's electronic ceramics, liquid phases and residual porosities
are avoided as much as possible.

10.5 Hot Pressing and Hot Isostatic Pressing

By now it should be clear that the driving force for densification is the
chemical potential gradient between the atoms in the neck region and that
at the pore. This can be accomplished by application of a compressive
pressure to the compact during sintering (Fig. 10.12c); in other words, the
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simultaneous application of heat and pressure. If the applied pressure is
uniaxial, the process is termed hot pressing, whereas if it is hydrostatic, the
process is termed hot isostatic pressing or HIP.

The effect of applied pressure on chemical potential and vacancy
concentrations is discussed in detail in Chap. 12. Here it will only be noted
that the concentration of vacancies in an area subjected to a stress Cstress is
related to C0 by an equation similar to Eq. (10.9), that is.

o (10.44)

where ab is the effective stress at the boundary due to the applied stress (see
Worked Example 10.3). For a compressive applied stress, ab is negative174

and the concentration of vacancies at the boundary (i.e., between the parti-
cles) is less than that at the edges, which results in a net flux of vacancies from
the neck into the boundary areas and leads to densification.

The major advantage of hot pressing and HIP is the fact that the densifi-
cation occurs quite readily and rapidly, minimizing the time for grain growth,
which results in a finer and more uniform microstructure. The major disadvan-
tages, however, are the costs associated with tooling and dies and the fact that
the process does not lend itself to continuous production, since the pressing is
usually carried out in a vacuum or an inert atmosphere.

WORKED EXAMPLE 10.3

Calculate the effect of a 10 MPa applied pressure on the vacancy concentration
in a powder compact when x/r = 0.2, that is, during the initial stages of sintering
at 1500°C. State all assumptions.

Answer

Assume a surface energy of 1 J/m2, a molar volume of 10cm3. and a particle
radius of 2 urn. From Eq. (10.13), p % .Y2/(2r) = 4 x 10~8m. The vacancy
concentration at the neck area due to curvature is given by Eq. (10.9), or
(note that for the neck region K = — 1 /p) .

V,,,7sv^ / 1 0 x l O - 6 x l \ ^
3 - V + 4 x 10-* x 8.314 x 1773 JC° ~ L°17C°

Assuming the particle arrangement shown in Fig. 10.12c and a perfect
cubic array, one can use a simple balance-of-forces argument, namely.

^"app = °u(2r)~ = ^boundary = (Th7T\~

where 07, is the stress on the neck or boundary.

174 Here and throughout the book, the chosen convention is that applied tensile forces are
positive and compressive stresses are negative.
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It follows that ab= -(4aa/7i)(r/x)2 w -318 x 106Pa. Consequently, the
vacancy concentration due to the applied stress at the boundary between
grains is given by Eq. (10.44):

rstresS _ A , Vm^ \ A 1 0 X H T 6 X 3 1 8 X 1 0 6 \ ^
^boundary - ^ +^T)^ ~~ ̂  8.314 x 1773 J C0 ~ U.8C0

From this simple calculation it should be obvious why the application of a
moderate pressure can result in a significant increase in the densification rate
during all stages of sintering.

The vacancy concentration gradient that results from the curvature and
stress is AC/.x = (1.017 - 0.8)/x = 0.217/jc, which is greater than either
alone. The effect of stress, however, is much more significant.

10.6 Summary

1. Local variations in curvature result in mass transfer from areas of
positive curvature (convex) to areas of negative curvature (concave).
Quantitatively, this chemical potential differential is given by

/A/1 /^conv Mconc Tsv * m ̂

which has to be positive if sintering is to occur.
2. On the atomic scale, this chemical potential gradient results in a local

increase in the partial pressure of the solid and a local decrease in the
vacancy concentration at the convex areas relative to the concave areas.
Looked at from another perspective, matter will always be displaced
from the peaks into the valleys.

3. High vapor pressures and small particles will tend to favor gas transport
mechanisms which lead to coarsening, whereas low vapor pressure and
fast bulk or grain boundary diffusivities will tend to favor densification.
If the atomic flux is from the surface of the particles to the neck region,
or from the surface of smaller to larger particles, this leads to, respec-
tively, neck growth and coarsening. However, if atoms diffuse from
the grain boundary area to the neck region, densification results.
Hence, all models that invoke shrinkage invariably assume that the
grain boundary areas or free surfaces are the vacancy sinks and that
neck surfaces are the vacancy sources.

4. Sintering kinetics are dependent on the particle size and relative values
of the transport coefficients, with smaller particles favoring grain bound-
ary and surface diffusion and larger particles favoring bulk diffusion.

5. During the intermediate stage of sintering, the porosity is eliminated
by the diffusion of vacancies from porous areas to grain boundaries,
free surfaces, or dislocations. The uniformity of particle packing and
lack of agglomerates are important for the achievement of rapid
densification.
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6. In the final stages of sintering, the goal is usually to eliminate the last
remnants of porosity. This can only be accomplished, however, if the
pores remain attached to the grain boundaries. One way to do this is
to slow down grain boundary mobility by doping or by the addition
of inclusions or second phases at the boundaries.

7. During liquid-phase sintering, the capillary forces that develop can be
quite large. These result in the rearrangement of the particles as well
as enhance the dissolution of matter between them, resulting in fast
shrinkage and densification. Most commercial ceramics are manu-
factured via some form of liquid-phase sintering.

8. The application of an external force to a powder compact during
sintering can greatly enhance the densification kinetics by increasing
the chemical potential gradients of the atoms between the particles,
inducing them to migrate away from these areas.

Appendix 10A

Derivation of the Gibbs-Thompson Equation

The work of expansion of a bubble must equal the increase in surface energy, or

For a sphere of radius p, dA/dV = 87rp/(47r/92) = 2/p. It follows that

The Gibbs free energy change is given by

dG= V dP - S dT

For an isothermal process dT = 0 and dG = V dP. Integrating yields
AG = FAP. Substituting for the value of Af given above and assuming
1 mol, one obtains

where Vm is the molar volume, which is related to the atomic volume by

Appendix 10B

Radii of Curvature

In order to understand the various forces that arise as a result of curvature it
is imperative to understand how curvature is defined and its implication. Any
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(0) (b)

Figure 10.26 Definition of radii of curvature for (a) a sphere and (b) a saddle.

surface can be defined by its radius of curvature, K, which can be defined by
two orthogonal radii of curvature, p\ and p2 (

see Fig- 10.26) where

« = — + — (10B.1)
P\ P2

For a spherical particle, the two radii of curvature are defined as positive,
equal to each other, and equal to the radius of the sphere psphere (see

Fig. 10.26a). Thus for a sphere, K — 2//9sphere and AP is positive. Conversely,
for a spherical pore, the two radii are equal, but since in this case the surface
of the pore is concave, it follows that K = —2/ppOK and AP is negative, which
renders ACvac [Eq. (10.10)] positive. That is, the vacancy concentration just
below a concave surface is less than that under a flat surface.

In sintering, the geometry of the surface separating particles is modeled
to be a saddle with two radii of curvature, as shown in Fig. 10.26&. It follows
that

2 (iOB.2)
P\ Pi pneck pneck

In most sintering problems, pi is on the same order as the particle diameter d,
which is usually much larger than the radius of curvature of the neck pneck

and thus K % — 1 //?neck .

Appendix 10C

Derivation of Eq. (10.20)

Refer to Fig. 10.14a. The volume of each polyhedron is

V =
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and the volume of the porous channel per polyhedron is given by

where rc is the radius of the channel. The factor 1/3 comes about because
each cylinder is shared by three polyhedra. The fraction of pores is thus
simply

-~ n nr i ^
( }

The total flux of vacancies diffusing away from the cylinder of surface area. 5
is given by175

rr (10C.2)

where DvX is the diffusivity of the anion vacancies assumed here to be rate
limiting. Since for a cylindrical pore, K = — l/r(., AC rX in this case is given
by Eq. (10.10):

(10C.3)

where S7X is the volume of the anion vacancy. Combining Eqs. (IOC. 2) and
(10C.3) and noting that Z),..xfixQ = D* wnere Dx is the diffusivity of the
anions, it follows that

j e -> n /- ^X7sv 27r/)x7sv / ,ftr> ^J\'S=-2irD,,xC0-j^-= -- — — (10C.4)

Since it was assumed that the rate-limiting step was the diffusion of the
anions, it follows that the ambipolar diffusion coefficient, /)ambi ~ ^x-
Make that substitution in Eq. (10C.4) and note that the total volume of
matter transported per unit time is J • S • HMX, or

— -

175 In cylindrical coordinates. Pick's second law is given by

dc D d { dc
dt r dr \ Or

which at steady state, i.e., dc/dt = 0, has solution of the form A + Blogr. where A and B
are constants that are determined from the boundary conditions. Thus strictly speaking.
Eq. (10C.2), is incorrect since it assumes a planar geometry. It is used here for the sake of
simplicity. Using the more exact expression, namely

' \og(r/ap

does not greatly affect the final result.
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Integrating this equation, while noting that for a cylinder of radius r and
length ap, dV — 1map dr and rearranging terms yields

,-t) (10C.5)
a a

where tf is the time at which the pore vanishes. Experimentally, it is much
easier to measure the average porosity than the actual radii of the pores.
By combining Eqs. (10C.1) and (10C.5) and noting that the particle diameter
d scales with ap, this model predicts that

Pc - PQ = (const.) ̂ g|?Mx , (10Q6)

where P0 is the porosity at the end of the intermediate stage of sintering.

Appendix 10D

Derivation of Eq. (10.22)

Given the spherical symmetry of the problem, it can be easily shown that

cvac = 5 + - (10D.1)

is a solution to Pick's first law when the latter is expressed in spherical
coordinates,176 and cvac is the vacancy concentration at any location. By
assuming that the following boundary conditions (Fig. 10.15a) apply — at
r = pp, cvac = Ccurv given by Eq. (10.9), and at r = R, cvac = C0, — it can
be shown (see Prob. 10.7a) that

(10D.2)
--PP Pp K Pp

satisfies the boundary and steady-state conditions, and ACvac is given by
Eq. (10.10).

176 Pick's second law in spherical coordinates is:

dc D d ( 7 dc

which at steady state becomes

'dr\' dr
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Consequently the total flux of vacancies moving radially away from the
pore is

J-S = -4np2
pDr(^} = 47r^A.ACvac— — (10D.3)

V dr Jr = Pr R-pp

where S is the surface area of the pore. The total volume eliminated per unit
time is thus

dv
a - a

at kT R- Pp

where the product Z),.fiaC0 was replaced by the diffusivity of the rate-limiting
ion Da in the bulk. For a spherical pore, dV — 4-jrpj, dpp\ when this is
combined with Eq. (10D.4), integrating the latter by neglecting pp with
respect to R, one obtains the final solution, namely

COD.5)

Problems

10.1. (a) Explain, in your own words, why a necessary condition for
sintering to occur is that 7gb < 27SV. Furthermore, show why
this condition implies that </> < 180°.

(b) The dihedral angles 0 for three oxides were measured to be 150 ,
120°, and 60°. If the three oxides have comparable surface
energies, which of the three would you expect to densify most
readily? Explain.

(c) At 1850°C, the surface energy of the interface between alumina
and its vapor is approximately 0.9 J/m2. The average dihedral
angle for the grain boundaries intersecting the free surface was
measured as 115°. In an attempt to toughen the alumina, it is
dispersed with ZrO2 particles that are left at the grain bound-
aries. Prolonged heating at elevated temperatures gives the parti-
cles their equilibrium shape. If the average dihedral angle
between the particles at the grain boundaries was measured to
be 150°, estimate the interface energy of the alumina/zirconia
interface. What conclusions, if any, could be reached concerning
the interfacial energy if the particles had remained spherical?

Answer. 1.87 J/m2

10.2. First 8.5g of ZnO was pressed into a cylindrical pellet (diameter of
2 cm, height of 1 cm). Then the pellet was placed in a dilatometer
and rapidly heated to temperature T2. The isothermal axial shrinkage
was monitored as a function of time, and the results are plotted in
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Fig. 10.4. Calculate the relative theoretical density of the pellet at the
end of the run, i.e., after 80 min at T2. State all assumptions. Hint: The
radial shrinkage cannot be ignored.

Answer. 0.94

10.3. (a) Estimate the value of P /P f l a t for a sphere of radius 1 nm at room
temperature if the surface tension is 16J/m2 and the atomic
volume is 20 x 10-30m3.

Answer: P / P f l a t = 4.88 x 106

(b) Calculate the relative change in average partial pressure at
1300K as the average particle size increases from 0.5 to 10 urn.

Answer: PQ.S^/PIQ^ =1.0132
(c) Would your answer in part (b) have changed much if the final

diameter of the particle were that of a 10 cm3 sphere?

Answer: Po.s^m/^iOcm = 1-014
(d) Calculate the vapor pressure of liquid silica over a flat surface at

2000 K, and compare it to the equilibrium vapor pressure inside a
0.5-um-diameter bubble of silica vapor suspended in liquid silica
at the same temperature.

10.4. Derive an expression for the pressure differential between points s and
n in Fig. 10.9.

10.5. A 1 cm2 surface is covered by a bimodal distribution of hemispherical
clusters, one-half of which are l0 nm and the other half are 30 nm in
diameter.
(a) Describe, in your own words, what you believe will happen as the

system is held at an elevated temperature for a given time.
(b) Assuming that the large clusters consume all the small clusters, at

equilibrium, what will be the reduction in energy of the system,
given that the surface energy of the clusters is 2.89 J/m2 and
the initial total number of clusters is 4 x 1010? Ignore the changes
occurring to the substrate.

Answer: 7.2 x 10-5 J

10.6. (a) Using a similar approach to the one used to arrive at Eq. (10.20),
derive Eq. (10.21).

(b) In the intermediate-phase sintering model, the grains were
assumed to be tetrakaidecahedra (Fig. 10.14a). Repeat the
analysis, using cubic particles. Does the final dependence of
shrinkage on the dimensions of the cube that you obtain differ
from Eq. (10.20) or (10.21)?

10.7. Derive Eq. (10.25). Plot this equation for various values of Rgb and pp,
and comment on the importance of the log term.
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10.8. (a) Develop an expression relating the equilibrium coordination
number of a pore n to the dihedral angle d> of the system.

Answer, n = 360/(180 - 0)

(b) For a given packing of particles, will increasing the dihedral
angle aid or retard pore elimination? Explain.

(c) Which pore(s) is thermodynamically stable in Fig. 10.16?
Explain.

10.9. Given an oxygen-deficient MO oxide that is difficult to densify, for
which it is known that Dcat < £>an. Detail a strategy for enhancing
the densification kinetics of this oxide.

10.10. The sintering of a compound MO is governed by diffusion of oxygen
ions. If this compound is cation-deficient, propose a method by which
the sintering rate may be enhanced.

10.11. (a) What is the range of contact angles for the following conditions?

1- 7h- = 7sv < 7is
2. 7iv > 7sv > 7si
3- 7iv > 7sv = 7is

(b) Redraw Fig. 10.36 for the following cases: 7eb = 7s), 7gb = 27s(,
and7gb = 0.l7sl.
Make sure that you pay special attention to how far the liquid
penetrates into the grain boundary as well as the dihedral
angle. Which of the three cases would result in faster densifica-
tion? Explain.

10.12. (a) Referring to Fig. 10.236, qualitatively describe, using a series of
sketches, what would happen to the shape of the cylinder as it
melted such that the liquid could not spread on the solid surface
(that is, Xis fixed in Fig. 10.236), but the plates were free to move
vertically.

(b) Assuming that an equilibrium shape is reached in part (a) and
that the radius of curvature of the resulting shape is 1.5X. calcu-
late the wetting angle.

Answer. 160°
(c) Refer once again to Fig. 10.236. If one assumes that upon

melting the resulting shape is a cube of volume V, derive an
expression for the resulting force. Is it attractive or repulsive?
Explain.

Answer: 47ivFli/3

(d) Repeat part (c), assuming the liquid between the plates takes the
shape of a tetrakaidecahedron (Fig. 10.14a). Does the answer
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Figure 10.27 (a) Schematic of sessile drop assuming it is a spherical cap. (b) Liquid
cylinder between two plates.

depend on which face of the tetrakaidecahedron is wetting?
Explain.

10.13. (a) Show that the total surface energy of the "spherical cap" in
Fig. 10.27a is given by

\2_V_ 27T/?2] _ T6F-7T/Z3

tot ~ 7sv + 7lv [T + ~T~J + (7sl ~ 7sv)

where V is the volume of the droplet, given by
V = (7r/6)(/23 + 3h2a), and A is the total area of the slab. Hint:
The surface area of the spherical cap is S = 2-nRh, and
R = (a2 + h2}/2h.

(b) Show that the surface energy is a minimum when

,3 3 V 7si + 7iv - 7sv
•77- n*y ~L_ /-*vf — '"V i/i /sv -r ^, jf]v /s]

Show that this expression is consistent with Eq. (10.37); that is,
show that for complete wetting, 6 — 0°, h = 0, and for B — 90°,

10.14. (a) Long cylinders of any material and long cylindrical pores are
inherently unstable and will tend to break up into one or more
spheres. Explain.

(b) For the liquid cylinder shown in Fig. 10.27 b, show that the length
beyond which it will become mechanically unstable is given by
L = 2itR. Is this the same value at which the cylinder becomes
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thermodynamically unstable? Explain. You may ignore solid-
liquid interactions and gravity.

10.15. (a) If a long wire of radius r and length / is heated, it will tend to
shorten. Explain.

(b) To keep it from shrinking, a force Fmust be applied to the wire.
Derive an expression for Fin terms of the surface tension a of the
wire and its dimensions.

(c) Write an expression for the change in energy associated with an
incremental increase in length of the wire in terms of 7SV and the
dimensions of the wire. Relate these results to that obtained in
part (b) and show that a = 7SV.

(d) Explain how this technique can be used to measure 7SV of
solids.

10.16. One criterion for the densification by sintering in the presence of a
liquid is wetting of the solid by the liquid.

(a) Discuss the wetting phenomena which are generally relevant to
the liquid-phase sintering of any system.

(b) If the surface energy of A12O3 (s) is 0.9 J/m2 and the surface
tension of Cr (lq) is 2.3 J/m2 at its melting point of 1875 C.
What is the value of the interfacial energy between the Cr
liquid and alumina if the liquefied metal completely wets the
oxide during the sintering process?

(c) Calculations for the interfacial energy between the Cr liquid
and alumina yield a value of 0.323 J/m2 . Assuming this value
is accurate, discuss its implications to the liquid-phase sintering
of this cermet system.
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Chapter 11

Mechanical Properties: Fast Fracture

The careful text-books measure
(Let all who build beware!)
The load, the shock, the pressure
Material can bear.
So when the buckled girder
Lets down the grinding span.
The blame of loss, or murder.
Is laid upon the man.
Not on the stuff — the Man!

R. Kipling, "Hymn of the Breaking Strain'

11.1 Introduction

Sometime before the dawn of civilization, some hominid discovered that the
edge of a broken stone was quite useful for killing prey and warding off
predators. This seminal juncture in human history has been recognized by
archeologists who refer to it as the stone age. C. Smith178 goes further by
stating, "Man probably owes his very existence to a basic property of
inorganic matter, the brittleness of certain ionic compounds." In this context.
Kipling's hymn and J. E. Gordon's statement179 that "The worst sin in an
engineering material is not lack of strength or lack of stiffness, desirable as
these properties are, but lack of toughness, that is to say, lack of resistance
to the propagation of cracks" stand in sharp contrast. But it is this contrast
that in a very real sense summarizes the short history of technical ceramics;
what was good enough for millennia now falls short. After all, the con-
sequences of a broken mirror are not as dire as those of, say, an exploding
turbine blade. It could be argued, with some justification, that were it not
for their brittleness, the use of ceramics for structural applications, especially

178 C. S. Smith, Science, 148:908 (1965).
179 J. E. Gordon, The New Science of Engineering Materials, 2d ed.. Princeton University Press.

Princeton, New Jersey, 1976.
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Fracture

Elastic energy
stored per unit
volume

Failure

Strain Strain

(6)

Figure 11.1 Typical stress-strain curves for (a) brittle solids and (b) ductile materials.

at elevated temperatures, would be much more widespread since they possess
other very attractive properties such as hardness, stiffness, and oxidation and
creep resistance.

As should be familiar to most, the application of a stress to any solid
will initially result in a reversible elastic strain that is followed by either
fracture without much plastic deformation (Fig. 11.la) or fracture that is
preceded by plastic deformation (Fig. 11.1b). Ceramics and glasses fall in
the former category and are thus considered brittle solids, whereas most
metals and polymers above their glass transition temperature fall into the
latter category.

The theoretical stress level at which a material is expected to fracture
by bond rupture was discussed in Chap. 4 and estimated to be on the
order of Y/10, where Y is Young's modulus. Given that Y for ceramics
(see Table 11.1) ranges between 100 and 500 GPa, the expected "ideal"
fracture stress is quite high — on the order of 10 to 50 GPa. For reasons
that will become apparent shortly, the presence of flaws, such as shown in
Fig. 11.2, in brittle solids will greatly reduce the stress at which they fail.
Conversely, it is well established that extraordinary strengths can be achieved
if they are flaw-free. For example, a defect-free silica glass rod can be
elastically deformed to stresses that exceed 5 GPa! Thus it may be concluded,
correctly one might add, that certain flaws within a material serve to promote
fracture at stress levels that are well below the ideal fracture stress.

The stochastic nature of flaws present in brittle solids together with the
flaw sensitivity of the latter has important design ramifications as well.
Strength variations of ±25 percent from the mean are not uncommon and
are quite large when compared to, say, the spread of flow stresses in
metals, which are typically within just a few percent. Needless to say, such
variability, together with the sudden nature of brittle failure, poses a veritable
challenge for design engineers considering using ceramics for structural and
other critical applications.
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Figure 11.2 Surface cracks caused by the accidental contact of a glass surface with dust
particles or another solid surface can result in significant reductions in strength.

Flaws, their shape, and their propagation are the central themes of this
chapter. The various aspects of brittle failure are discussed from several
viewpoints. The concepts of fracture toughness and flaw sensitivity are
discussed first. The factors influencing the strengths of ceramics are dealt
with in Sec. 11.3.180 Toughening mechanisms are dealt with in Sec. 11.4.
Section 11.5 introduces the statistics of brittle failure and a methodology
for design.

11.2 Fracture Toughness

11.2.1 Flaw Sensitivity

To illustrate what is meant by flaw or notch sensitivity, consider the
schematic of what occurs at the base of an atomically sharp crack upon
the application of a load Fapp. For a crack-free sample (Fig. 11.3a), each
chain of atoms will carry its share of the load F/n, where n is the number
of chains, i.e., the applied stress aapp is said to be uniformly distributed.
The introduction of a surface crack results in a stress redistribution such
that the load that was supported by the severed bonds is now being carried
by only a few bonds at the crack tip (Fig. 11.3b). Said otherwise, the presence
of a flaw will locally amplify the applied stress at the crack tip crtlp. As crapp

is increased, <rtip increases accordingly and moves up the stress versus
interatomic distance curve, as shown in Fig. 11.3c. As long as crtip < <rmax.
the situation is stable and the flaw will not propagate. However, if at any
time <7tip exceeds crmax, the situation becomes catastrophically unstable (not

180 The time-dependent mechanical properties such as creep and subcritical crack growth are
dealt with separately in the next chapter.
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unlike the bursting of a dam). Based on this simple picture, the reason why
brittle fracture occurs rapidly and without warning, with cracks propagating
at velocities approaching the speed of sound, should now be obvious.
Furthermore, it should also be obvious why ceramics are much stronger in
compression than in tension.

To be a little more quantitative in predicting the applied stress that
would lead to failure, crtip would have to be calculated and equated to <rmax

Interatomic distance, nm

(O

Figure 11.3 (a) Depiction of a uniform stress, (b) Stress redistribution as a result of the
presence of a crack, (c) For a given applied load, as the crack grows and the bonds are
sequentially ruptured, <7tip moves up the stress versus displacement curve toward crmax.
When crtip « crmax, catastrophic failure occurs. Note that this figure is identical to
Fig. 4.6, except that here the y axis represents the stress on the bond rather than the applied
force.
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Figure 11.4 (a) Surface crack of length c and radius of curvature p. (b) Interior crack of
length 2c. Note that from a fracture point of view, they are equivalent.

or Y/10. Calculating <7tip is rather complicated (only the final result is given
here) and is a function of the type of loading, sample, crack geometry, etc.181

However, for a thin sheet, it can be shown that crtip is related to the applied
stress by

= 2<7app 11 .1

where c and p are, respectively, the crack length and its radius of curvature182

(Fig. 11.4).
Since, as noted above, fracture can be reasonably assumed to occur

Y/10, it follows that

Y [p
^20 Vf

when <7tip = crmax

(11.2)

where oy is the stress at fracture. This equation predicts that (1) af is inversely
proportional to the square root of the flaw size and (2) sharp cracks, i.e.,
those with a small p, are more deleterious than blunt cracks. Both predictions
are in good agreement with numerous experimental observations.

11.2.2 Energy Criteria for Fracture — The Griffith Criterion

An alternate and ultimately more versatile approach to the problem of
fracture was developed in the early 1920s by Griffith.183 His basic idea was
181 C. E. Inglis, Trans. Inst. Naval Archit., 55:219 (1913).
182 This equation strictly applies to a surface crack of length c, or an interior crack of length 2c in

a thin sheet. Since the surface of the material cannot support a stress normal to it. this condi-
tion corresponds to the plane stress condition (the stress is two-dimensional). In thick
components, the situation is more complicated, but for brittle materials the two expressions
vary slightly.

183 A. A. Griffith, Phil. Trans. R. Acad., A221:163 (1920).
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to balance the energy consumed in forming new surface as a crack propagates
against the elastic energy released. The critical condition for fracture, then,
occurs when the rate at which energy is released is greater than the rate at
which it is consumed. The approach taken here is a simplified version of
the original approach, and it entails deriving an expression for the energy
changes resulting from the introduction of a flaw of length c in a material
subjected to a uniform stress <rapp.

Strain energy

When a solid is uniformly elastically stressed, all bonds in the material
elongate and the work done by the applied stress is converted to elastic
energy that is stored in the stretched bonds. The magnitude of the elastic
energy stored per unit volume is given by the area under the stress-strain
curve184 (Fig. 11. la), or

1 i -
TJ — rfr — °"aPP (\\ \\^elas — 2 £(Japp — 2 ~V~ ^ '

The total energy of the parallelepiped of volume V0 subjected to a uniform
stress (Tapp (Fig. 11.5a) increases to

v 2

U = U0 + Koalas = ^0 +-~^ (1 1-4)

where UQ its free energy in the absence of stress.
In the presence of a surface crack of length c (Fig. 1 1.5b), it is fair to

assume that some volume around that crack will relax (i.e., the bonds in
that volume will relax and lose their strain energy). Assuming — it is not a
bad assumption, as will become clear shortly — that the relaxed volume is
given by the shaded area in Fig. 11.5b, it follows that the strain energy of
the system in the presence of the crack is given by

- n i
— U +

where / is the thickness of the plate. The third term represents the strain
energy released in the relaxed volume.

184 When a bond is stretched, energy is stored in that bond in the form of elastic energy. This
energy can be converted to other forms of energy as any schoolboy with a slingshot can
attest; the elastic energy stored in the rubber band is converted into kinetic energy of the
projectile. If by chance a pane of glass comes in the way of the projectile, that kinetic
energy will in turn be converted to other forms of energy such as thermal, acoustic, and
surface energy. In other words, the glass will shatter and some of the kinetic energy will
have created new surfaces.
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Surface energy

To form a crack of length c, an energy expenditure of

11.6)

is required, where 7 is the intrinsic surface energy of the material. The factor
2 arises because two (bottom and top) new surfaces are created by the
fracture event.

app app

T
(a)

Material in
shaded area
is relaxed.

Surface energy t

Elastic energy
term

Crack size, c
(O

Crack size, c

Figure 11.5 (a) Uniformly stressed solid, (b) Relaxed volume in vicinity of crack of length
c. (c) Plot of Eq. (11.7) as a function of c. The top curve represents the surface energy term,
and the lower curve represents the strain energy release term. Curve labeled Utot is sum of
the two curves. The critical crack length ccrit at which fast fracture will occur corresponds
to the maximum, (d) Plot of Eq. (11.7) on the same scale as in part (c) but for \/2 times the
applied stress applied in (c). Increasing the applied stress by that factor reduces ccri, by a
factor of 2.
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The total energy change of the system upon introduction of the crack is
simply the sum of Eqs. (11.5) and (11.6), or

(11.7)

Since the surface energy term scales with c and the strain energy term
scales with c2, Utot has to go through a maximum at a certain critical crack
size ccrit (Fig. 11 .5c). This is an important result since it implies that extending
a crack that is smaller than ccrit consumes rather than liberates energy and is
thus stable. In contrast, flaws that are longer than ccrit are unstable since
extending them releases more energy than is consumed. Note that increasing
the applied stress (Fig. 11.5d) will result in failure at smaller critical flaw
sizes. For instance, a solid for which the size of the largest185 flaw lies some-
where between those shown in Fig. 11.5c and d will not fail at the stress
shown in Fig. 11.5c, but will fail if that stress is increased (Fig. 11.5d).

The location of the maximum is determined by differentiating Eq. (11.7)
and equating it to zero. Carrying out the differentiation, replacing erapp by oy,
and rearranging terms, one can show that the condition for failure is

a/ \Mcrit = 2^/^Y (11.8)

A more exact calculation yields

(11.9)

and is the expression used in subsequent discussions.186 This equation
predicts that a critical combination of applied stress and flaw size is required
to cause failure. The combination cr^/mi occurs so often in discussing fast
fracture that it is abbreviated to a single symbol K1 with units MPa-m1/2 ,
and is referred to as the stress intensity factor. Similarly, the combination
of terms on the right-hand side of Eq. (11.9), sometimes referred to as the
critical stress intensity factor, or more commonly the fracture toughness, is
abbreviated by the symbol KIC. Given these abbreviations, the condition
for fracture can be succinctly rewritten as

(11.10)

Equations (11.9) and (11.10) were derived with the implicit assumption
that the only factor keeping the crack from extending was the creation of new

18:1 The largest flaw is typically the one that will cause failure, since it becomes critical before
other smaller flaws (see Fig. 1 1.8«).

186 Comparing Eqs. (11.8) and (11.9) shows that the estimate of the volume over which the stress
is relieved in Fig. 11.5b was off by a factor of \/2, which is not too bad.
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Table 11.1 Data for Young's modulus K, Poisson's ratio, and KIc values of selected
ceramics at ambient temperaturesf

Oxides
A12O3

A12O3 (single crystal, 10l2)
A12O3 (single crystal, 0001)
BaTiO3

BeO
HfO2 (monoclinic)
MgO
MgTi2O5

MgAl2O4

Mullite [fully dense]
Nb2O5

PbTiO3

SiO2 (quartz)
SnO2

TiO2

ThO2

Y203

Y3A15O12

ZnO
ZrSiO4 (zircon)
ZrO2 (cubic)
ZrO2 (partially stabilized)

r.
(GPa)

390
340
460
125
386
240

250-300
250

248-270
230
180
81
94

263
282-300

250
175

124
195
220
190

Poisson's
ratio

0.20-0.25

0.34

0.18

0.24

0.17
0.29

0.25
0.31
0.30

Kif, Vickers
MPa-m 1 : hardness.

GPa

2.0-6.0 19.0-26.0
2.2

>6.0

0.8-1.2

2.5 6.0-10.0

1.9-2.4 14.0-18.0
2.0-4.0 15.0

12.0(011)

10.0 ± 1.0
1.6 10.0
1.5 7.0–9.0

18.0 ± 1.0
2.3 ± 1.0

%15.0
3.0-3.6 12.0-15.0

3.0-15.0 13.0

Carbides, Borides, and Nitrides and Silicides
A1N
B4C
BN
Diamond
MoSi2

Si
SiC [hot pressed]
SiC (single crystal)
Si3N4 Hot Pressed (dense)
TiB2

TiC
WC
ZrB2

Halides and Sulfides
CaF2

KC1 (forged single crystal)

308
417-450

675
1000
400
107

440 ± 10
460

300-330
500-570

456
450-650

440

110
24

0.25
0.17

0.27
0.19

0.22
0.11
0.18

0.14

12.0
30.0-38.0

10.0
3.0-6.0 26.0-36.0

3.7
3.0-10.0 17.0-30.0

18.0–34.0
3.0-5.0 16.0-28.0

6.0-20.0
22.0

0.80 1.800
^0.35 0.120
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Table 11.1 Continued

MgF2

SrF2

Glasses and Glass Ceramics
Aluminosilicate (Corning 1720)
Borosilicate (Corning 7740)
Borosilicate (Corning 7052)
LAS (glass-ceramic)
Silica (fused)
Silica (96%)
Soda Lime Silica Glass

Y.
(GPa)

138
88

89
63
57

100
72
66
69

Poisson's
ratio

0.24
0.20
0.22
0.30
0.16

0.25

Kir,

MPa-m 1 / 2

1.00
1.00

0.96
0.75

2.00
0.80
0.70
0.82

Vickers
hardness,
GPa

6.000
1.400

6.6
6.5

6.0-9.0

5.5

1 The fracture toughness is a function of microstructure. The values given here are mostly for
comparison's sake.

surface. This is only true, however, for extremely brittle systems such as
inorganic glasses. In general, however, when other energy dissipating
mechanisms, such a plastic deformation at the crack tip, are operative, KIc

is defined as

where Gc is the toughness of the material in joules per square meter. For
purely brittle solids,187 the toughness approaches the limit Gc = 2j. Table
11.1 lists Young's modulus, Poisson's ratio, and K1c values of a number of
ceramic materials. It should be pointed out that since (see below) Kic is a
material property that is also microstructure-dependent, the values listed in
Table 11.1 are to be used with care.

Finally it is worth noting that the Griffith approach, Eq. (11.10), can be
reconciled with Eq. (11.2) by assuming that p is on the order of 10r0, where r0

is the equilibrium interionic distance (see Prob. 11.3). In other words, the
Griffith approach implicitly assumes that the flaws are atomically sharp, a
fact that must be borne in mind when one is experimentally determining
K1c for a material.

To summarize: fast fracture will occur in a material when the product of
the applied stress and the square root of the flaw dimension are comparable
to that material's fracture toughness.

187 Under these conditions, one may calculate the surface energy of a solid from a measurement
of A'I(. (see the section on measuring surface energies in Chap. 4).



366 Fundamentals of Ceramics

WORKED EXAMPLE 11.1

(a) A sharp edge notch 120 jjm deep is introduced in a thin magnesia plate. The
plate is then loaded in tension normal to the plane of the notch. If the applied
stress is 150 MPa, will the plate survive? (b) Would your answer change if the
notch were the same length but was as internal notch (Fig. 11 4b) instead of
an edge notch?

Answer

(a) To determine whether the plate will survive the applied stress, the stress
intensity at the crack tip needs to be calculated and compared to the fracture
toughness of MgO, which according to Table 11.1 is 2.5 MPa • rn1 2.

K1 in this case is given

K} = O^KC = 150\/3.14x 120 x 1(T6 = 2.91 MPa • m1 :

Since this value is greater than K\c for MgO, it follows that the plate will fail.
(b) In this case, because the notch is an internal one, it is not as detrimental as a
surface or edge notch and

K{ =crJ7r-= 150\/3.14 x 60 x 1(T6 = 2.06MPa-m' 2

Since this value is <2.5MPa-m l / 2 it follows that the plate would survive the
applied load.

Before one explores the various strategies to increase the fracture tough-
ness of ceramics, it is important to appreciate how K1c is measured.

Experimental Details: Measuring Kh

There are several techniques by which K1c can be measured. The two most
common methods entail measuring the fracture stress for a given geometry
and known initial crack length and measuring the lengths of cracks emanat-
ing from hardness indentations.

Fracture Stress

Equation (11.9) can be recast in its most general form

*I, ( 1 1 . 1 2 )

where $ is a dimensionless constant on the order of unity that depends on the
sample shape, the crack geometry, and its relative size to the sample dimensions.
This relationship suggests that to measure K1c, one would start with an atomic-
ally sharp crack [an implicit assumption made in deriving Eq. (11.10) — see
Prob. 11.3] of length c and measure the stress at which fracture occurs. Given
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Figure 11.6 (a) Schematic of single-edge notched beam specimen; (b) Chevron notch
specimen.

the sample and crack geometries, ^ can be looked up in various fracture
mechanics handbooks, and then Kh, is calculated from Eq. (11.12). Thus, in
principle, it would appear that measuring KIC, is fairly straightforward; experi-
mentally, however, the difficulty lies in introducing an atomically sharp crack.

Two of the more common test configurations are shown in Fig. 11.6. A
third geometry not shown here is the double torsion test, which in addition to
measuring Kic can be used to measure crack velocity versus K curves. This
test is described in greater detail in the next chapter.

Single-edge notched beam (SENB) test

In this test a notch of initial depth c is introduced, usually by using a diamond
wheel, on the tensile side of a flexure specimen (Fig. 11.6a). The sample is
loaded until failure, and c is taken as the initial crack length. Fracture tough-
ness K1c is calculated from

2B W2

where Ffail is the load at which the specimen failed and £ is a calibration
factor. The other symbols are defined in Fig. 11.6a. The advantage of this
test lies in its simplicity — its major drawback, however, is that the condition
that the crack be atomically sharp is, more often than not, unfulfilled, which
causes one to overestimate K{c.

Chevron notch (CN) specimen188

In this configuration, shown schematically in Fig. 11.6b, the chevron notch
specimen looks quite similar to the SENB except for the vital difference that
the shape of the initial crack is not flat but chevron-shaped, as shown by the
shaded area. The constant widening of the crack front as it advances causes

188 A chevron is a figure or a pattern having the shape of a V.
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crack growth to be stable prior to failure. Since an increased load is required to
continue crack extension, it is possible to create an atomically sharp crack in
the specimen before final failure, which eliminates the need to precrack the
specimen. The fracture toughness189 is then related to the maximum load at
fracture Ffail and the minimum of a compliance function £* .

_ (Si ~ S2)r Ffail

General remarks

Unless care is taken in carrying out the fracture toughness measurements.
different tests will result in different values of K{c. There are three reasons
for this: (1) The sample dimensions were too small, compared to the process
zone (which is the zone ahead of the crack tip that is damaged). (2) The
internal stresses generated during machining of the specimens were not
sufficiently relaxed before the measurements were made. (3) The crack tip
was not atomically sharp. As noted above, if the fracture initiating the
flaw is not atomically sharp, apparently higher K1c values will be obtained.
Thus although simple in principle, the measurement of K1c is fraught with
pitfalls, and care must be taken if reliable and accurate data are to be
obtained.

Hardness Indentation Method

Due to its simplicity, its nondestructive nature, and the fact that minimal
machining is required to prepare the sample, the use of the Vickers hardness
indentations to measure K1c has become quite popular. In this method, a
diamond indenter is applied to the surface of the specimen to be tested.
Upon removal, the sizes of the cracks that emanate (sometimes) from the
edges of the indent are measured, and the Vickers hardness H in GPa of
the material is calculated. A number of empirical and semiempirical relation-
ships have been proposed relating KIc

,, c, Y, and H, and in general the expres-
sions take the form

° 4

(11.13)

where $ is a geometric constraint factor and c and a are defined in Fig. 11.7.
The exact form of the expression used depends on the type of crack that
emanates from the indent.190 A cross-sectional view and a top view of the

189 For more information, see J. Sung and P. Nicholson. J. Amer. Cer. Soc.. 72 (6):1033-1036
(1989).

190 For more information, see G. R. Anstis, P. Chantikul, B. R. Lawn, and D. B. Marshall.
J. Amer. Cer. Soc., 64:533 (1981), and R. Matsumoto. J. Amer. Cer. Soc.. 70(C):366 (1987).
See also Problem 11.9.
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Figure 11.7 Crack systems developed from the Vickers indents, (a) Side and top views of a
median crack, (b) Top and side views of a Palmqvist crack.

two most common types of cracks of interest are shown in Fig. 11.7. At low
loads, Palmqvist cracks are favored, while at high loads fully developed
median cracks result. A simple way to differentiate between the two types
is to polish the surface layers away; the median crack system will always
remain connected to the inverted pyramid of the indent while the Palmqvist
will become detached, as shown in Fig. 11.7b.

It should be emphasized that the KIc values measured using this tech-
nique are usually not as precise as those from other more macroscopic tests.

11.2.3 Compressive and Other Failure Modes

Whereas it is now well established that tensile brittle failure usually propa-
gates unstably when the stress intensity at the crack tip exceeds a critical
value, the mechanics of compressive brittle fracture are more complex and
not as well understood. Cracks in compression tend to propagate stably
and twist out of their original orientation to propagate parallel to the
compression axis, as shown in Fig. I I . 8 b . Fracture in this case is caused
not by the unstable propagation of a single crack, as would be the case in
tension (Fig. 11.8a), but by the slow extension and linking up of many
cracks to form a crushed zone. Hence it is not the size of the largest crack
that counts, but the size of the average crack cav. The compressive stress to
failure is still given by

*Z-1= (U-14)

but now Z is a constant on the order of 15.
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Figure 11.8 (a) Fracture in ceramics due to preexisting flaws tested in tension. Failure
occurs by the unstable propagation of the worst crack that is also most favorably oriented.
(b) During compressive loading, many cracks propagate stably, eventually linking up and
creating a crush zone.191

Finally, in general there are three modes of failure, known as modes I,
II, and III. Mode I (Fig. 11.9a) is the one that we have been dealing with
so far. Modes II and III are shown in Fig. 11.9b and c, respectively. The
same energy concepts that apply to mode I also apply to modes II and III.
Mode I, however, is by far the more pertinent to crack propagation in brittle
solids.

11.2.4 Atomistic Aspects of Fracture

Up to this point, the discussion has been mostly couched in macroscopic
terms. Flaws were shown to concentrate the applied stress at their tip
which ultimately led to failure. No distinction was made between brittle
and ductile materials, and yet experience clearly indicates that the different
classes of materials behave quite differently — after all, the consequences

Adapted from M. F. Ashby and D. R. Jones. Engineering Materials, vol. 2. Pergamon Press.
New York. 1986.
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Figure 11.9 The three modes of failure: (a) opening mode, or mode I, characterized by
KIc; (b) sliding mode, or mode II, K}lc; (c) tearing mode, or mode III, Kmc.

of scribing a glass plate are quite different from those of a metal one. Thus the
question is, what renders brittle solids notch-sensitive, or more directly, why
are ceramics brittle?

The answer is related to the crack tip plasticity. In the foregoing discus-
sion, it was assumed that intrinsically brittle fracture was free of crack-tip
plasticity, i.e., dislocation generation and motion. Given that dislocations
are generated and move under the influence of shear stresses, two limiting
cases can be considered:

1. The cohesive tensile stress (w Y/10) is smaller than the cohesive
strength in shear, in which case the solid can sustain a sharp crack
and the Griffith approach is valid.

2. The cohesive tensile stress is greater than the cohesive strength in
shear, in which case shear breakdown will occur (i.e., dislocations will
move away from the crack tip) and the crack will lose its atomic
sharpness. In other words, the emission of dislocations from the crack
tip, as shown in Fig. ll.10a, will move material away from the crack
tip, absorbing energy and causing crack blunting, as shown in
Fig. 11.10b.

Theoretical calculations have shown that the ratio of theoretical shear
strength to tensile strength diminishes as one proceeds from covalent to
ionic to metallic bonds. For metals, the intrinsic shear strength is so low
that flow at ambient temperatures is almost inevitable. Conversely, for
covalent materials such as diamond and SiC, the opposite is true: the
exceptionally rigid tetrahedral bonds would rather extend in a mode I type
of crack than shear.

Theoretically, the situation for ionic solids is less straightforward, but
direct observations of crack tips in transmission electron microscopy tend
to support the notion that most covalent and ionic solids are truly
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Figure 11.10 (a) Emission of dislocations from crack tip. (b) Blunting of crack tip due to
dislocation motion, (c) Transmission electron micrograph of cracks in Si at 25 C. (d)
Another crack in Si formed at 500°C, where dislocation activity in vicinity of crack tip
is evident.192

brittle at room temperature (see Fig. 11. l0c). Note that the roughly order-of-
magnitude difference between the fracture toughness of metals (20 to
l00 MPa-m1/2) and ceramics is directly related to the lack of crack-tip
plasticity in the latter — moving dislocations consumes quite a bit of
energy.

The situation is quite different at higher temperatures. Since dislocation
mobility is thermally activated, increasing the temperature will tend to favor
dislocation activity, as shown in Fig. l l . l0d , which in turn increases the
ductility of the material. Thus the condition for brittleness can be restated
as follows: Solids are brittle when the energy barrier for dislocation
motion is large relative to the thermal energy kT available to the system.
Given the large flow stresses required to move dislocations at elevated
temperatures in oxide single crystals (Fig. 11.11), it is once again not
surprising that ceramics are brittle at room temperatures. Finally, note
that dislocation activity is not the only mechanism for crack blunting. At
temperatures above the glass transition temperature viscous flow is also
very effective in blunting cracks.

B. R. Lawn, B. J. Hockey, and S. M. Wiederhorn. J. Mat. Sci.. 15:1207 (1980). Reprinted
with permission.
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Figure 11.11 Temperature dependence of flow stress for yttria-stabilized zirconia (YSZ),
sapphire, and equimolar spinel.193

11.3 Strength of Ceramics

Most forming methods that are commonly used in the metal and polymer
industries are not applicable for ceramics. Their brittleness precludes defor-
mation methods; and their high melting points, and in some cases (e.g.,
Si3N4, SiC) decomposition prior to melting, preclude casting. Consequently,
as discussed in the previous chapter, most polycrystalline ceramics are
fabricated by either solid- or liquid-phase sintering, which can lead to
flaws. For example, how agglomeration and inhomogeneous packing
during powder preparation often led to the development of flaws in the
sintered body was discussed in Chap. 10. Inevitably, flaws are always present
in ceramics. In this section, the various types of flaws that form during
processing and their effect on strength are discussed. The subsequent section
deals with the effect of grain size on strength, while Sec. 11.3.3 deals briefly
with strengthening ceramics by the introduction of compressive surface
layers. Before one proceeds much further, however, it is important to briefly
review how the strength of a ceramic is measured.

Experimental Details: Modulus of Rupture

Tensile testing of ceramics is time-consuming and expensive because of the
difficulty in machining test specimens. Instead, the simpler transverse bend-
ing or flexure test is used, where the specimen is loaded to failure in either
193 A. H. Heuer, cited in R. Raj, .J. Amer. Cer. Soc., 76:2147–2174 (1993).
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three- or four-point bending. The maximum stress or stress at fracture is
commonly referred to as the modulus of rupture (MOR). For rectangular
cross sections, the MOR in four-point bending is given by

where Ffail is the load at fracture and all the other symbols are defined in
Fig. 11 .6a. Note that the MOR specimen is unnotched and fails as a result
of preexisting surface or interior flaws.

Once again a word of caution: Although the MOR test appears straight-
forward, it is also fraught with pitfalls.194 For example, the edges of the
samples have to be carefully beveled before testing since sharp corners can
act as stress concentrators and in turn significantly reduce the measured
strengths.

11.3.1 Processing and Surface Flaws

The flaws in ceramics can be either internal or surface flaws generated during
processing or surface flaws introduced later, during machining or service.

Pores

Pores are usually quite deleterious to the strength of ceramics not only
because they reduce the cross-sectional area over which the load is applied,
but more importantly because they act as stress concentrators. Typically
the strength and porosity have been related by the following empirical rela-
tionship:

ap = a0e-BP (11.16)

where />, ap, and <TO are, respectively, the volume fraction porosity and the
strength of the specimen with and without porosity; B is a constant that
depends on the distribution and morphology of the pores. The exponential
dependence of strength on porosity is clearly demonstrated in Fig. 11.12
for reaction-bonded Si3N4, which is formed by exposing a Si compact to a
nitrogen atmosphere at elevated temperatures. The large scatter in the results
mostly reflects the variability in the pore sizes, morphology, and distribution.

Usually, the stress intensities associated with the pores themselves are
insufficient to cause failure, and as such the role of pores is indirect. Fracture
from pores is typically dictated by the presence of other defects in their
immediate vicinity. If the pore is much larger than the surrounding grains,
atomically sharp cusps around the surface of the former can result. The
critical flaw thus becomes comparable to the dimension of the pores. If the

194 For a comprehensive review of the MOR test, see G. Quinn and R. Morrell. J. Am. Cer. Soc..
74(9):2037–2066(1991).
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Figure 11.12 Functional dependence of strength on porosity for a reaction-bonded
Si3N4.

195

pores are spherical, as in glasses, they are less detrimental to the strength.
Thus both the largest dimension of the pore and the smallest radius of curva-
ture at the pore surface are what determines their effect on the strength. A
typical micrograph of a pore that resulted in failure is shown in Fig. 11.13a.

Inclusions

Impurities in the starting powders can react with the matrix and form
inclusions that can have different mechanical and thermal properties from
the original matrix. Consequently, as a result of the mismatch in the thermal
expansion coefficients of the matrix am and the inclusions ah large residual
stresses can develop as the part is cooled from the processing temperature.
For example, a spherical inclusion of radius R in an infinite matrix will
result in both radial (crrad) and tangential (crtan) residual stresses at a radial
distance r away from the inclusion/matrix interface given by

(am - a,-)AT R
(11.17)

Data taken from O. Kamigaito, in Fine Ceramics, S. Saito, ed., Elsevier, New York, 1988,
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where v is Poisson's ratio; m and i refer to the matrix and inclusion, respec-
tively; and AT is the difference between the initial and final temperatures
(i.e., it is defined as positive during cooling and negative during heating).
On cooling, the initial temperature is the maximum temperature below
which the stresses are not relaxed. (See Chap. 13 for more details.)

Figure 11.13 (a) Large pore associated with a large grain in sintered a-SiC. (b) An
agglomerate with associated porosity in a sintered a-SiC.196

196 G. Quinn and R. Morrell. J. Am. Cer. Soc.. 74(9):2037–2066 (1991). Reprinted with permission.
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It follows from Eq. (11.17) that upon cooling, if a, < am, large tangen-
tial tensile stresses develop that, in turn, could result in the formation of
radial matrix cracks. Conversely, if at > am, the inclusion will tend to
detach itself from the matrix and produce a porelike flaw.

Agglomerates and large grains

The rapid densification of regions containing fine particles (agglomerates)
can induce stresses within the surrounding compact. Voids and cracks
usually tend to form around agglomerates, as shown in Fig. 11.13b. These
voids form as a result of the rapid and large differential shrinkage of the
agglomerates during the early stages of sintering. Since these agglomerates
form during the fabrication of the green bodies, care must be taken at that
stage to avoid them.

Similarly, large grains caused by exaggerated grain growth during
sintering often result in a degradation in strength. Large grains, if noncubic,
will be anisotropic with respect to such properties as thermal expansion and
elastic modulus, and their presence in a fine-grained matrix essentially can act
as inclusions in an otherwise homogeneous matrix. The degradation in
strength is also believed to be partly due to residual stresses at grain bound-
aries that result from thermal expansion mismatches between the large grains
and the surrounding matrix. The magnitude of the residual stresses will
depend on the grain shape factor and the grain size, but can be approximated
by Eq. (11.17). The effect of grain size on the residual stresses and sponta-
neous microcracking will be dealt with in greater detail in Chap. 13.

Surface flaws

Surface flaws can be introduced in a ceramic as a result of high-temperature
grain boundary grooving, postfabrication machining operations, or
accidental damage to the surface during use, among others. During grinding,
polishing, or machining, the grinding particles act as indenters that introduce
flaws into the surface. These cracks can propagate through a grain along
cleavage planes or along the grain boundaries, as shown in Fig. 11.14. In
either case, the cracks do not extend much farther than one grain diameter
before they are usually arrested. The machining damage thus penetrates
approximately one grain diameter from the surface. Consequently, according
to the Griffith criterion, the fracture stress is expected to decrease with increas-
ing grain size — an observation that is commonly observed. This brings up the
next important topic, which relates the strength of ceramics to their grain size.

11.3.2 Effect of Grain Size on Strength

Typically, the strength of ceramics shows an inverse correlation to the
average grain size G. A schematic of the dependence is shown in
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Grain boundary cracks Cleavage cracks within grain

Figure 11.14 Schematic of cleavage and grain boundary cracks that can form on the
surface of ceramics as a result of machining. The flaws are usually limited to one grain
diameter, however, because they are deflected at the grain boundaries.

Fig. 11.15a, where the fracture strength is plotted versus G !/2. The simplest
explanation for this behavior is that the intrinsic flaw size scales with the
grain size, a situation not unlike the one shown in Fig. 11.14. The flaws
form at the grain boundaries, which are weak areas to begin with, and
propagate up to about one grain diameter. Thus once more invoking
the Griffith criterion, one expects the strength to be proportional to G-1/2,
as is observed. It is worth noting that the strength does not keep on
increasing with decreasing grain size. For very fine-grained ceramics, fracture
usually occurs from preexistent process or surface flaws in the material,
and thus the strength becomes relatively grain-size-insensitive. In other
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Figure 11.15 (a) Schematic relationship between grain size and strength for a number of
ceramics, (b) Actual data for MgAl2O4. Courtesy of R. W. Rice.
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words, the line shown in Fig. 11.15 becomes much less steep for smaller grain
sizes.

11.3.3 Effect of Compressive Surface Residual Stresses

The introduction of surface compressive layers can strengthen ceramics and
is a well-established technique for glasses (see Sec. 13.5 for more details). The
underlying principle is to introduce a state of compressive surface residual
stress, the presence of which would inhibit failure from surface flaws since
these compressive stresses would have to be overcome before a surface
crack could propagate. These compressive stresses have also been shown
to enhance thermal shock resistance and contact damage resistance.

There are several approaches to introducing a state of compressive
residual stress, but in all cases the principle is to generate a surface layer
with a higher volume than the original matrix. This can be accomplished
in a variety of ways:

• Incorporation of an outer layer having a lower coefficient of thermal
expansion, as in glazing or tempering of glass. These will be discussed
in greater detail in Chap. 13.

• Using transformation stresses in certain zirconia ceramics (see next
section).

• Physically stuffing the outer layer with atoms or ions such as by ion
implantation.

• Ion-exchanging smaller ions for larger ions. The larger ions that go into the
matrix place the latter in a state of compression. This is similar to physical
stuffing and is most commonly used in glasses by placing a glass in a
molten salt that contains the larger ions. The smaller ions are exchanged
by the larger ions, which in turn place the surface in compression.

One aspect of this technique is that to balance the compressive surface

stresses, a tensile stress develops in the center of the part. Thus if a flawactually propagates through the compressive layer, the material is then

weaker than in the absence of the compressive layer, and the release of the
residual stresses can actually cause the glass to shatter. This is the principle
at work in the manufacture of tempered glass for car windshields which
upon impact shatter into a large number of small pieces that are much less
dangerous than larger shards of glass, which can be lethal.

11.3.4 Effect of Temperature on Strength

The effect of temperature on the strength of ceramics depends on many
factors, the most important of which is whether the atmosphere in which
the testing is being carried out heals or exacerbates preexisting surface
flaws in the material. In general, when a ceramic is exposed to a corrosive
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atmosphere at elevated temperatures, one of two scenarios is possible: (1) A
protective, usually oxide, layer forms on the surface, which tends to blunt
and partially heal preexisting flaws and can result in an increase in the
strength. (2) The atmosphere attacks the surface, either forming pits on the
surface or simply etching the surface away at selective areas; in either case,
a drop in strength is observed. For ceramics containing glassy grain bound-
ary phases, at high enough temperatures the drop in strength is usually
related to the softening of these phases.

11.4 Toughening Mechanisms

Despite the fact that ceramics are inherently brittle, a variety of approaches
have been used to enhance their fracture toughness and resistance to fracture.
The essential idea behind all toughening mechanisms is to increase the energy
needed to extend a crack, that is, G( in Eq. (11.11). The basic approaches are
crack deflection, crack bridging, and transformation toughening.

11.4.1 Crack Deflection

It is experimentally well established that the fracture toughness of a polycrys-
talline ceramic is appreciably higher than that of single crystals of the same
composition. For example, KIc of single-crystal alumina is about
2.2 MPa.m1 / 2 , whereas that for polycrystalline alumina is closer to
4 MPa-m l / 2 . Similarly, the fracture toughness of glass is ^0.8 MPa-m 1 2,
whereas the fracture toughness of a glass-ceramic of the same composition
is closer to 2 MPa.m1 / 2 . One of the reasons invoked to explain this effect
is crack deflection at the grain boundaries, a process illustrated in
Fig. 11.16a. In a polycrystalline material, as the crack is deflected along
the weak grain boundaries, the average stress intensity at its tip Ktip is
reduced, because the stress is no longer always normal to the crack plane
[an implicit assumption made in deriving Eq. (11.9)]. In general, it can be
shown that Ktip is related to the applied stress intensity Kapp and the angle
of deflection, 9 (defined in Fig. 11.16a), by

app (11 .18)

Based on this equation, and assuming an average 9 value of, say, 45 . the
increase in fracture toughness expected should be about 1.25 above the
single-crystal value. By comparing this conclusion with the experimental
results listed above, it is clear that crack deflection by itself accounts for
some of, but not all, the enhanced toughening. In polycrystalline materials,
crack bifurcation around grains can lead to a much more potent toughening
mechanism, namely, crack bridging — the topic tackled next.
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Figure 11.16 (a) Schematic of crack deflection mechanism at grain boundaries, (b)
Schematic indicating deflection of crack front around rod-shaped particles.197 (c) Schematic
of ligament bridging mechanism with no interfacial debonding and (d) with debonding. Note
that in this case the strain on the ligaments is delocalized, and the toughening effect is
enhanced.

11.4.2 Crack Bridging

In this mechanism, the toughening results from bridging of the crack surfaces
behind the crack tip by a strong reinforcing phase. These bridging ligaments
(Fig. 11.16b and c) generate closure forces on the crack face that reduce Ktip.
In other words, by providing some partial support of the applied load, the
bridging constituent reduces the crack-tip stress intensity. The nature of
the ligaments varies but they can be whiskers, continuous fibers
(Fig. 11.16c), or elongated grains (Fig. 11.16b). A schematic of how these
elastic ligaments result in a closure force is seen in Fig. 11.16c. A useful
way to think of the problem is to imagine the unbroken ligaments in the
crack wake as tiny springs that have to be stretched, and hence consume
energy, as the crack front advances.

Adapted from A. G. Evans and R. M. Cannon, Ada. Met., 34:761 (1986).
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It can be shown that the fracture toughness of a composite due to elastic
stretching of a partially debonded reinforcing phase at the crack tip with no
interfacial friction is given by198

(11 .19)

where the subscripts c, m, and/ represent the composite, matrix, and reinfor-
cement, respectively; Y, V, and af are the Young's modulus, volume frac-
tion, and strength of the reinforcement phases, respectively; r is the radius
of the bridging ligament, and Gm is the toughness of the unreinforced
matrix; and 7//7, represents the ratio of the fracture energy of the bridging
ligaments to that of the reinforcement/matrix interface. Equation (11.19)
predicts that the fracture toughness increases with

• Increasing fiber volume fraction of reinforcing phase
• Increasing Yc/ Yf ratio
• Increasing 7/^/7, ratio (i.e., the toughness is enhanced for weak fiber

matrix interfaces)

Comparing Fig. 11.16c and d reveals how the formation of a debonded
interface spreads the strain displacement imposed on the bridging reinforcing
ligament over a longer gauge length. As a result, the stress supported by the
ligaments increases more slowly with distance behind the crack tip, and
greater crack-opening displacements are achieved in the bridging zone,
which in turn significantly enhances the fracture resistance of the composite.
An essential ingredient of persistent bridge activity is that substantial pullout
can occur well after whisker rupture. The fiber bridging mechanism is thus
usually supplemented by a contribution of pullout of the reinforcement
from fibers that fail away from the crack plane (Fig. 11.16c). As the ligaments
pull out of the matrix, they consume energy that has to be supplied to the
advancing crack, further enhancing the toughness of the composite.

That toughening contributions obtained by crack bridging and pullout
can yield substantially increased fracture toughness is demonstrated in
Fig. \\.\la for a number of whisker-reinforced ceramics. The solid lines
are predicted curves and the data points are the experimental results; the
agreement is quite good. A similar mechanism accounts for the high tough-
nesses achieved recently in Si3N4 with acicular grains (Fig. 11.17b) . coarser
grain-sized aluminas, and other ceramics.

11.4.3 Transformation Toughening

Transformation-toughened materials owe their very large toughness to the
stress-induced transformation of a metastable phase in the vicinity of a

198 See. e.g., P. Becher. J. Amer. Cer. Soc., 74:255–269 (1991).
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propagating crack. Since the original discovery199 that the tetragonal-to-
monoclinic (t =>• m) transformation of zirconia (see Chap. 8) has the
potential for increasing both the fracture stress and the toughness of zirconia
and zirconia-containing ceramics, a large effort has been dedicated to
understanding the phenomenon.200

To understand the phenomenon, it is useful to refer to Fig. 11.18, where
fine tetragonal zirconia grains are dispersed in a matrix. If these tetragonal

Figure 11.17 (a) The effect of SiC whisker content on toughness enhancement in different
matrices.201 (b) Toughening is associated with crack bridging and grain pullout of
elongated matrix grains.

199 R. Garvie, R. Hannick, and R. Pascoe, Nature, 258:703 (1975).
200 See, e.g., A. G. Evans and R. M. Cannon, Acta. Metall.,34:761–800 (1986). For more recent

work, see D. Marshall, M. Shaw, R. Dauskardt, R. Ritchie, M. Ready, and A. Heuer, J.
Amer. Cer. Soc., 73:2659–2666 (1990).

201 P. Becher, "Microstructural Design of Toughened Ceramics," J. Amer. Cer. Sec., 74:255-269
(1991).
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Figure 11.18 (a) Transformation zone ahead and around crack tip. (b) Surface grinding
induces the martensitic transformation, which in turn creates compressive surface layers
and a concomitant increase in strength.

particles are fine enough, then upon cooling from the processing tempera-
tures, they can be constrained from transforming by the surrounding
matrix and consequently can be retained in a metastable tetragonal phase.
If, for any reason, that constraint is lost, the transformation — which is
accompanied by a relatively large volume expansion or dilatation (^4
percent) and shear strain («7 percent) — is induced. In transformation
toughening, the approaching crack front, being a free surface, is the catalyst
that triggers the transformation, which in turn places the zone ahead of the
crack tip in compression. Given that the transformation occurs in the vicinity
of the crack tip, extra energy is required to extend the crack through that
compressive layer, which increases both the toughness and the strength of
the ceramic.

The effect of the dilation strains is to reduce the stress intensity at the
crack tip Ktip by a shielding factor Ks such that

Ktip = Ka-Ks (11.20)

It can be shown that if the zone ahead of the crack tip contains a
uniform volume fraction Vf of transformable phase that transforms in a
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zone of width w, shown in Fig. 11.18a, from the crack surface, then the
shielding crack intensity factor is given by202

Ks = A'YYf£
T,/w (11.21)

where A' is a dimensionless constant on the order of unity that depends on
the shape of the zone ahead of the crack tip and eT is the transformation
strain. A methodology to calculate eT is discussed in Chap. 13.

Fracture will still occur when Kiip = KIC of the matrix in the absence of
shielding; however, now the enhanced fracture toughness comes about by the
shielding of Ktip by Ks. Careful microstructural characterization of crack-tip
zones in various zirconias has revealed that the enhancement in fracture
toughness does in fact scale with the product F^y/iv, consistent with
Eq. (11.21).

It is unfortunate that the reason transformation toughening works so
well at ambient temperatures — mainly the metastability of the tetragonal
phase — is the same reason it is ineffective at elevated temperatures. Increas-
ing the temperature reduces the driving force for transformation and conse-
quently the extent of the transformed zone, leading to less tough materials.

It is worth noting that the transformation can be induced any time the
hydrostatic constraint of the matrix on the metastable particles is relaxed.
For example, it is now well established that compressive surface layers
are developed as a result of the spontaneous transformation. The process
is shown schematically in Fig. 11.18b. The fracture strength can be
almost doubled by simply abrading the surface, since surface grinding has
been shown to be an effective method for inducing the transformation.
Practically this is important, because we now have a ceramic that, in prin-
ciple, becomes stronger as it is handled and small scratches are introduced
on its surface.

At this stage, three classes of toughened zirconia-containing ceramics
have been identified:

• Partially stabilized zirconia (PSZ). In this material the cubic phase is less
than totally stabilized by the addition of MgO, CaO, or Y2O3. The cubic
phase is then heat-treated to form coherent tetragonal precipitates. The
heat treatment is such as to keep the precipitates small enough so they do
not spontaneously transform within the cubic zirconia matrix but only as
a result of stress.

• Tetragonal zirconia polycrystals (TZPs). These ceramics contain 100
percent tetragonal phase and small amounts of yttria and other rare-
earth additives. With bend strength exceeding 2000 MPa, these ceramics
are among the strongest known.

R. M. McMeeking and A. G. Evans, J. Amer. Cer. Soc., 63:242–246 (1982).
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Figure 11.19 (a) Functional dependence of fracture toughness on flaw size for a ceramic
exhibiting R curve behavior (top curve) and one that does not (lower curve), (b) Effect of R
curve behavior on strength degradation as flaw size increases. Ceramics exhibiting R curve
behavior are more flaw-tolerant than those that do not.

• Zirconia-toughened ceramics (ZTCs). These consist of tetragonal or
monoclinic zirconia particles finely dispersed in other ceramic matrices
such as alumina, mullite, and spinel.

11.4.4 R Curve Behavior

One of the important consequences of the toughening mechanisms described
above is that they result in what is known as R curve behavior. In contrast to a
typical Griffith solid where the fracture toughness is independent of crack
size, R curve behavior refers to a fracture toughness which increases as the
crack grows, as shown schematically in Fig. 11.19a. The main mechanisms
responsible for this type of behavior are the same as those operative
during crack bridging or transformation toughening, i.e., the closure forces
imposed by either the transformed zone or the bridging ligaments. For
example, referring once again to Fig. 11.16c, one sees that as the number
of bridging ligaments increases in the crack wake, so will the energy required
to extend the crack. The fracture toughness does not increase indefinitely,
however, but reaches a plateau when the number of ligaments in the crack
wake reach a steady-state with increasing crack extension. Further away
from the crack tip, the ligaments tend to break and pull out completely
and thus become ineffective.

There are four important implications for ceramics that exhibit R curve
behavior:

1. The degradation in strength with increasing flaw size is less severe for
ceramics without R curve behavior. This is shown schematically in
Fig. 11.196.

farhad
Highlight

farhad
Highlight
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2. The reliability of the ceramic increases. This will be discussed in detail in
Sec. 11.5.

3. On the down side, there is now an increasing body of evidence that
seems to indicate that ceramics that exhibit R curve behavior are
more susceptible to fatigue than ceramics that do not exhibit R curve
behavior. This is discussed in greater detail in Chap. 12.

4. There is some recent evidence to suggest that R curve behavior
enhances the thermal shock resistance of some ceramics. The evidence
at this point is not conclusive, however, and more work is needed in
this area.

To summarize, fracture toughness is related to the work required to
extend a crack and is determined by the details of the crack propagation
process. Only for the fracture of the most brittle solids is the fracture tough-
ness simply related to surface energy. The fracture toughness can be
enhanced by increasing the energy required to extend the crack. Crack brid-
ging and martensitic transformations are two mechanisms that have been
shown to enhance KIc.

11.5 Designing With Ceramics

In light of the preceding discussion, one expects that the failure stress, being
as sensitive as it is to flaw sizes and their distributions, will exhibit consider-
able variability or scatter. This begs the question: Given this variability, is it
still possible to design critical load-bearing parts with ceramics? In theory, if
the flaws in a part were fully characterized (i.e., their size and orientation with
respect to the applied stresses) and the stress concentration at each crack tip
could be calculated, then given KIC, the exact stress at which a component
would fail could be determined, and the answer to the question would be
yes. Needless to say, such a procedure is quite impractical for several reasons,
least among them the difficulty of characterizing all the flaws inside a
material and the time and effort that would entail.

An alternative approach, described below, is to characterize the beha-
vior of a large number of samples of the same material and to use a statistical
approach to design. Having to treat the problem statistically has far-reaching
implications since now the best that can be hoped for in designing with
brittle solids is to state the probability of survival of a part at a given
stress. The design engineer must then assess an acceptable risk factor and,
using the distribution parameters described below, estimate the appropriate
design stress.

Other approaches being taken to increase the reliability of ceramics are
nondestructive testing and proof testing. The latter approach is briefly
discussed in Sec. 11.5.2.
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Figure 11.20 (a) The effect of m on the shape of the Weibull distribution. As m increases,
the distribution narrows, (b) Truncation of Weibull distribution as a result of proof testing.

11.5.1 The Statistical Approach

Weibull distributions

One can describe the strength distribution of a ceramic in a variety of
formalisms. The one most widely used today is the Weibull distribution203

This two-parameter semiempirical distribution is given by

f ( x ) = m(x)"'~] exp(—xm) (11.22)

where f(x) is the frequency distribution of the random variable .v and m is a
shape factor, usually referred to as the Weibull modulus. When Eq. (11.22) is
plotted (see Fig. 11.20a), a bell-shaped curve results, the width of which
depends on m; as m gets larger, the distribution narrows.

Since one is dealing with a strength distribution, the random variable x
is defined as cr/<70, where a is the failure stress and <70 is a normalizing
parameter, required to render x dimensionless and whose physical signifi-
cance will be discussed shortly.

Replacing x by CT/O-Q in Eq. (11.22), one finds the survival probability,
i.e., the fraction of samples that would survive a given stress level, is simply

or

= exp - - (11.23)

203 W. Weibull, J. Appl. Mech., 18:293–297 (1951): Mat. Res. & Stds.. May 1962. pp. 405–411.
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Rewriting Eq. (11.23) as 1/S = exp(cr/cr0)
m and taking the natural log of

both sides twice yields

In In — = m In — — m In a — m In <T() (11.24)
S (7Q

Multiplying both sides of Eq. (11.24) by —1 and plotting — lnln(l/5)
versus In a yield a straight line with slope — m. The physical significance of
a0 is now also obvious: It is the stress level at which the survival probability
is equal to l/e, or 0.37. Once m and cr0 are determined from the set of experi-
mental results, the survival probability at any stress can be easily calculated
from Eq. (11.23) (see Worked Example 11.2).

The use of Weibull plots for design purposes has to be handled with
extreme care. As with all extrapolations, a small uncertainty in the slope
can result in large uncertainties in the survival probabilities, and hence to
increase the confidence level, the data sample has to be sufficiently large
(N > 100). Furthermore, in the Weibull model, it is implicitly assumed
that the material is homogeneous, with a single flaw population that does
not change with time. It further assumes that only one failure mechanism
is operative and that the defects are randomly distributed and are small rela-
tive to the specimen or component size. Needless to say, whenever any of
these assumptions is invalid, Eq. (11.23) has to be modified. For instance,
bimodal distributions that lead to strong deviations from a linear Weibull
plot are not uncommon.

WORKED EXAMPLE 11.2

The strengths of 10 nominally identical ceramic bars were measured and found
to be 387, 350, 300, 420, 400, 367, 410, 340, 345, and 310 MPa. (a) Determine m
and a0 for this material, (b) Calculate the design stress that would ensure a survi-
val probability higher than 0.999.

Answer

(a) To determine m and CTQ, the Weibull plot for this set of data has to be made.
Do as follows:

• Rank the specimens in order of increasing strength, 1 , 2 , 3 , . . . , / , / + 1,
. . . , N, where N is the total number of samples.

• Determine the survival probability for the jth specimen. As a first approxima-
tion, the probability of survival of the first specimen is 1 — \/(N + 1); for the
second, 1 —2/(N+ 1), for they'th specimen 1 —j/(N + 1), etc. This expres-
sion is adequate for most applications. However, an alternate and more
accurate expression deduced from a more detailed statistical analysis yields

<»•*>
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• Plot — In ln( 1 /S) versus In a. The least-squares fit to the resulting line is the
Weibull modulus.

The last two columns in Table 11 .2 are plotted in Fig. 11.21 . A least-squares fit of
the data yields a slope of 10.5, which is typical of many conventional as-finished
ceramics. From the table, CTO ~ 385 MPa (i.e. when - In In 1/S = 0).

Table 11.2 Summary of data needed to find m from a set of experimental results

Rank j In a,

1
2

3
4
5
6
7
8
9
10

0.932
0.837
0.740
0.644
0.548
0.452
0.356
0.260
0.160
0.070

300
310
340
345
350
367
387
400
410
420

5.700
5.734
5.823
5.840
5.860
5.905
5.960
5.990
6.016
6.040

2.6532
1.7260
1.2000
0.8200
0.5080
0.2310

-0.0320
-0.2980
-0.6060
-0.9780

£
£

5.0 5.5 6.0
In cr

0.873

6.5

Figure 11.21 Weibull plot of data shown in Table 1 1.2. Slope of the line is the Weibull
modulus m. The actual survival probability is shown on the right-hand side. At low
stresses. 5 is large (left-hand corner of figure).204

204 The reason that — ln l n ( l /S ) is plotted rather than ln ln( l /S) is aesthetic, such that the high
survival probabilities appear on the upper left-hand sides of the plots.
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(b) To calculate the stress at which the survival probability is 0.999, use
Eq. (11.23), or

0.999 =ex

from which a = 200 MPa. It is worth noting here that the error in using the aver-
age stress of 366 MPa instead of cr0 changes the end result for the design stress only
slightly. For most applications, it is sufficient to simply use the average stress.

Factors affecting the Weibull modulus

Clearly, from a design point of view, it is important to have high m's. Note
that m should not be confused with strength, since it is possible to have a
weak solid with a high m and vice versa. For instance, a solid with large
defects that are all identical in size would be weak but, in principle, would
exhibit large m. It is the uniformity of the microstructure, including flaws,
grain size, and inclusions, that is critical for obtaining large m values.

Interestingly enough, increasing the fracture toughness for a truly brittle
material will not increase m. This can be shown as follows: By recasting
Eq. (11.24), m can be rewritten as

™ _ lnln(l/Smax)-lnln(l/Smm)
— i / / \ \ -—Oj

mlC rmax/C rmm)

For any set of samples, the numerator will be a constant that depends only on
the total number of samples tested [that is, N in Eq. (11.25)]. The denomina-
tor depends on the ratio <rmax/crmin, which is proportional to the ratio
cmin/cmax, which is clearly independent of KIc, absent R curve effects. Thus
toughening of a solid per se will often not result in an increase in its Weibull
modulus. However, it can be easily shown that if a solid exhibits R curve
behavior, then an increase in m should, in principle, follow (see Prob. 11.12).

Effect of size and test geometry on strength

One of the important ramifications of brittle failure, or weak-link statistics, as
it is sometimes referred to, is the fact that strength becomes a function of
volume: larger specimens will have a higher probability of containing a
larger defect, which in turn will cause lower strengths. In other words, the
larger the specimen, the weaker it is likely to be. Clearly, this is an important
consideration when data obtained on test specimens, which are usually small,
are to be used for the design of larger components.

Implicit in the analysis so far has been that the volumes of all the
samples tested were the same size and shape. The probability of a sample
of volume V0 surviving a stress a is given by

'" (11.27)
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The probability that a batch of n such samples will all survive the same stress
is lower and is given by205

Placing n batches together to create a larger body of volume V, where
V = «F0, one sees that the probability S(V) of the larger volume surviving
a stress a is identical to Eq. (1 1.28), or

S( V] = 5batch = [S( KO)]" = [S( V,}} yly* ( 1 1 .29)

which is mathematically equivalent to

s=exp{-®(0"} (11.30)

This is an important result since it indicates that the survival probability
of a ceramic depends on both the volume subjected to the stress and the
Weibull modulus. Equation (1 1.30) states that as the volume increases, the
stress level needed to maintain a given survival probability has to be reduced.
This can be seen more clearly by equating the survival probabilities of two
types of specimens — test specimens with a volume V{cst and component
specimens with volume Vcomp. Equating the survival probabilities of the
two types of samples and rearranging Eq. (11.30), one can easily show that

/'"
(11.31)

A plot of this equation is shown in Fig. 11 .22, where the relationship
between strength and volume is plotted. The salient point here is that as
either the volume increases or the Weibull modulus decreases, the more
severe the downgrading of the design stress required to maintain a given
survival probability.

An implicit assumption made in deriving Eq. (11.31) is that only one
flaw population (i.e., those due to processing rather than, say, machining)
is controlling the strength. Different flaw populations will have different
strength distributions and will scale in size differently. Also implicit in
deriving Eq. (11.31) is that volume defects are responsible for failure. If.
instead, surface flaws were suspected of causing failure, by using a derivation
similar to the one used to get to Eq. (11.31), it can be shown that

'comp (11.32)

in which case the strength will scale with area instead of volume.

205 An analogy here is useful: the probability of rolling a given number with a six-sided die is 1/6.
The probability that the same number will appear on n dice rolled simultaneously is (1/6)".
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Figure 11.22 The effect of volume on strength degradation as a function of the Weibull
modulus. The strength decreases as V increases and is more severe for low m.

Finally, another important ramification of the stochastic nature of
brittle fracture is the effect of the stress distribution during testing on the
results. When a batch of ceramics is tested in tension, the entire volume
and surface are subjected to the stress. Thus a critical flaw anywhere in the
sample will propagate with equal probability. In three- or four-point flexure
tests, however, only one-half the sample is in tension, and the other one-half
is in compression. In other words, the effective volume tested is, in essence,
reduced. It can be shown that the ratio of the tensile to flexural strength
for an equal probability of survival is

-—— — [2(m -f 1)"] 'm (11.33)

In other words, the samples subjected to flexure will appear to be stronger, by
a factor that depends on m. For example, for m = 5, the ratio is about 2,
whereas increasing m to 20 reduces the ratio to 1.4.

11.5.2 Proof Testing

In proof testing, the components are briefly subjected to a stress level aPT

which is in excess of that anticipated in service. The weakest samples fail
and are thereby eliminated. The resulting truncated distribution, shown in
Fig. 11.20b, can be used with a high level of confidence at any stress that is
slightly lower than <7py.

One danger associated with proof testing is subcritical crack growth,
discussed in the next chapter. Since moisture is usually implicated in
subcritical crack growth, effective proof testing demands inert, i.e.,
moisture-free, testing environments and rapid loading/unloading cycles
that minimize the time at maximum stress.
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11.6 Summary

1. Ceramics are brittle because they lack a mechanism to relieve the
stress buildup at the tips of notches and flaws. This makes them
notch-sensitive, and consequently their strength will depend on the
combination of applied stress and flaw size. The condition for failure is

KI = <Jf \f~KC > K\c

where KIc is the fracture toughness of the material. The strength of
ceramics can be increased by either increasing the fracture toughness
or decreasing the flaw size.

2. Processing introduces flaws in the material that are to be avoided if high
strengths are to be achieved. The flaws can be pores, large grains in an
otherwise fine matrix, and inclusions, among others. Furthermore, since
the strength of a ceramic component decreases with increasing grain
size, it follows that to obtain a high-strength ceramic, a flaw-free, fine
microstructure is desirable.

3. It is possible to toughen ceramics by a variety of techniques, which all
make it energetically less favorable for a crack to propagate. This can
be accomplished either by having a zone ahead of the crack martensiti-
cally transform, thus placing the crack tip in compression, or by adding
whiskers or fibers or large grains (duplex microstructures) that bridge
the crack faces as it propagates.

Comparing the requirements for high strength (uniform, fine
microstructure) to those needed to improve toughness (nonhomo-
geneous, duplex microstructure) reveals the problem in achieving both
simultaneously.

4. The brittle nature of ceramics together with the stochastic nature of
finding flaws of different sizes, shapes, and orientations relative to the
applied stress will invariably result in some scatter to their strength.
According to the Weibull distribution, the survival probability is given
by

S = exp(- ( —
I V^o

where m, known as the Weibull modulus, is a measure of the scatter.
Large scatter is associated with low m values, and vice versa.

5. If strength is controlled by defects randomly distributed within the
volume, then strength becomes a function of volume, with the survival
probability decreasing with increasing volume. However, if strength is
controlled by surface defects, strength will scale with area instead.

6. Proof testing, in which a component is loaded to a stress level higher
than the service stress, eliminates the weak samples, truncating the
distribution and establishing a well-defined stress level for design.
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Problems

11.1. (a) Following a similar analysis used to arrive at Eq. (11.7), show
that an internal crack of length c is only \/2 as detrimental to
the strength of a ceramic as a surface crack of the same length.

(b) Why are ceramics usually much stronger in compression than in
tension?

(c) Explain why the yield point of ceramics can approach the ideal
strength <rtheo, whereas the yield point in metals is usually much
less than <rtheo- How would you attempt to measure the yield
strength of a ceramic, given that the fracture strength of ceramics
in tension is usually much less than the yield strength?

11.2. (a) Estimate the size of the critical flaw for a glass that failed at 102
MPa if 7 = 1 J m2 and Y = 70 GPa.

Answer: 4.3 um

(b) What is the maximum stress this glass will withstand if the largest
crack is on the order of 100 (am and the smallest on the order of
7 um?

Answer: 21 MPa

11.3. Show that Eqs. (11.2) and (11.9) are equivalent, provided the radius of
curvature of the crack p w 14r0, where r0 is the equilibrium inter-
atomic distance; in other words, if it is assumed that the crack is
atomically sharp. Hint: Find expressions for 7 and Y in terms of n,
ra, and r0 defined in Chap. 4. You can assume n — 9 and m—\.

11.4. A12O3 has a fracture toughness KIc of about 4 MPa • m1/2. A batch of
A12O3 samples were found to contain surface flaws about 30 um deep.
The average flaw size was more on the order of 10 um. Estimate (a) the
tensile strength and (b) the compressive strength.
Answer: 412 MPa, 10 GPa

11.5. To investigate the effect of pore size on the strength of reaction-
bonded silicon nitride, Heinrich206 introduced artificial pores (wax
spheres that melt during processing) in his compacts prior to reaction
bonding. The results he obtained are summarized below. Are these
data consistent with the Griffith criterion? Explain clearly, stating
all assumptions.

J. Heinrich, Ber. Dt. Keram. Ges., 55 (1978).
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Wax grain size, jam Average pore size, urn Bend strength. MPa

0-36
63-90
125-180

48
66
100

140 ±12
119 + 12
101 ± 14

11.6. The tensile fracture strengths of three different structural ceramics are
listed below: hot-pressed silicon nitride (HPSN), reaction-bonded
silicon nitride (RBSN), and chemical vapor-deposited silicon carbide
(CVDSC), measured at room temperature.

(a) Plot the cumulative failure probability of these materials as a
function of fracture strength.

(b} Calculate the mean strength and standard deviation of the
strength distributions, and determine the Weibull modulus for
each material.

(c) Estimate the design stress for each material.
(d) On the basis of your knowledge of these materials, why do you

think they behave so differently?

HPSN (MPa) 521, 505, 500, 490, 478, 474,471,453, 452, 448, 444.
441, 439, 430, 428, 422, 409, 398, 394. 372, 360,341.
279

CVDSC 386, 351, 332, 327, 308, 296, 290, 279, 269, 260, 248.
231,219, 199, 178, 139

RBSN 132, 120, 108, 106, 103, 99, 97, 95. 93, 90. 89. 84. 83.
82, 80, 80, 78, 76

11.7. (a) When the ceramic shown in Fig. 11.23 was loaded in tension
(along the length of the sample), it fractured at 20 MPa. The

5 cm Tensile stress

4 cm

Figure 11.23 Cross section of ceramic part loaded in tension as shown. The heavy lines
denote flaws.
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Figure 11.24 Optical photomicrograph of indentation in glass. 200x.

heavy lines denote cracks (two internal and one surface crack).
Estimate KIc for this ceramic. State all assumptions.

Answer: 3.5 MPa • m1/2

11.8. For silicon nitride, KIc is strongly dependent on microstructure, but
can vary anywhere from 3 to 10 MPa-m1 '2. Which of the following
silicon nitrides would you choose, one in which the largest flaw size
is on the order of 50 um and the fracture toughness is 8 MPa • m1/2.
or one for which the largest flaw size was 25 (im, but was only half
as tough. Explain.

11.9. Evans and Charles207 proposed the following equation for the deter-
mination of fracture toughness from indentation:

(
«

where H is the Vickers hardness in Pa and c and a were defined in
Fig. 11.7. A photomicrograph of a Vickers indention in a glass slide
and the cracks that emanate from it is shown in Fig. 11.24. Estimate
the fracture toughness of this glass if its hardness is «5.5GPa.

Answer. f z \ . 2 to 1.6 MPa -m1//2 depending on size of crack calculated

11.10. A manufacturer wishes to choose between two ceramics for a certain
application. Data for the two ceramics tested under identical condi-
tions were as follows:

Ceramic Mean fracture stress Weibull modulus

A 500 MPa 12
B 600 MPa 8

207 A. G. Evans and E. A. Charles, J. Amer. Cer. Sot-., 59:317 (1976).
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The service conditions are geometrically identical to the test
conditions and impose a stress of 300 MPa. By constructing Weibull
graphs with S = 1/2 for mean fracture stress or any other method,
decide which ceramic will be more reliable and compare the
probabilities of failure at 300 MPa. At what stress would the two cera-
mics give equal performance?

Answer. Stress for equal performance = 349 MPa

11.11. The MORs of a series of cylindrical samples (/ = 25 mm and diameter
of 5 mm) were tested and analyzed using Weibull statistics. The
average strength was 100 MPa, with a Weibull modulus of 10. Esti-
mate the stress required to obtain a survival probability of 95 percent
for cylinders with diameters of 10 mm but the same length. State all
assumptions.

11.12. Show why ceramics that exhibit R curve behavior should, in principle,
also exhibit larger m values.

11.13. (a) In deriving Eq. (11.30) the flaw population was assumed to be
identical in both volumes. However, sometimes in the manu-
facturing of ceramic bodies of different volumes and shapes,
different flaw populations are introduced. What implications, if
any, does this statement have on designing with ceramics? Be
specific.

(b) In an attempt to address this problem, Kschinka et a/.208

measured the strength of different glass spheres in compression.
Their results are summarized in Table 11.3. where D0 is the
diameter of the glass spheres, N is the number of samples
tested, m is the Weibull modulus, ay is the average strength,
and V is the volume of the spheres.

Table 11.3

D0, cm

0.368
0.305
0.241
0.156
0.127
0.108
0.091
0.065
0.051

N

47
48
53
30
45
38
47
52
44

m

6.19
5.96
5.34
5.46
5.37
5.18
3.72
4.29
6.82

(Tf (50%)

143
157
195
229
252
303
407
418
435

V. cm3

2.61 x 10-:

1.49x 10-:

7.33 x 10-3

1.99 x 10-3

1.07 x 10-3

6.60 x 10-4

3.95 x 10 4

1.44 x 10
-4

6.95 x 10-5

B. A. Kschinka. S. Perrella, H. Nguyen, and R. C. Bradt. J. Amer. Cer. Soc.. 69:467 (1986).
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(i) Draw on one graph the Weibull plots for spheres of 0.051,
0.108, and 0.368cm. Why are they different?

(ii) For the 0.051 cm spheres, what would be your design stress
to ensure a 0.99 survival probability?

(iii) Estimate the average strength of glass spheres of 1-cm
diameter.

(iv) If the effect of volume is taken into account, then it is
possible to collapse all the data on a master curve. Show
how that can be done. Hint: Normalize data to 0.156-cm
spheres, for example.
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Chapter 12

Creep, Subcritical Crack Growth,
and Fatigue

The fault that leaves six thousand tons a log upon the sea.

R. Kipling, McAndrew's Hymn

12.1 Introduction

As discussed in the previous chapter, at low and intermediate temperatures,
failure typically emanated from a preexisting flaw formed during processing
or surface finishing. The condition for failure was straightforward: Fracture
occurred rapidly and catastrophically when K1 > K}c. It was tacitly implied
that for conditions where K1 < A^If, the crack was stable, i.e., did not grow
with time, and consequently, the material would be able to sustain the
load indefinitely. In reality, the situation is not that simple — preexisting
cracks can and do grow slowly under steady and cyclic loadings, even
when KI < KIC. For example, it has long been appreciated that in metals,
cyclic loadings, even at small loads, can result in crack growth, a phenom-
enon referred to as fatigue. In contrast, it has long been accepted that
ceramics, because of their lack of crack-tip plasticity or work hardening,
were not susceptible to fatigue. More recently, however, this has been
shown to be false: Some ceramics, especially those that exhibit R curve
behavior, are indeed susceptible to cyclic loading.

Another phenomenon that has been well appreciated for a long time is
that the exposure of a ceramic to the combined effect of a steady stress and a
corrosive environment results in slow crack growth. In this mode of failure, a
preexisting subcritical crack, or one that nucleates during service, grows
slowly by a stress-enhanced chemical reactivity at the crack tip and is referred
to as subcritical crack growth (SCG). Unfortunately, this phenomenon is also
sometimes termed static fatigue, seemingly to differentiate it from the
dynamic fatigue situation just alluded to, but more to create confusion.

Last, creep, or the slow deformation of a solid subjected to a stress
at high temperatures, also occurs in ceramics. Sooner or later, a part

400
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experiencing creep will either fail or undergo shape and dimensional changes
that in close-tolerance applications render a part useless.

Despite the fact that the atomic processes and micromechanisms that
are occurring during each of these phenomena are quite different, there is a
commonality among them. In each case, a nucleated or preexisting flaw
grows with time, leading to the eventual failure of the part, usually with
disastrous consequences. In other words, the ceramic now has a lifetime
that one has to contend with.

In the sections that follow, each phenomenon is dealt with separately.
In Sec. 12.5, the methodology for estimating lifetimes and the choice of
appropriate design criteria are developed.

12.2 Creep

Creep is the slow and continuous deformation of a solid with time that only
occurs at higher temperatures, that is, T > 0.5Tm, where Tm is the melting
point in Kelvins. In metals, it is now well established that grain boundary
sliding and related cavity growth are the mechanisms most detrimental to
creep resistance, which led to the development of single-crystal superalloy
turbine blades that are very resistant to creep. In ceramics, the situation is
more complex because several mechanisms, some of which are not suffi-
ciently well understood, can lead to creep deformation. The problem is
further complicated by the fact that different mechanisms may be operative
over different temperature and stress regimes. In general, creep is a
convoluted function of stress, time, temperature, grain size and shape,
microstructure, volume fraction and viscosity of glassy phases at the grain
boundaries, dislocation mobility, etc. Before one tackles the subject in
greater detail, it is instructive to briefly review how creep is measured.

Experimental Details: Measuring Creep

Typically, the creep response of a solid is found by measuring the strain rate as
a function of applied load. This, most simply, can be done by attaching a load
to a sample, heating it, and measuring its deformation as a function of time.
The resulting strain is plotted versus time, as shown in Fig. 12.la, where
three regions are typically observed: (1) there is an initial, almost instantaneous
response, followed by a decreasing rate of increase in strain with time. This
region is known as the primary creep region. (2) There is a region where the
strain increases linearly with time. This is known as the steady-state or second-
ary creep stage which, from a practical point of view, is the most important
stage and is of major concern here. (3) There is a region known as the tertiary
creep stage which occurs just before the specimen fails, where the strain rate
increases rapidly with time.
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Figure 12.1 (a) Typical strain versus time creep curves. Experimentally not all three
regions are always observed. (b) Effect of increasing stress and or temperature on the
creep response of the material.

Increasing the temperature and/or stress (Fig. 12.1b) results in an
increase in both the instantaneous strain and the steady-state creep rates
and a decrease in the time to failure.

Data such as shown in Fig. 12.1b can be further reduced by plotting the
log of the steady-state creep rate £ss versus the log of the applied stress a at a
constant T. Such curves usually yield straight lines, which in turn implies that

de
ess = - = IV' (12.1)

where T is a temperature-dependent constant, and p is called the creep law
exponent and usually lies between 1 and 8. For p > 1, this sort of creep is
commonly referred to as power law creep.

Over a dozen mechanisms have been proposed to explain the functional
dependence described by Eq. (12.1), but in general they fall into one of three
categories: diffusion, viscous, or dislocation creep. To cover even a fraction of
these models in any detail is clearly beyond the scope of this book. Instead,
diffusion creep is dealt with in some detail below, followed by a brief mention
of the other two important, but less well-understood and more difficult to
model, mechanisms. For more comprehensive reviews, consult the references
at the end of this chapter.

12.2.1 Diffusion Creep

For permanent deformation to occur, atoms have to move from one region
to another, which requires a driving force of some kind. Thus, before one can
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even attempt to understand creep, it is imperative to appreciate the origin of
the driving forces involved.

Driving force for creep

In general, the change in the Helmholtz209 free energy A is given as

(12.2)

If the changes are occurring at constant temperature, as in a typical creep
experiment, it follows that dA — —p dV. Upon rearrangement,

__QA_
P ~ ~ 8V

Multiplying both sides by the atomic volume O and noting that F/0 is
nothing but the number of atoms per unit volume, one finds that

9A (123)(12.3)

Thus dA/dN represents the excess (due to stress) chemical potential p, ~ JJ.Q
per atom, and //0 is the standard chemical potential of atoms in a stress-
free solid (see Chap. 5). By equating p with an applied stress a, it follows
that the chemical potential of the atoms in a stressed solid is given by

/i = /io-<7ft (12.4)

By convention, a is considered positive when the applied stress is tensile and
negative when it is compressive.

To better understand the origin of Eq. (12.4), consider the situation
depicted schematically in Fig. 12.2, where four pistons are attached to four
sides of a cube of material such that the pressures in the pistons are unequal
with, say, PA > PB. These pressures will result in normal compressive forces
—a11 and — <722 on faces A and B, respectively. If an atom is now removed
from surface A (e.g., by having it fill in a vacancy just below the A surface),
piston A will move by a volume 0, and the work done on the system is
£IPA = Ocr11. By placing an atom on surface B (e.g., by having an atom
from just below the surface diffuse to the surface), work is done by the
system: QPB = — Qa22. The net work is thus

a22) (12.5)

209 The Helmholtz free energy A represents the changes in free energy of a system when they
are carried out under constant volume. In contrast, AG represents the free-energy changes
occurring at constant pressure. However, since the volume changes in condensed phases,
and the corresponding work against atmospheric pressure, are small, they can be neglected,
and in general, AG « A/1.
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IWI'lilll! 111'!!!'!!!!

Figure 12.2 Schematic of thought experiment invoked to arrive at Eq. (12.5).

which is a fundamental result because it implies that energy can be recovered
(that is, A W is negative) if atoms diffuse from higher to lower compressive
stress areas (see Worked Example 12.la).

Note that for the case where a11 — —022 — a, the energy recovered
will be

AJF=-217<7 (12.6)

This energy is a direct measure of the driving force available for an atom to
diffuse from an area that is subjected to a compressive stress to an area
subjected to the same tensile stress.

It is worth noting that the energy recovered when an atom moves
from just below interface A to just below interface B is orders of magnitude
lower than that given by Eq. (12.5). In other words, the strain energy
contribution to the process is not the driving force — it is only when the
atoms "plate out" onto the surface that the energy is recovered. The funda-
mental conclusion is that atom movements that result in shape changes are
much more energetically favorable than ones that do not result in such changes
(see Worked Example 12.1b).

WORKED EXAMPLE 12.1

(a) Refer to Fig. 12.2. If PA is 20 MPa and PB is 10 MPa, calculate the energy
changes for an atom that diffuses from interface A to interface B. Assume the
molar volume is 10cm3/mol. (b) Show that for a typical ceramic ±aQ is on
the order of 1000 J/mol. Compare that value to the elastic strain energy term
of an atom subjected to the same stress.
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Answer

(a) If the molar volume is 10cm3/mol, then il = 1.66 x 10-29 m3. According to
convention, <TU = -20 MPa and <722 = — 10 MPa, and the net energy recovered
is given by Eq. (12.5), or

&WA^B = 1.66 x 10-29 x 106{-20 - (-10)}/I -=?• D \. \ I )

= -1.66 x 10-22 J/atom = -100 J/mol

(b) Assuming the applied stress is 100 MPa, one obtains

ila = 1.66 x 10-29 x 100 x 106 = 1.66 x 10 -21 J/atom = 1000 J/mol

For the second part, assume Young's modulus to be 150 GPa. The elastic energy
associated with a volume Q is given by [see Eq. (11.3)]

_Q o2__ 1 (1.66 x 10-29)(100 x 106)
^elas — "y ~Y ~ 2 1 50 x 109

= 5.53 x 10-25 J/atom = 0.33 J/mol

which is roughly 3 orders of magnitude smaller than the <rO term.

Although Eqs. (12.4) to (12.6) elucidate the nature of the driving force
operative during creep, they do not shed any light on how the process
occurs at the atomic level. To do that, one has to go one step further and
explore the effect of applied stresses on vacancy concentrations. For the
sake of simplicity, the following discussion assumes creep is occurring in a
pure elemental solid. The complications that arise from ambipolar diffusion
in ionic compounds are discussed later. The equilibrium concentration of
vacancies C0 under a flat and stress-free surface is given by (Chap. 6)

C0 = K' exp( --¥=} (12.7)

where Q is the enthalpy of formation of the vacancies and the entropy of forma-
tion and all preexponential terms are included in K'. Since the chemical poten-
tial of an atom under a surface subjected to a stress is either greater or smaller
than that over a flat surface by A/z [Eq. (12.4)], this energy has to be accounted
for when one is considering the formation of a vacancy. It follows that

and similarly,

C22
 = C0 exp - (12.9)

where Cii is the concentration of vacancies just under a surface subjected to a
normal stress cr;7. Subtracting these two equations and noting that in most
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Shape of grain
after creep

Figure 12.3 (a) Vacancy concentration gradients that develop as a result of stress
gradients. The vacancy concentrations are higher below the tensile surface. Curved
arrows denote direction of vacancy fluxes. (b) Schematic of a grain of diameter d subjected
simultaneously to a tensile and a compressive stress. Curved arrows denote direction of
atomic fluxes. (c) Shape of grain after creep has occurred.

situations kT, one obtains

= Cv,-C,, =
kT

(12.10)

which is a completely general result. In the special case where a11 = —a22 = a.
it simplifies to

kT
(12 .11 )

Equations (12.10) and (12.11) are of fundamental importance since
they predict that the vacancy concentrations in tensile regions are higher
than those in compressive regions (Fig. 12.30). In other words, stress or
pressure gradients result in vacancy gradients, which in turn result in
atomic fluxes carrying atoms or matter away in the opposite direction
(Fig. 12.3b). It is only by appreciating this fact that sintering, creep, and
hot pressing, among others, can be truly understood.

Diffusional fluxes

In Eq. (7.30), it was shown that the flux of atoms is related to the driving
force by

'> = w' (12.12)
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where ci, Di, and f are, respectively, the concentration, diffusivity, and
driving force per atom. Once again by assuming that a11 = — a22 = &•> the
chemical potential difference per atom between the top and side faces of
the grain boundary shown in Fig. 12.3b is simply A^ = — 2<jQ [Eq. (12.6)].
This chemical potential difference acts over an average distance d/2, where
d is the grain diameter; that is, f = —djj,/dx — 4<jQ/d, which when combined
with Eq. (12.12), results in

_ciD,4<*liJi'Tf~d~ (12.13)

The total number of atoms transported in a time t, crossing through an
area A, is N = JiAt. Given that the volume associated with these atoms is
£ljN, the resulting strain from the displacement of the two opposite faces is
given by

(12.14)
a a a

I 12.14 and noting that c/O, = 1, one obtains
corresponding strain rate

d d d
Combining Eq. 12.13 and 12.14 and noting that c/O, = 1, one obtains the

(12.15)

This expression is the well-known Nabarro-Herring expression for creep,
and it predicts that

1. The creep rate is inversely proportional to the square of the grain size d.
Thus large-grain-size materials are more resistant to creep than fine-
grained ceramics. This is well documented experimentally.

2. The creep rate is proportional to the applied stress, which is also
experimentally observed, but as discussed in greater detail below, only
at lower stresses. At higher stresses, the stress exponent is usually
much greater than 1.

3. The slope of a plot of In (Td£ /d t ) versus 1 / kT should yield the
activation energy for creep. If creep occurs by lattice diffusion, that
value should be the same as that measured in a diffusion experiment.
This is often found to be the case.

4. Compressive stresses result in negative strains or shrinkage, while tensile
strains result in elongation parallel to the direction of applied stress
(Fig. 12.3c).

In deriving Eq. (12.15), the diffusion path was assumed to be through
the bulk, which is usually true at higher temperatures where bulk diffusion
is faster than grain boundary diffusion. However, at lower temperatures,
or for very fine-grained solids, grain boundary diffusion may be the faster
path, in which case the expression for the creep rate, known as Coble
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creep, becomes

(12.16)

where <5gb is the grain boundary width and t/> is a numerical constant % 14?r.
Here Di in Eq. (12.15) is replaced by Dgb6gb/d. The term 1/d represents the
density or number of grain boundaries per unit area; consequently, 6gb/d can
be considered to be a "grain boundary cross-sectional area."

It should be emphasized that Eqs. (12.15) and (12.16) are valid under the
following conditions:

• The grain boundaries are the main sources and sinks for vacancies.
• Local equilibrium is established for the temperature and stress levels

used; i.e., the sources and sinks are sufficiently efficient.
• Cavitation does not occur either at triple junctions or at grain boundaries.

Since both volume and grain boundary diffusion can contribute
independently to creep, the overall creep rate can be represented by the
sum of Eqs. (12.15) and (12.16). Note, however, that these expressions are
strictly true only for pure metals or elemental crystals, since only one
diffusion coefficient is involved. In general, for a binary or more complex
compound, one should use a complex diffusivity Dcomplex which takes into
account the various diffusion paths possible for each of the charged species
in the bulk and along the grain boundaries, as well as the effective widths
of the latter.210 Always remember that in ionic ceramics, the rate-limiting
step is always the slower-diffusing species moving along its fastest possible
path. For most practical applications, however, Dcomplex simplifies to the
diffusivity of the rate-limiting ion (see Prob. 12.1).

One final note: In Chap. 7 it was stated that it was of no consequence
whether the flux of atoms or defects were considered. To illustrate this impor-
tant notion once again, it is worthwhile to derive an expression for the creep
rate based on the flux of defects. Substituting Eq. (12.11) in the appropriate
flux equation for the diffusion of vacancies, i.e..

L--WL**L ( 1 2 1 7 )y - kT d ( 1 2 . 1 7 )

results in an expression which, but for a negative sign (which is to be expected
since the atoms and vacancies are diffusing in opposite directions), is

210 See, e.g.. R. S. Gordon, J. Amer. Cer. Soc., 56:174 (1973). For a compound MaXb

(£>M

n - -Dcomplex n(a(DMd + n6™D") + b(Dxd + TT/>* D* )]

where d is the grain size, <5gb is the grain boundary width, and Di and Di
gb are the bulk and

grain boundary diffusivities of the appropriate species, respectively.
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identical to Eq. (12.13) (recall that Dici = C0DA..). Thus once more it is
apparent that it is equivalent whether one considers the flux of the atoms
or the defects; the final result has to be and is the same, which is comforting.

12.2.2 Viscous Creep

Many structural ceramics often contain significant amounts of glassy phases
at the grain boundaries, and it is now well established that for many of them
the main creep mechanism is not diffusional, but rather results from the
softening and viscous flow of these glassy phases. Several mechanisms have
been proposed to explain the phenomenon, most notable among them
being these three:

Solution reprecipitation

This mechanism is similar to the one occurring during liquid-phase sintering,
where the dissolution of crystalline material into the glassy phase occurs at
the interfaces loaded in compression and their reprecipitation on interfaces
loaded in tension. The rate-limiting step in this case can be either the
dissolution kinetics or transport through the boundary phase, whichever is
slower. This topic was discussed in some detail in Chap. 10, and will not
be repeated here.

Viscous flow of a glassy layer

As the temperature rises, the viscosity of the glass falls, and viscous flow of
the glassy layer from between the grains can result in creep. The available
models predict that the effective viscosity of the material is inversely propor-
tional to the cube of the volume fraction f of the boundary phase, i.e.,

77eff= (const) ̂  (12.18)

where ;/, is the intrinsic or bulk viscosity of the grain boundary phase. Since
the shear strain rate and shear stress are related by

e = ̂ - (12.19)
>?eff

this model predicts a stress exponent of 1, which has sometimes been
observed. One difficulty with this model is that as the grains slide past one
another and the fluid is squeezed out from between them, one would
expect the grains to eventually interlock. Thus, unless significant volume
fractions of the glassy phase exist, this process must, at best, be a transient
process. One interesting way to test whether this process is operative is to
compare the creep rates of the same material in both tension and compres-
sion. If this process is operative, a large difference in the creep rates should
be observed.
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Viscous creep cavitation211

In some ceramic materials, notably those that contain glassy phases,
failure commonly occurs intergranularly by a time-dependent accumulation
of creep damage in the form of grain boundary cavities. The exact
mechanism by which the damage accumulates depends on several factors
such as microstructure, volume of glassy phase, temperature, and applied
stress, but two limiting mechanisms have been identified: bulk and localized
damage.

Low stresses and long exposure times tend to favor bulk damage, where
cavities are presumed to nucleate and grow throughout the bulk, with failure
occurring by the coalescence of these cavities to form a critical crack. A typi-
cal intergranular failure revealing the presence of numerous cavities along
two-grain facets is shown in Fig. 12.4a. In ceramics that are essentially
devoid of glassy phases, the cavities are believed to occur by vacancy diffu-
sion. More commonly, however, cavitation is thought to occur by viscous
hole growth within the intergranular glassy phase.

High stresses and short exposure times, however, tend to favor a more
localized type of damage where the nucleation and growth of the cavities
occur locally within the field of influence of a local stress concentrator,
such as a preexisting flaw. Here two crack growth mechanisms have been
identified: (1) direct extension of the creep crack along grain boundaries by
diffusive or viscous flow and (2) cavitation damage ahead of a crack tip
and its growth by the coalescence of these cavities, followed by the nucleation
and growth of fresh cavities, and so forth (Fig. 12.4b).

The problem is further complicated by the fact that there are three time
scales to worry about: sliding of grains with respect to each other, which in
turn creates the negative pressure at the triple points that is responsible for
the nucleation of the cavities, followed by the time needed to nucleate a
cavity, and finally the growth and coalescence of these cavities — any one
of which can be rate-limiting.

The understanding of this particular creep mechanism has been fueled
by the emergence of Si3N4 as a serious candidate for structural applications
at high temperatures. Usually Si3N4 is fabricated by liquid-phase sintering,
and thus almost always contains some glassy phase, which naturally renders
cavitation creep important. How to best solve the problem is not entirely
clear, but choosing glass compositions that can be easily crystallized in a
postfabrication step and/or introducing second phases such as SiC, which
could control grain boundary sliding, have been attempted, and the results
to date appear promising.

For a recent review, see K. Chan and R. Page. J. Amer. Cer. Soc., 76:803 (1993).
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Figure 12.4 (a) Intergranular fracture of an alumina sample showing creep cavitation due
to compressive creep at 1600°C.212 Note closely spaced cavities along the two-grain facets.
(b) Schematic of cavity formation in viscous grain boundary films as a result of applied
tensile stress.

12.2.3 Dislocation Creep

As noted above, the experimentally observed creep power law exponents,
especially at higher temperatures and applied stresses, are in the range of 3
to 8, which none of the aforementioned models predict. Thus to explain
the high-stress exponents, it has been proposed that the movement of
atoms from regions of compression to tension occurs by the coordinated
movement of "blocks" of material via dislocation glide or climb. In this

Courtesy of R. Page, C. Blanchard, and R. Railsback, Southwest Research Institute, San
Antonio, Texas.
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mechanism, the creep rate can be formally expressed as

12.20)

in which b is Burger's vector, p the dislocation density, v(a] the average
velocity of a dislocation at an applied stress cr, dp/dt is the rate of nucleation
of the dislocations at stress cr, and A is the average distance they move before
they are pinned. The main difficulty in developing successful creep models
and checking their validity stems primarily from the fact that these various
parameters are unknown and are quite nonlinear and interactive. Progress
has been achieved recently for some materials, however.213

12.2.4 Generalized Creep Expression

In general, the steady-state creep of ceramics may be expressed in the form214

(const)/X7b / b
~kT \d

(12.21

where G is the shear modulus, r is the grain size exponent, and p is the stress
exponent defined in Eq. (12.1). It can be easily shown (see Prob. 12.3) that Eqs.
(12.15) and (12.16) are of this form if p = 1.
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Figure 12.5 Summary of normalized creep rate versus normalized stress for alumina. The
dotted line is what one would predict based on Eq. (12.15).215

213 O. A. Ruano. J. Wolfenstine. J. Wadsworth. and O. Sherby. J. Amer. Cer. Soc., 75:1737
(1992).

214 W. R. Cannon and T. G. Langdon, J. Mat. Sci., 18:1-50 (1983).
215 Data taken from W. R. Cannon and T. G. Langdon. J. Mat. Sci., 18:1–50 (1983).
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Based on Eq. (12.21), the creep behavior of ceramics can be divided into
two regimes:

1. A low-stress, small-grain-size regime where the creep rate is a function of
grain size and the stress exponent is unity. Consequently, a plot of
\og{ekT/(DGb)}(d/b)r versus log(cr/G) should yield a straight line
with slope 1. The grain size exponent r will depend on the specific
creep mechanism and is 2 for Nabarro—Herring creep and 3 for Coble
creep. Figure 12.5 compares the experimental normalized creep rate of
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Figure 12.6 Summary of power law creep data for a number of ceramics.216

216 Data taken from W. R. Cannon and T. G. Langdon, J. Mat. Sci., 18:1–50 (1983).
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alumina to a/G collected from several sources (shaded area) to that
predicted if Nabarro—Herring creep was the operative mechanism. The
agreement is rather good, considering the uncertainties in the diffusion
coefficients, etc. Note that since it is d2 that is plotted, and the slope is
unity, this confirms the creep is of the Nabarro—Herring type.

2. A high stress level where the creep rate becomes independent of grain
size, that is, r = 0, and the stress exponent lies between 3 and 7. In
this regime, a plot of \og{£kT/(DGb)} versus log(cr/G) should once
again yield straight lines. In Fig. 12.6, the normalized creep rate for a
number of ceramics is plotted as a function of log(cr/(7). where it is
obvious that all the data fall on straight lines with slopes between 3
and 7. Figure 12.7 schematically summarizes the creep behavior of
ceramics over a wide range of applied stresses as a function of grain
size. From the figure it is obvious that small grains are detrimental to
the creep rates at low stresses, but that at higher stresses the intra-
granular movement of dislocations by climb or glide is the operative
and more important mechanism. In Fig. 12.7, the role of intergranular
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Diflusional creei

'ower Law creep

10" 10" 10"

Figure 12.7 Effect of grain size on normalized creep rate versus normalized stress. As
grains and consequently diffusion distances become smaller, diffusional creep becomes
more important.217

217 Data taken from W. R. Cannon and T. G. Langdon, J. Mat. Sci., 18:1–50 (1983).
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films and the formation of multigrain junction cavitation are not
addressed, but the stress exponents obtained experimentally from such
mechanisms also fall in the range of 2 to 7, which, needless to say, can
further cloud the interpretation of creep results.

12.3 Subcritical Crack Growth

Subcritical crack growth (SCG) refers to the slow growth of a Subcritical flaw
as a result of its exposure to the combined effect of stress and a corrosive
environment.218 As discussed in greater detail below, the combination of a
reactive atmosphere and a stress concentration can greatly enhance the
rate of crack propagation. For instance, silica will dissolve in water at a
rate of 10-17 m/s, whereas the application of stress can cause cracks to
grow at speeds greater than 10-3 m/s. The insidiousness of, and hence the
importance of understanding, this phenomenon lies in the fact that as the
crack tip advances, the material is effectively weakened and eventually can
give way suddenly and catastrophically after years of service.

The objective of this section is twofold: to describe the phenomenon of
SCG and to relate it to what is occurring at the atomic level at the crack tip.
Before one proceeds much further, however, it is important to briefly outline
how this effect is quantified.

Experimental Details: Measuring Subcritical Crack Growth

The techniques and test geometries that have been used to measure subcriti-
cal crack growth in ceramics are several, but they share a common principle,
namely, the subjection of a well-defined crack to a well-defined stress inten-
sity K1, and a measurement of its velocity v. The technique considered here,
the advantages of which are elaborated upon below, is the double torsion
geometry shown in Fig. 12.8. For the double torsion specimen, K1 is given by

where P is the applied load and v is Poisson's ratio; all the other symbols and
dimensions are defined in Fig. 12.8.
The measurements are carried out as follows:

1. A starter crack is introduced in a specimen, and a load is applied, as
shown in Fig. 12.8. As a result, the starter crack will grow with time.

218 A good example of this phenomenon that should be familiar to many is the slow crack
growth over time in a car's windshield after it has been damaged.
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Figure 12.8 Schematic of double torsion specimen.

2. The rate of crack growth is measured, usually optically. For instance,
two marks are placed on the specimen surface, the time required for
the crack to propagate that distance is measured. The crack velocity is
then simply v — Ac/A/. The major advantage of this geometry is
embedded in Eq. 12.22. Since K1 is not a function of crack length, it
follows that v is also not a function of crack length; i.e., a constant
crack velocity should be observed for any given load, which greatly
simplifies the measurement and analysis. The disadvantage of the tech-
nique, however, is that it requires reasonably large samples that require
some machining.

3. The experiment is repeated under different loading conditions, either on
the same specimen, if it is long enough, or on different specimens, if not.

If explored over a wide enough spectrum, a In v versus K1 plot will
exhibit four regions, as shown in Fig. 12.9a:

• A threshold region below which no crack growth is observed
• Region I, where the crack growth is extremely sensitive to KI and is

related to it by an exponential function of the form

u = /rexpatf, (12.23)

where A* and a are empirical fitting parameters
• Region II, where the crack velocity appears to be independent of KI

• Region III, where the crack growth rate increases even more rapidly with
KI than in region I

To measure n (defined in Eq. (12.30)) directly from velocity versus KI

curves is often difficult and time consuming. Fortunately, a simpler and
faster technique, referred to as a dynamic fatigue test (not to be confused
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Figure 12.9 (a) Schematic of crack propagation rates as a function of KI, where four
stages are identified. (b) Actual data for soda-lime glass tested in N2 gas of varying relative
humidity shown on the right-hand side.219 (c) Temperature dependence of crack propaga-
tion in same glass in water.

219 S. M. Wiederhorn, J. Amer. Cer. Soc., 50:407 (1967).
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with the normal fatigue test discussed below), is available. In this method, the
strain rate dependence of the average strength to failure is measured; i.e., the
samples are loaded at varying rates and their strength at failure is recorded. It
can be shown (see App. 12A) that the mean failure stress a\ at a constant
strain rate l{ is related to the mean failure stress cr2 at a different strain
rate £•> by

= • (12.24)
^2

Hence by measuring the stress to failure at different strain rates, n can be
directly calculated from this relationship.

Yet another variation of this test, which is also used to obtain creep
information, is to simply attach a load to a specimen and measure its time
to failure. The results are then plotted in a format identical to the one
shown in Fig. 12.1 la for cyclic fatigue, and are referred to as static fatigue
or stress/life curves.

Typical v versus K data for soda-lime silicate glasses tested as a function
of humidity are shown in Fig. 12.9b, where the following salient points are
noteworthy:

• The rate of crack propagation is a strong function of the applied stress.
• Humidity has a dramatic effect on u; increasing the relative humidity in

the ambient atmosphere from 0.02 to 100 percent, results in a greater
than 3 orders-of-magnitude increase in v.

• Clear identification of the three regions just described is possible.
• The presence of a threshold K\ is not clearly defined because of the

difficulty of measuring crack velocities that are much smaller than
10-7 m/s.

• The dramatic effect of increasing the temperature on crack velocity is
shown in Fig. 12.9c. The velocity increases by about 2 orders of magni-
tude over a temperature range of « 100ºC, typical of thermally activated
processes.

To understand this intriguing phenomenon, it is imperative to appreci-
ate what is occurring at the crack tip on the atomic scale. Needless to say, the
details will depend on several factors, including the chemistry of the solid in
which SCG is occurring, the nature of the corrosive environment, tempera-
ture and stress levels applied. However, given the ubiquity of moisture in
the atmosphere and the commercial importance of silicate glasses, the follow-
ing discussion is limited to SCG in silicate-based glasses, although the ideas
presented are believed to have general validity. Furthermore, since, as
discussed in greater detail in Sec. 12.5.1, it is region I that determines the
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lifetime of a part, it is dealt with in some detail below. The other regions will
be briefly touched upon at the end of this section.

The models that have been suggested to explain region I for glasses in
the presence of moisture can be divided into three categories: diffusional
(i.e., a desintering of the material along the fracture plane), plastic flow,
and chemical-reaction theories. Currently the chemical-reaction approach
appears to be the most consistent with experimental results and is the one
developed here.

It is now generally accepted that a stressed Si-O-Si bond at a crack tip
will react with water to form two Si—OH bonds according to the following
chemical reaction:

Si-O-Si + H2O = 2Si-OH (I)

In this process, illustrated in Fig. 12.10 and referred to as dissociative
chemisorption, a water molecule is assumed to diffuse and chemisorb to the
crack tip (Fig. 12.10a) and rotate so as to align the lone pairs of its oxygen
molecules with the unoccupied electron orbitals of the Si atoms
(Fig. 12.10b). Simultaneously, the hydrogen of the water molecule is
attracted to a bridging oxygen. Eventually, to relieve the strain on the Si
O-Si bond, the latter ruptures and is replaced by two Si-OH bonds
(Fig. 12.10c).

Experimentally, it is now fairly well established that water is not the only
agent that causes SCG in glasses; other polar molecules such as methanol and
ammonia have also been found to cause SCG, provided that the molecules
are small enough to fit into the extending crack (i.e., smaller than about
0.3 nm).

Figure 12.10 Steps in the dissociative chemisorption of water at the tip of a silica glass.
(a) Tip of crack with approaching water molecule; (b) chemisorption of water and its
alignment; (c) the breaking of an Si-O-Si bond and the formation of two Si-OH bonds.220

Adapted from T. Michalske and B. Bunker, Sci. Amer., 257:122 (Dec. 1987).
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The basic premise of the chemical reaction theory is that the rate of reac-
tion (I) is a strong function of KI at the crack tip. According to the absolute
reaction rate theory,221 the zero-stress reaction rate of a chemical reaction is
given by

- *
(12.25)

where K is a constant and A//* and AS* are, respectively, the differences in
enthalpy and entropy between the reactants in their ground and activated
states.222 In the presence of a hydrostatic pressure P, this expression has to
be modified to read

(12.26)

where A(7* is now given by

AC* = A//* - FAS* +
and A V* is the difference in volume between the reactants in their ground
and activated states. Combining Eqs. (12.25) and (12.26), one sees that the
effect of stress on chemical reactivity is simply

(12.27)

This result is important because it predicts that applying a hydrostatic (P > 0)
pressure to a reaction should slow it down, and vice versa. Physically, this can
be more easily appreciated by considering a diatomic molecular bond: That a
tensile stress along the axis of the bond must enhance the rate at which rupture
occurs, and consequently its chemical reactivity, is obvious.

If the crack velocity is assumed to be directly related to the reaction
rate Kr and P is proportional to K\ at the crack tip, then Eq. (12.27) can
be recast as223 (see Prob. 12.5)

-A//
v = vQ exp

Kl
(12.28)

where VQ, A//*, and /3 are empirical constants determined from log v versus
KI types of plots. This formalism accounts, at least qualitatively, for the
principal external variables since

221 S. Glasstone, K. Laidler, and H. Eyring, The Theory of Rate Processes, McGraw-Hill. New
York, 1941.

222 The implicit assumption here is that the forward rate of the reaction is much greater than the
backward rate.

223 R. J. Charles and W. B. Hillig, pp. 511–527 in Symposium on Mechanical Strength of Glass
and Ways of Improving It, Florence, Italy, September 1961, Union Scientifique Continentale
du Verre, Charleroi, Belgium, 1962. See also S. W. Weiderhorn, J. Amer. Cer. Sot., 55:81–85
(1972).
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1. It predicts a strong dependence of v on KI consistent with the behavior
in region I.

2. It also predicts an exponential temperature effect, as observed
(Fig. 12.9c). Note that for constant temperatures this result and
Eq. (12.23) are of the same form.

3. Although not explicitly included in Eq. (12.28), the effect of moisture is
embedded in the preexponential factor. This comes about by recog-
nizing that the rate of reaction [Eq. (12.26)] is proportional to the
concentration of water (see Prob. 12.5b).

It is important to note that in much of the literature, an empirical power-
law expression of the form

K \ "
~ (12.29)

which is usually further abbreviated to224

v = A"K? (12.30)

is sometimes used to describe SCG, instead of Eq. (12.28). In this formalism
the temperature dependence is embedded in the A term [see Eq. (12.46)].
The sole advantage of using Eq. (12.29) or (12.30) over Eq. (12.28) is the
ease with which the former can be integrated (see Sec. 12.5.1). Equation
(12.28), however, must be considered more fundamental, first, because it has
some scientific underpinnings and, second, because it explicitly predicts the
exponential temperature dependence of the phenomenon. Finally, note that
the experimental results can usually be fitted equally well by either of these
equations; extrapolations, however, can lead to considerable divergences.225

Before one moves on to the next topic, consider briefly the other regions
observed in the v versus K plots:

1. Threshold region. Although it is difficult to unequivocally establish
experimentally that there is a threshold stress intensity Kth below which
no crack growth occurs from v versus KI types of curves, probably the
most compelling results indicating that it indeed exists come from crack
healing studies. At very low values of KI, the driving force for crack
growth is low, and it is thus not inconceivable that its rate of growth at
some point would equal the rate at which it heals, the driving force for
which would be the reduction in surface energy. In other words, a sort
of dynamic equilibrium is established, and a threshold results.

2. Region II. The hypothesis explaining the weak dependence of crack
velocity on K in region II is that the crack velocity is limited by the
rate of arrival of the corroding species at the crack tip.

224 Note that while A has the dimensions of meters per second, A" has the unwieldy dimensions
ofms^(Pa-m1 / 2r".

225 T. Michalske and B. Bunker, J. Amer. Cer. Soc., 76:2613 (1993).
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3. Region III. This stage is not very well understood, but once again a
combination of stress and chemical reaction is believed to accelerate
the crack.

12.4 Fatigue of Ceramics

It has long been assumed that because dislocation motion in ceramics is
limited, strain hardening and consequent crack extension during cyclic
loading would not occur, and hence ceramics were not susceptible to fatigue
damage. And indeed, ceramics with homogeneous microstructures such
as glass or very fine-grained single-phase ceramics do not appear to be
susceptible to cyclic loadings.

However, more recently, with the development of tougher ceramics that
exhibit R curve behavior (see Chap. 11), such as transformation-toughened
zirconia and whisker- and fiber-reinforced ceramics, it is becoming clear
that the situation is not as simple as first thought. Recent data seem to
suggest that R curve behavior can be detrimental to fatigue life. Before one
tackles the micromechanisms of fatigue, however, a brief description is
warranted of what is meant by fatigue and what the relevant parameters are.

Experimental Details: Measuring Fatigue

In a typical fatigue test, a sample is subjected to an alternating stress of a
given amplitude and frequency. The cyclic stress amplitude is defined as

whereas the load ratio R is defined as

* = ̂ =- (12.32)

where <rmin and crmax are, respectively, the minimum and maximum stress
to which the sample is subjected (Fig. 12.11a). The experiments can be
carried out either in tension-tension, compression-compression, or tension-
compression, in which case R would be negative.

Two types of specimens are typically used, smooth "crack-free"
specimens or specimens containing long cracks, i.e., cracks of dimensions
that are large with respect to the structural features of the material.

For the smooth or crack-free specimens, the experiments are run until
the sample fails. The results are then used to generate S/N curves where
the applied stress amplitude is plotted versus the cycles to failure (which
are equivalent to the time to failure if the frequency is kept constant), as
shown in Fig. 12.11a.
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Figure 12.11 (a) The stress amplitude versus cycles to failure curve (S/N curve). Inset
shows definition of stress amplitude (Tamp. (b) Curves of log (dc /dN) versus logA^.
Slope of curve in region II is q, and AK is denned in inset.

For the specimens with long cracks, the situation is not unlike that dealt
with in the previous section, except that instead of measuring v versus K, the
crack growth rate per cycle dc/dN is measured as a function of AKI, denned
as

= £(>max - crmin ) (12.33)

where £ is a geometric factor of the order of unity.
Typical crack growth behavior of ceramics is represented schematically

in Fig. 12.11b as log AA^ versus log(dc/dN). The resulting curve is sigmoidal
and can be divided into three regions, labeled I, II, and III. Below Kth, that is,
region I, the cracks will not grow with cyclic loading. But just prior to rapid
failure, the crack growth is accelerated once more (region III).

In the midrange, or region II, the growth rates are well described by

(12.34)

where B and q are empirically determined constants.
Given the similarity in behavior between fatigue and SCG [compare

Figs. 12.9a and 12.11b or Eqs. (12.34) and (12.30)], one of the major experi-
mental difficulties in carrying out fatigue experiments lies in ascertaining that
the degradation in strength observed is truly due to the cyclic nature of the
loading and not due to SCG. Even more care must be exercised when the
tests are carried out at higher temperatures, since as noted above, SCG is a
thermally activated process and hence becomes more important at elevated
temperatures.
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Figure 12.12 Cyclic fatigue long-crack propagation data for several ceramics compared
to those for some typical metals.226 TZPs are tetragonal zirconia polycrystals (see
Chap. 11).

Typical long-crack data for a number of ceramics are shown in
Fig. 12.12, where the log(dc/dN) versus log A/q curves are linear and very
steep, implying high values of q. These studies also indicate that under
cyclic loading, the thresholds for crack growth can be as low as 50 percent
of the fracture toughness measured under monotonically increasing loads.

Micromechanisms of fatigue

At this point, the micromechanics of what is occurring at the crack tip in
ceramic materials are not fully understood; the models put forth are still
tentative, and more work needs to be carried out in this area to clearly
establish the various mechanisms and their applicability to various systems.
The recent results, however, have established that (1) no one micromechani-
cal model can successfully explain all fatigue data in ceramics; (2) fatigue in
ceramics appears to be fundamentally different from that of metals, where
crack propagation results from dislocation activity at the crack tip; and (3)
ceramics that exhibit R curve behavior appear to be the most susceptible
to fatigue, indicating that the cyclic nature of the loading somehow
diminishes the effect of the crack-tip shielding mechanisms discussed in
Chap. 11. For instance, in the case of fiber- or whisker-reinforced ceramics,

226 Data taken from C. J. Gilbert, D. R. Bloyer. M. W. Barsoum. T. El-Raghy. A. P. Tomsia and
R. O. Ritchie, "Fatigue-Crack Growth and Fracture Properties of Coarse and Fine-Grained
Ti3SiC2", Scripta Mater.. 42:761-767 (2000).
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it is believed that unloading induces fracture or buckling of the whiskers in
the crack wake, which in turn reduces their shielding effect. If the toughening,
on the other hand, is achieved primarily by grain bridging or interlocking,
then the unloading cycle is believed to cause cracking and/or crushing
of asperities between crack faces and the progressive frictional sliding at
bridging interfaces.

Finally, it is interesting to note that the few studies on cyclic fatigue of
ceramics at elevated temperatures seem to indicate that at high homologous
temperatures (i.e., in the creep regime) cyclic fatigue does not appear to be as
damaging as SCG or static fatigue. In the cases where it has been observed,
the improved cyclic fatigue behavior has been attributed to bridging of the
crack surfaces by grain boundary glassy phases.

12.5 Lifetime Predictions

Creep, fatigue, and SCG are dangerous in that if they are not taken into
account, they can result in sudden and catastrophic failure with time.
Thus, in addition to the probabilistic aspects of failure discussed in
Chap. 11, from a design point of view, the central question is, How long
can a part serve its purpose reliably? The conservative approach, of course,
would be to design with stresses that are below the thresholds discussed
above. An alternative approach is to design a part to last for a certain life-
time, after which it would be replaced or at least examined for damage. In
the following sections, the methodology is described that is used to calculate
lifetime for each of these three phenomena.

12.5.1 Lifetime Predictions during SCG

Replacing v in Eq. (12.29) by dc/dt, rearranging, and integrating, one obtains

A

where ci and Cf are the initial and final (just before failure) crack lengths,
respectively, and tf is the time to failure. Recalling that KI = \I/craV/7rr
[Eq. (11.12)], one sees that dc in Eq. (12.35) can be eliminated and recast
in terms of KI as

dK,

( '
which upon integration yields

) j^n r t 1 1

(12.37)
n - 2) K?-2 A
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Given that for n « 10, even if K1 is as high as 0.5K1c, the second term is less
than 0.5 percent of the first, and thus with great accuracy227

tf (12.38)

When a similar integration is carried out on Eq. (12.28), the lifetime is
given by (see Prob. 12.5)

2 RT

where v'0 = v0exp[-AH*/(RT)]. Both Eqs. (12.38) and (12.39) predict that
the lifetime of a component that is susceptible to SCG is a strong function of
K1 (see Worked Example 12.2).

WORKED EXAMPLE 12.2

For silica glass tested in ambient temperature water, v0 = 3 x 10-22 m/s and
0 = 0.182 m5/2. Estimate the effect of increasing K1 from 0.4 to 0.5 MPa • m1 / 2

on the lifetime.

Answer

By noting that K1 = #eraV/7rr, Eq. (12.39) can be rewritten as

tf = (const) e
-3k

1
/(RT)

Here the dependence of the preexponential term on K1 was ignored, which is a
good approximation relative to the exponential dependence. Substituting the
appropriate values for K1 and 3 in this expression, one obtains

0.182 x 0.4 x 106

8.314 x 300
0.182 x 0.5 x 106

exp
8.314 x 300

In other words, a decrease in K1 from 0.5 to 0.4 MPa • m1 / 2 increases the
lifetime by a factor of about 1500!

The methodology just described, while useful in predicting the lifetime
of a sample with a well-defined starter crack (tf cannot be calculated without
a knowledge of K1 or ci), is not amenable to a probabilistic analysis such as
227 Ignoring the second term in Eq. (12.37) says that the fraction of the lifetime the crack spends

as its size approaches Cf is insignificant compared to the time taken by the crack to increase
from Ci to c, + 6c, when its velocity is quite low.
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the one discussed in Sec. 11.5. However, as discussed below, the relationships
derived for the lifetimes, particularly Eq. (12.38), permit the straightforward
construction of strength/probability/time diagrams that can be used for
design purposes.

Strength/probability/time (SPT) diagrams

For a set of identical specimens, i.e., given that A, K1 or equivalently c i,and W
are constant, it follows directly from Eq. (12.38) that

where t1 and t2 are the lifetimes at a1 and a2, respectively. If one assumes that
a sample was tested such that it failed in 1 s at a stress of a1 [clearly not an
easy task, but how that stress can be estimated from constant strain rate
experiments is outlined in App. 12A — see Eq. (12A.8)], it follows from
Eq. (12.40) that the stress <72 at which these same samples would survive a
lifetime of t2 = 106* is

10*

where t\ = 1s. Taking the log of both sides and rearranging, one obtains

log <72 = log cr, - - (12.41)

This is an important result in that it allows for the straightforward
construction of an SPT diagram from a Weibull plot (Fig. 11.21). The proce-
dure is as follows (see Worked Example 12.3):

• Convert the stress at any failure probability to the equivalent stress crls

that would have resulted in failure in 1 s, using Eq. (12A.8).
• Plot logcrls versus loglog(l/S), as shown in Fig. 12.13 (line labeled 1 s).

Since the Weibull modulus m is not assumed to change, the slope of the
line will remain the same as the one shown in Fig. 11.21.

• Draw a series of lines parallel to the original line, with a spacing between
the lines equal to 1/n, as shown in Fig. 12.13. Each line represents a
decade increase in lifetime.

WORKED EXAMPLE 12.3

The data collected in Worked Example 11.2 were measured at a strain rate of
1 x 10-3 s-1 and n for this material was measured to be 10. (a) Construct the
SPT diagram for the data listed in Table 11.2. (b) Calculate the design stress
that would result in a lifetime of 104 s and still maintain a probability of survival
of 0.999. Assume Y = 350 GPa.
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Figure 12.13 Effect of SCG rate exponent n on Weibull plots. The Weibull plots are
shifted by 1/n for every decade of life required of the part. Data are the same as plotted
in Fig. 11.21, but are converted to a log plot.

Answer

(a) Referring to Table 11.2, the failure stress at, say, S = 0.837 [i.e..
loglog(1/S) = -1.11] was 310MPa. Converting this stress to the stress that
would have caused the sample to fail in 1 s [Eq. (12A.8)] yields

= 310
310 x 106

350 x 109 x 1 x 10 -3 x (10+ 1)

1/10
= 241 MPa

for which logcr = 2.38. The intersection of the two dotted lines establishes a
point on the Weibull plot (Fig. 12.13). A line is then drawn through this
point, with the same slope m as the original one. The other lines are plotted
parallel to this line but are shifted to the right by 1/n or 0.1 for every decade
of lifetime, as shown in Fig. 12.13.
(b) In Worked Example 11.2, the stress for which the survival probability was
0.999 was calculated to be 200 MPa. The corresponding 1 s failure stress is

<r, = 200
200 x 106

= 148 MPa
350 x 109 x 1 x 10-3 x (10 + 1)

To calculate the design stress that would result in a lifetime of 104 s. use is
made of Eq. (12.40), or

.Wl- /]90V°~
Solving for a2 yields 59 MPa. In other words, because of SCG, the applied

stress would have to be downgraded by a factor of «3 in order to maintain the
same survival probability of 0.999. It is left as an exercise to readers to convince
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themselves that for higher values of n, the reduction in design stress would have
been less severe.

12.5.2 Lifetime Predictions during Fatigue

Given the similarities between the shape of the curves in the intermediate
region for SCG and fatigue, one can design for a given fatigue lifetime by
using the aforementioned methodology (see Prob. 12.13). However, given
the large values of q, there is little gain in doing so; design based on the
threshold fracture toughness A.Kth alone suffices. This can be easily seen in
Fig. 12.12: To avoid fatigue failure, the stress intensity during service
should simply lie to the left of the lines shown.

The actual situation is more complicated, however, because the results
shown in Fig. 12.12 are only applicable to long cracks. Short cracks have
been shown to behave quite differently from long ones; furthermore, the
very high values of q imply that marginal differences in either the assumed
initial crack size or component in-service stresses can lead to significant
variations in projected lifetimes (see Prob. 12.13).

The more promising approach at this time appears to be to use S/N
curves such as shown in Fig. 12.11 a and simply to design at stresses below
which no fatigue damage is expected, i.e., use a fatigue limit approach. The
major danger of this approach, however, lies in extrapolating data that
were evaluated for simple and usually small parts to large, complex structures
where the defect population may be quite different.

12.5.3 Lifetime Predictions during Creep

The starting point for predicting lifetimes during creep is the Monkman-
Grant equation, which states that the product of the time to failure tf and
the strain rate £ is a constant, or

£tf = KMG (12.42)

What this relationship, in effect, says is that every material will fail during
creep when the strain in that material reaches a certain value KMG,
independent of how slow or how fast that strain was reached. That the
Monkman-Grant expression is valid for Si3N4 is shown in Fig. 12.14,
where the range of data obtained for the vast majority of tensile stress
rupture tests lies in the hatched area. On such a curve, Eq. (12.42) would
appear as a straight line with a slope of 1, which appears to be the case.

If one assumes the creep rate is either grain-size-independent or for a set
of samples with comparable grain sizes, Eq. (12.21) can be recast as

(12.43)
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Figure 12.14 Summary of a large number of tensile rupture data collected from various
sources for Si3N4 plotted to verify the Monkman–Grant equation.228

where Qc is activation energy for creep, A0 is a constant, aa is the applied
stress that causes failure, and cr0 is a normalizing parameter that defines
the units of aa. Since the stresses one deals with are normally in the mega-
pascal range, cr0 is usually taken to be 1 MPa. Combining these two
equations, one obtains

A:,MG (12.44)

In other words, the lifetime of a part should decrease exponentially with
increasing temperature as well as with increasing applied stress: both
predictions are borne out by experiments. It is worth noting that Eqs.
(12.42) to (12.44) are only valid if the rate of damage generation was
controlled by the bulk creep response of the material and steady-state
conditions are established during the experiment.

12.5.4 Fracture Mechanism Maps

High-temperature failure of ceramics typically occurs by either subcritical
crack growth or creep. In an attempt to summarize the data available so

Adapted from S. M. Wiederhorn, Elevated Temperature Mechanical Behavior of Ceramic
Matrix Composites. S. V. Nair and K. Jakus, eds.. Butterworth. Stoneham. Massachusetts.
1993.
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as to be able to quickly and easily identify the mechanisms responsible for
failure and their relative importance, Ashby suggested plotting the data on
what is now known as fracture mechanism maps.229 The starting point for
constructing such a map is to recast Eqs. (12.44) and (12.38), respectively, as

if i nkT
(12.46)

at which point their similarities become quite obvious.230 Variables t0 and aQ

are introduced in Eq. (12.46) to keep B0 dimensionless and define the scales
— most commonly, t0 is chosen to be 1 h and <70 is again 1 MPa.

To construct such a map (see Worked Example 12.4), SCG and creep
rupture data must be known for various temperatures. The temperature
dependence of the stress levels required to result in a given lifetime are
then calculated from Eqs. (12.45) and (12.46). The mechanism that results
in the lowest failure stress at a given temperature thus defines the threshold
stress or highest applicable stress for the survival of a part for a given time. In
other words, the lifetime of the part is determined by the fastest possible path.
Such maps are best understood by actually plotting them.

WORKED EXAMPLE 12.4

Using the following information, construct a fracture deformation map
for Si3N4: KMG w 5.4 x 10–3 (from Fig. 12.13), p = 4, Qc = 800 kJ, A0 =
1.44 x 1019 h–1, <T0 = 1 MPa (these are typical values for Si3N4, except p which
is usually closer to 8 or 9; see Prob. 12.11 for another set of data). For subcritical
crack growth in Si3N4, assume B0 = 80, n = 55, QSCG = 760 kJ/mol, cr0 = 1 MPa,
and t0 = 1 h.

Answer

Plugging the appropriate numbers in Eq. (12.45), one obtains

Qc 4.4 x 10~6 24,055___ __ 7

When this equation is plotted as a function of temperature, a series of steep lines
emerge that are shifted toward the left with increasing lifetimes, as shown in
Fig. 12.15.

229 M. F. Ashby, C. Gandhi, and D. M. R. Taplin, Acta Metall., 27:1565 (1979).
230 Note that the temperature dependence which was buried in A in Eq. (12.38) is now spelled

out. Also note that the exponent of aa in Eq. (12.38) once K1 is replaced by ^aa^/nc is n
(see Prob. 12.5).
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Figure 12.15 Fracture mechanism map for Si3N4 using data given in Worked Example 12.4.

Similarly, a plot of Eq. (12.46), that is.

?l «p- 80 1662
nkT

gives another series of almost parallel lines labeled SCG in Fig. 12.15. Note that
the large value of n makes Si3N4 much less susceptible to SCG at higher
temperatures.

The advantage of such maps is that once they have been constructed, the
stress-temperature regime for which a part would survive a given lifetime is
easily delineated. Referring to Fig. 12.15, one sees that to design a part to with-
stand 100 h of service, the design should be confined to the domain encompassed
by the 100-h lines. In other words, a part subjected to a combination of stress
and temperature that lies within the heavy lines (lower left-hand corner of
Fig. 12.15) will survive for at least 100h — any other combination would
result in a shorter lifetime.

12.6 Summary

1. The removal of atoms from regions that are in compression and placing
them in regions that are in tension reduces the free energy of the atoms
by an amount % 2fJ<r, where a is the applied stress and Q is the atomic
volume. This reduction in energy is the driving force for creep.

2. Diffusional creep is a thermally activated process that depends on the
diffusivity of the slower species along its fastest path. When the material
is subjected to relatively low stresses and/or temperatures, the creep rate
typically increases linearly with stress; i.e., the stress exponent is unity.
Because the diffusion path scales with grain size d. finer-grained solids
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are usually less resistant to diffusional creep than their larger-grained
counterparts. If the ions diffuse through the bulk (Nabarro–Herring
creep), the creep rate is proportional to d–2; if they diffuse along the
grain boundaries (Coble creep), the creep rate scales as d–3.

3. At high stresses, the creep rate is much more sensitive to the applied
stress, with stress exponents anywhere between 3 and 8, and is indepen-
dent of grain size.

4. The presence of glassy phases along grain boundaries can lead to cavita-
tion and stress rupture.

5. Subcritical crack growth can also occur by the combined effect of stres-
ses and corrosive environment and/or the accumulation of damage at
crack tips. The basic premise at ambient and near-ambient temperatures
is that SCG results from a stress-enhanced reactivity of the chemical
bonds at the crack tip. This phenomenon is thus a strong function of
the stress intensity at the crack tip and typically is thermally activated.
At high temperatures, the phenomenon of SCG is believed to occur
by the formation of cavities ahead of a crack tip. The crack then
grows by the coalescence of these cavities.

6. In some ceramic materials, most notably those that exhibit R curve
behavior, data have been reported that confirm fatigue effects. These
effects are believed to result from a weakening of the shielding elements,
such as whiskers or large grains. The results also seem to indicate that
short cracks behave differently from long ones, indicating that perhaps,
from a the design point of view, it is more promising to use S/N curves
(Fig. 12.1 la) than crack growth rate curves (Fig. 12.11b).

Appendix 12A

Derivation of Eq. (12.24)

Equation (12.40), while appearing to be a useful equation to estimate the life-
time of a part, has to be used with caution since it assumes that ci is identical
in all samples. And while that is possible in a laboratory setting where well-
defined cracks can be introduced in a sample, its usefulness in practice is
limited. What is thus needed is a methodology to transform data (i.e., one
with a distribution of failure times) to an equivalent stress that would have
caused failure in, say, 1 s; in other words, a renormalization of the time-to-
failure data.

Figure 12.16 illustrates the problem. The sloping line represents the
stress on a sample as a result of some increasing strain rate e. The specimen
fails at stress crf after time t£. Had the stress been applied instantaneously, the
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Time

Figure 12.16 Comparison of stress versus time response for constant-stress and constant-
rate tests.

sample would have failed after a shorter time tff because the average stress is
initially higher. Equation (12.40) can be recast to read

to" = T' (12A.1

where F' is a constant. Invoking the notion that the sum of the fractional
times the material spends at any stress has to be unity, i.e.,

-t
implies that for a constant-strain-rate test

(12A.:

12A.3)

where t£ is the time for the sample to fail when the strain rate is e (Fig. 12.16).
It follows directly from Fig. 12.16 that

/=. = fff
dt

(12A.4)

Combining Eqs. (12A.4) and (12A.3), eliminating t by using Eq. (12A.1), and
integrating Eq. (12A.3), one obtains

1
n da

o Hoy r ' ( / i + l )
(12A.5)

where oy is the fracture stress. Making use of Eq. (12A.1) once again, one
sees that

^ = n+\ (12A.6)
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Rewriting Hooke's law as ay = Yi t£, one obtains

af=Yll(n+\}ta (12A.7)

Combining this equation with Eq. (12.40) yields the sought-after result

(12A.8)

This result thus allows for the calculation of the constant stress <rls which
would have caused failure in 1 s from the stress oy at which the sample
failed at a constant strain rate e, both of which are experimentally accessible.

By rewriting Eq. (12A.8) for two different strain rates, it is easy to show
that

(I2A'9)

where a£. is the mean value of the failure stress measured at strain e(.

12.1. (a) Consider an oxide for which dDM > 6&D& > dDx > 6gbD*b.
Which ion do you think will be rate-limiting and which path
will it follow? See footnote 210 for definition of terms.

(/>) Repeat part (a) for dDx > 6gbD™b > 6gbD
x
b > dDM.

12.2. If the grain boundary diffusivity is given by

Dgb = 100exp(–40kJ/RT)

and the bulk diffusion coefficient is

Dlatt = 300exp(–50 kJ/RT)

at 900 K determine whether grain boundary or lattice diffusion will
dominate. How about at 1300 K? At which temperature will they be
equally important?

Answer: T = 1095K

12.3. For what values of r and p does Eq. (12.21) become similar to Eqs.
(12.15) and (12.16)?

12.4. (a) Derive an expression for the vacancy concentration difference
between the side and bottom surfaces of a cylindrical wire of
radius p subjected to a normal tensile stress ann.

(b) Calculate the vacancy concentration at two-thirds of the absolute
melting point of Al and Cu subjected to a tensile strain of 0.2
percent. The enthalpy of vacancy formation for Cu and Al is,
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respectively, 1.28 and 0.67 eV. The Young's moduli at two-thirds
of their respective melting points are 110 and 70GPa. respec-
tively. State all assumptions.

Answer: CCu w 7.5 x 1021 m~3, CA, w 2.84 x 1023 m~3

(c) At what radius of curvature of the wire will the surface energy
contribution be comparable to the applied stress contribution?
Assume the applied stress is 10 MPa. State all other assumptions.
Comment on the implications of your solution to the relative
importance of externally applied stresses versus those that
result from curvature.

Answer: rc « 0.01 urn

12.5. (a) Derive Eq. (12.28).
(b) Rederive Eq. (12.28), but include a term that takes into account

the concentration of moisture.
(c) Derive Eqs. (12.38) and (12.39).
(d) For n = 10, estimate the error in neglecting the second term

within brackets in Eq. (12.37). Why can this term be safely
neglected? And does that imply that the lifetime is independent
of AT,r? Explain.

(e) Show that the lifetime of a part subjected to SCG [Eq. (12.38)]
can be equally well expressed in terms of the initial crack
length Cj by

, 2K"c
}"( _ J} "/2-'

12.6. Typical crack growth data for a glass placed in a humid environment
are listed below. Calculate the values of A", A, and n (see Eq. (12.30)),
given that Klc = 0.7 MPa • m1/2. What are the units of A"?

Stress intensity. MPa-m1 /2

Crack velocity, m/s

0.4

1 x 10–6

0.5

1 x 10~4

0.55

1 x 10 *

0.6

1 x 10~:

Answer: n = 22.5, A" = 772, A % 0.25 m/s

12.7. If the specimen in Prob. 11.7 was loaded in tension under a stress of
10 MPa and all cracks but the surface crack shown on the left-hand
side were ignored, calculate the lifetime for the part. Assume n = 15
and A = 0.34 m/s. State all other assumptions.

Answer: 123 s

12.8. (a) The Weibull plots shown in Fig. 12.17 were generated at two
different strain rates s\ = 2 x 10~6s~' and 12 = 2 x 10~5s~' .
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Figure 12.17 Effect of strain rate on Weibull plots.

5.8

Which strain is associated with which curve? Briefly explain your
choice.

(b) Calculate the stress needed to obtain a 0.9 survival probability
and a lifetime of 107s. Information you may find useful:
Klc = 3 MPa-m1/2 , Y = 100 GPa.

Answer: 45 MPa

12.9. (a) A design engineer wants to design an engine component such
that the probability of failure will be at most 0.01, and the
choice is between the following two materials:

Ceramic A Mean strength 600 MPa m = 25 n = 11
Ceramic B Mean strength 500 MPa m = 17 n = 19

Which would you recommend and why? What maximum design
stress would be allowable to ensure the survival probability
required? State all assumptions.

Answer: 499 MPa

(b) The values shown above were measured for samples that had the
following dimensions: 1 cm by 1 cm by 8 cm. If the component
part is 10 times that volume, would your recommendation
change concerning which material to use? Would the design
stress change?

Answer: 455 MPa

(c) If the part were to be used in a moist environment, do you get
concerned? If the lifetime of the part is to be 4 years or w 109 s,
what changes, if any, would you recommend for the design
stress? Does your recommendation as to which material to use
change? Explain. Assuming, for the sake of simplicity, that the
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data reported in part (a) above were obtained in 1 s, determine
which material to use by calculating the design stress needed
for the lifetime noted for both.

Answer. Material A, 76 MPa; Material B, 128 MPa

12.10. (a) To study the degradation in strength of a ceramic component.
the average flexural strength of the material was measured follow-
ing exposure under stress in a corrosive environment. The
Weibull modulus, measured to be 10, did not change with time,
but the average strength was found to decrease from 350 MPa
after 1 day to 330 MPa after 3 days. Qualitatively explain what
is happening.

(b) Calculate the average strength one would expect after a 10 weeks
exposure.

Answer. 279 MPa
(c) Post-test examination of the samples that failed after 1 day

showed that the average size of the cracks that caused failure
was of the order of 120 um. Calculate the average crack size
that was responsible for failure after 3 days. Information you
may find useful: Klc — 3 MPa • m1/2.

Answer: 135 urn

12.11. You are currently using the Si3N4 whose properties are listed in
Worked Example 12.4, and a new Si3N4 appears on the market
with the following properties: KMG = 5.4 x 10-3, p = 9, Qc =
1350kJ/mol, A0 = 4x 10 l 9h - ' , and or0 = 1 MPa. For subcritical
crack growth you can assume B0 — 100, n — 50, QSCG — 900 kJ mol.
CTO = 1 MPa, and t0 = 1 h. By constructing a fracture mechanism map
and comparing it to Fig. 12.15, which material would you use and why?

Answer: See Fig. 12.18

12.12. The surface energy of a glass can be measured by carrying out a zero
creep experiment, where a glass fiber is suspended in a furnace and
is heated. As a result of gravity, the wire will extend to a final
equilibrium length /eq, beyond which no further increase in length is
measured.
(a) What do you suppose keeps the fiber from extending indefinitely?
(b) Show that at equilibrium /eq = 2%v/preqg where g and r are.

respectively, the gravitational constant and the density of the
glass; req is the equilibrium radius of the wire. Hint: Write an
expression for the total energy of the system that includes grav-
itational and surface energy terms, and minimize that function
with respect to /.
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Figure 12.18 Fracture mechanism map for Si3N4, for which the properties are listed in
Prob. 12.11.

12.13. (a) Show that the number of cycles to failure during fatigue is given
by

where ci is the initial crack size. All other terms are defined in the
text. Note the similarity of this expression to the one derived in
Prob. 12.5e.

(b) Estimate the values of B and q for Mg-TZP shown in Fig. 12.12.
What are the units of B?

Answer: B = 1.7 x 10-48; q w 40

(c) Estimate the effect of increasing the applied stress by a factor of 2
on Nf.

Answer. 4.3 x 1012 cycles!

(d) Estimate the effect of doubling the assumed initial crack size on

Answer. 5 x 105 cycles!
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12.14. Rectangular glass slides were tested in 3-point bending as a function
of surface finish. The results obtained are listed below. Qualitatively
explain the trends.

Treatment As-received HF Abraded normal Abraded parallel
etched to applied stress to applied stress

Strength, MPa 87 106 42 71
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Chapter 13

Thermal Properties

What happens in these Lattices when Heat
Transports Vibrations through a solid mass?
T = 3Nk is much too neat;
A rigid Crystal's not a fluid Gas.
Debye in 1912 proposed Elas-
Tic Waves called phonons that obey Max Planck's
E = hv. Though amorphous Glass,
Umklapp Switchbacks, and Isotopes play pranks
Upon his Formulae, Debye deserves warm Thanks.

John Updike, The Dance of the Solids*

13.1 Introduction

As a consequence of their brittleness and their low thermal conductivities,
ceramics are prone to thermal shock; i.e., they will crack when subjected to
large thermal gradients. This is why it is usually not advisable to pour a
very hot liquid into a cold glass container, or cold water on a hot ceramic
furnace tube — the rapidly cooled surface will want to contract, but will
be restrained from doing so by the bulk of the body, so stresses will develop.
If these stresses are large enough, the ceramic will crack.

Thermal stresses will also develop because of thermal contraction
mismatches in multiphase materials or anisotropy in a single phase. It thus
follows that thermal stresses exist in all polycrystalline ceramics with noncu-
bic structures that undergo phase transformations or include second phases
with differing thermal expansion characteristics. These stresses can result in
the formation of stable microcracks and can strongly influence the strength
and fracture toughness of ceramics. In a worst-case scenario, these stresses
can cause the total disintegration of a ceramic body. Used properly, however,
they can enhance the strength of glasses. The purpose of this chapter is to

f J. Updike, Midpoint and other Poems. A. Knopf, Inc.. New York. New York. 1969. Reprinted
with permission.
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explore the problem of thermal residual stresses, why they develop and how
to quantify them.

Another important thermal property dealt with in Sec. 13.6 is thermal
conductivity. It is the low thermal conductivity of ceramics, together with
their chemical inertness and oxidation resistance, that renders them as a
class of materials uniquely qualified to play an extremely demanding and
critical role during metal smelting and refining. Many ceramics such as
diaspore, alumina, fosterite, and periclase are used for the fabrication of
high-temperature insulative firebrick without which the refining of some
metals would be impossible.

13.2 Thermal Stresses

The Origin of Thermal Residual Stresses

As noted above, thermal stresses can be induced by differential thermal
expansion in multiphase materials or anisotropy in the thermal expansion
coefficients of single-phase solids. The latter is treated in Sec. 13.4. To best
illustrate the idea of how differential thermal expansion in multiphase
materials leads to thermal stresses, consider the simple case shown schemati-
cally in Fig. 13. la, where a solid disk is placed inside of a ring of a different

Figure 13.1 Steps involved in Eshellby's method, (a) Initial configuration, (b) Cutting and
allowing for free expansion of both inclusion and matrix as a result of heating. Note that
the radius of the outside ring increases upon heating, (c) Application of surface forces
needed to restore elements to original shape, (d) Weld pieces together, (e) Allow the
system to relax. Note displacement of original interface as a result of relaxation.
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material. To emphasize the similarity of this problem to that of an inclusion
in a matrix, which was discussed in Chap. 11 and is one of practical
significance, the disk will henceforth be referred to as the inclusion, and the
outside ring as the matrix, with thermal expansion coefficients a, and am,.
respectively.

Before one attempts to find a quantitative answer, it is important to
qualitatively understand what happens to such a system as the temperature
is varied. Needless to say, the answer will depend on the relative values of
a/ and am, and whether the system is being heated or cooled. To illustrate,
consider the case where a, > am and the system is heated. Both the inclusion
and the matrix will expand231 (Fig. 13.1/>); however, given that a, > a,,,, the
inclusion will try to expand at a faster rate, but will be radially restricted from
doing so by the outside ring. It follows that upon heating, both the inclusion
and the matrix will be in radial compression. It is left as an exercise to the
reader to show that if the assembly were cooled, the inclusion would develop
radial tensile stresses. It should be noted here, and is discussed in greater
detail below, that stresses other than radial also develop.

The quantification of the problem is nontrivial and is usually carried out
today by using finite-element and other numerical techniques. However, for
simple geometries, a powerful method developed by Eshellby232 exists, which
in principle is quite simple, elegant, and ingenious. The problem is solved by
carrying out the following series of imaginary cuts, strains, and welding
operations illustrated in Fig. 13.1:

1. Cut the inclusion out of the matrix.
2. Allow both the inclusion and the matrix to expand or contract as a result

of either heating or cooling (or as a result of a phase transformation)
(Fig. 13.1b).

3. Apply sufficient surface traction to restore the elements to their original
shape (Fig. 13.1c).

4. Weld the pieces together (Fig. 13.1d).
5. Allow the system to relax (Fig. 13.1e).

To apply this technique to the problem at hand, do the following:

1. Cut the inclusion, and allow both it and the matrix to freely expand
(Fig. 13.1b). The thermal strain in the inclusion is given by [Eq. (4.2)]:

-— = EJ = a, AT = Qf/(T f i n a l - T i n i t)

13.1)

231 Note that the expansion of the matrix implies that the internal diameter of the ring increases
with increasing temperature.

232 J. D. Eshellby, Proc. Roy. Soc.. A241:376–396 (1957).
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Similarly, for the matrix

Note that as defined here, AT is positive during heating and negative
during cooling. On cooling, rfinai is usually taken to be room temperature;
Tinit, however, is more difficult to determine unambiguously, but it /5 the
highest temperature below which the residual stresses are not relieved,
which, depending on the material in question, may or may not be identical
to the processing or annealing temperature. At high enough temperatures,
stress relaxation by diffusive or viscous flow will usually relieve some, if
not most, of the residual stresses; it is only below a certain temperature
that these stress relaxation mechanisms become inoperative and local
elastic residual stresses start to develop from the contraction mismatch.
Apply a stress to each element to restore it to its original shape233

(Fig. 13. 1c). For the inclusion,

or. = - Yi£i = - 7,-tt,- A T (13.3)

where Y is Young's modulus. For the matrix:

am = Ym£m = Ymam/\T (13.4)

Note that the applied stress needed to restore the inclusion to its original
shape is compressive (see Fig. 13.1c), which accounts for the minus sign
in Eq. (13.3).
Weld the two parts back together (Fig. 13.1d), and allow the stresses to
relax. Since the stresses are unequal, one material will "push" into the
other, and the location of the original interface will shift by a strain 6
in the direction of the larger stress until the two stresses are equal
(Fig. 13.1e). At equilibrium the two radial stresses are equal and are
given by

C^eq = Yi[£i + $}= <Veq = Ym[£m ~ *>] (13.5)

Solving for 6, plugging that back into Eq. (13.5), and making use of
Eqs. (13.1) to (13.4), one can show (see Prob. 13.2) that

_ (qm - Q,QA.r

This is an important result which predicts that

If Act is zero, no stress develops, which makes sense since the matrix and
the inclusion would be expanding at the same rate.
For a} > am, upon heating (positive AT1), the stresses generated in the
inclusion and matrix should be compressive or negative, as anticipated.

Equations (13.2) and (13.3) are strictly true only for a one-dimensional problem. Including
the other dimensions does not generally greatly affect the final result [see Eq. (13.8)].
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• If the inclusion is totally constrained from moving (that is, am — 0 and Ym

is infinite), then Eq. (13.6) simplifies to the more familiar equation

(13.7)

which predicts that upon heating, the stress generated will be compres-
sive, and vice versa upon cooling.

In treating the system shown in Fig. 13.1, for simplicity's sake, only the
radial stresses were considered. The situation in three dimensions is more
complicated, and it is important at this stage to be able to at least qualita-
tively predict the nature of these stresses. Since the problem is no longer
one-dimensional, in addition to the radial stresses, the axial and tangential
or hoop stresses have to be considered.

To qualitatively predict the nature of these various stresses, a useful
trick is to assume the lower thermal expansion coefficient of the two compo-
nents to be zero and to carry out the Eshellby technique. To illustrate,
consider the nature of the thermal residual stresses that would be generated
if a fiber with expansion coefficient a.f were embedded in a matrix (same
problem as the one shown in Fig. 13.1, except that now the three-dimen-
sional state of stress is of interest), densified, and cooled from the processing
temperature for the case when am > af. Given that a,,, > af and by making
use of the aforementioned trick, i.e., by assuming af = 0 (which implies its
dimension does not change with temperature changes), it follows that
upon cooling, the matrix will shrink both axially and radially (the hole will
get smaller). Consequently, the stress required to fit the matrix to the fiber
will have to be axially tensile; when the matrix is welded to the fiber and
allowed to relax, this will place the fiber in a state of axial residual compres-
sive stress, which, in turn, is balanced by an axial tensile stress in the matrix.
Radially, the matrix will clamp down on the fiber, resulting in radial
compressive stresses in both the fiber and the matrix, in agreement with
the conclusions drawn above. In addition, the system will develop tensile
tangential stresses, as shown in Fig. 13.2a.234 These stresses, if sufficiently
high, can cause the matrix to crack radially as shown in Fig. 13.2c. It is
left as an exercise to readers to determine the state of stress when a,,, < at.
and to compare their results with those summarized in Fig. 13.2b.

Finally, in this section the problem of a spherical inclusion in an infinite
matrix is considered. It can be shown that the radial (crrad) and tangential
(ertan) stresses generated for a spherical inclusion of radius R at a distance

234 To appreciate the nature of tangential stresses, it helps to go back to the Eshellby technique
and ask. What would be required to make the hole in the matrix, which is now smaller than
the fiber it surrounds, larger? The answer is. One would have to stretch the matrix in a
manner similar to fitting a smaller-diameter hose around a larger-diameter pipe. This
naturally results in a tangential stress in the hose. Experience tells us that if the hose is too
small, it will develop radial cracks similar to the one shown in Fig. 13.2c.
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Figure 13.2 Radial and tangential stresses developed upon cooling of a fiber embedded in
a matrix for (a) am < af and (b) am > ay. (c) Micrograph of radial cracks generated
around a fiber upon cooling when am > af .

r away from the interface are given by:

R V
rad

--2*~

where v-t and vm are, respectively, Poisson's ratio for the inclusion and matrix.
The stress is a maximum at the interface, i.e., at r — 0, and drops rapidly with
distance. Note that the final form of this expression is similar to Eq. (13.6). It
is worth noting here that the Eshellby technique is not restricted to calculat-
ing thermal stresses; also, it can be used to calculate transformation stresses.

13.3 Thermal Shock

Generally speaking, thermal stresses are to be avoided since they can signi-
ficantly weaken a component. In extreme cases, a part can spontaneously
crumble during cooling. As noted earlier, rapid heating or cooling of a
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ceramic will often result in its failure. This kind of failure is known as thermal
shock and occurs when thermal gradients and corresponding thermal stresses
exceed the strength of the part. For instance, as a component is rapidly
cooled from a temperature T to T0, the surface will tend to contract but
will be prevented from doing so by the bulk of the component that is still
at temperature T. By using arguments similar to the ones made above, it is
easy to appreciate that in such a situation surface tensile stresses would be
generated that have to be counterbalanced by compressive ones in the bulk.

Experimental Details: Measuring Thermal Shock Resistance

Thermal shock resistance is usually evaluated by heating samples to various
temperatures Tmax. The samples are rapidly cooled by quenching them from
Tmax into a medium, most commonly ambient temperature water. The post-
quench retained strengths are measured and plotted versus the severity of the
quench, or AT = rmax — Tambi. Typical results of such experiments are
shown in Fig. 13.3a, where the salient feature is the occurrence of a rapid
decrease in retained strength around a critical temperature difference AT",
below which the original strength is retained. As the quench temperature is
further increased, the strength decreases but more gradually. Actual data
for single-crystal and polycrystalline alumina are shown in Fig. 13.3b.

Constant strength

•*— Crack propagation

f Constant strength

Gradual decrease in strength

T3
<U
C

500

40°
300

200

D Single-crystal sapphire

10//m grain size alumina

200 400 600

AT

800 1000Temperature difference
of thermal shock

(*)

Figure 13.3 (a) Schematic of strength behavior as a function of severity of quench AT", (b)
Actual data for single-crystal and polycrystalline alumina235 (error bars were omitted for
the sake of clarity).

T. K. Gupta. J. Amer. Cer. Soc.. 55:249 (1972).
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From a practical point of view, it is important to be able to predict
Furthermore, it is only by understanding the various parameters that affect
thermal shock that successful design of solids which are resistant to it can
be carried out. In the remainder of this section, a methodology is outlined
for doing just that, an exercise that will by necessity highlight the important
parameters that render a ceramic resistant to thermal shock.

To estimate ATC., the following assumptions are made236

1 . The material contains N identical, uniformly distributed, Griffith flaws
per unit volume.

2. The flaws are circular with radii ci.
3. The body is uniformly cooled with the external surfaces rigidly con-

strained to give a well-defined triaxial tensile state of stress given by237

(139)
- ^ (1J-9)

4. Crack propagation occurs by the simultaneous propagation of the N
cracks, with negligible interactions between the stress fields of neighbor-
ing cracks.

The derivation is straightforward and follows the one carried out in
deriving Eq. (11.9). The total energy of the system can be expressed as

where U0 is the energy of the stress- and crack-free crystal of volume VQ\ L/surf

and Ustrain are, respectively, the surface and strain energies of the system.
Since it was assumed that the stress fields were noninteracting, in the presence
of N cracks Utot is modified to read

* + NGc,<t (13.10)

where the third term on the right-hand side represents the strain energy
released by the existence of the cracks and the last term is the energy
needed to extend them. Gc is toughness of the material (Eq. (11.11)).

Differentiating this expression with respect to ci, equating the resulting
expression to zero, and rearranging terms, one can easily show (see Prob.
13.6a) that for AT > ATC, where ATC is given by

( i 3 . i l )cr YCJ

the cracks will grow and release the strain energy. Conversely, for
AT < AT",., the strain energy that develops is insufficient to extend the

236 The derivation shown here is a simplified version of one originally outlined by D. P. H.
Hasselman, J. Amer. Cer. Soc., 46:453 (1963) and 52:600 (1969).

237 Note similarity of this equation to Eq. (13.7).
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cracks, which in turn implies that the strength should remain unchanged, as
experimentally observed.

In contrast to the situation of a flaw propagating as a result of a constant
applied stress, in which the flaw will extend indefinitely until fracture, the
driving force for crack propagation during thermal shock is finite. In the
latter case, the cracks will only extend up to a certain length cf that is
commensurate with the strain energy available to them and then stop. To
estimate cf, one simply equates the strain energy available to the system to
the increase in surface energy, or

For short initial cracks, that is, cf

from Eq. (13.11), one obtains

(13-12)
2(1 -2v)2

<?,, substituting for the value of A7(

which interestingly enough does not depend on any material parameters.
For the sake of clarity, the model used to derive Eqs. (13.11) and (13.13)

was somewhat simplified. Using a slightly more sophisticated approach.
Hasselman obtained the following relationships:

(13.14)AT »L\l c \

I \ * ' l ~ ^ \ ^T

/7r(7,.(l — IvY 1 16 ,̂- (1 — v)~

1 Ya2(\ -//2)c,[' ' 9(1 -2i/) J

And while at first glance these expressions may appear different from those
derived above, on closer examination, their similarity becomes obvious.
For example, for small cracks of low density, the second term in brackets
in Eq. (13.14) can be neglected with respect to unity, in which case, but for
a few terms including Poisson's ratio and TT, Eq. (13.14) is similar to
Eq. (13.11). The same is true for Eqs. (13.13) and (13.15).

Before one proceeds further, it is worthwhile to summarize the physics
of events occurring during thermal shock. Subjecting a solid to a rapid
change in temperature results in differential dimensional changes in various
parts of the body and a buildup of stresses within it. Consequently, the strain
energy of the system will increase. If that strain energy increase is not too
large, i.e., for small AT values, the preexisting cracks will not grow and
the solid will not be affected by the thermal shock. However, if the thermal
shock is large, the many cracks present in the solid will extend and absorb
the excess strain energy. Since the available strain energy is finite, the
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cracks will extend only until most of the strain energy is converted to surface
energy, at which point they will be arrested. The final length to which the
cracks will grow will depend on their initial size and density. If only a few,
small cracks are present, their final length will be large and the degradation
in strength will be high. Conversely, if there are numerous small cracks, each
will extend by a small amount and the corresponding degradation in strength
will not be that severe. In the latter case, the solid is considered to be thermal-
shock-tolerant.

It is this latter approach that is used in fabricating insulating firebricks
for furnaces and kilns. The bricks are fabricated so as to be porous and
contain many flaws. Because of the very large number of flaws and pores
within them, the bricks can withstand severe thermal cycles without struc-
tural failure.

Inspecting Eq. (13.11) or (13.14), it is not difficult to conclude that a
good figure of merit for thermal shock resistance is

RH = (const)(AOTc) = (const)
Gc KIc

a2Y aY
(13.16)

from which it is clear that ceramics with low thermal expansion coefficients,
low elastic moduli, but high fracture toughnesses should be resistant to
thermal shock.

Kingery's238 approach to the problem was slightly different. He postu-
lated that failure would occur when the thermal stress, given by Eq. (13.7),
was equal to the tensile strength at of the specimen (see Prob. 13.4). By
equating the two, it can be shown that the figure of merit in this case is

/I O \

RTS = (const)(ATc) = (const)l ~ Jja' (13.17)
a. Y

However, given that at is proportional to (Gc Y/cmax)
l/2, it is an easy exercise

to show that RTS is proportional to RH/cmax, implying that the two criteria
are related.239

One parameter which is not included in either model, and which clearly
must have an important effect on thermal shock resistance, is the thermal
conductivity of the ceramic kth (see Sec. 13.6). Given that thermal gradients
are ultimately responsible for the buildup of stress, it stands to reason that
a highly thermally conductive material would not develop large gradients
and would thus be thermal shock resistant. For the same reason, the heat
capacity and the heat-transfer coefficient between the solid and the environ-
ment must also play a role. Thus an even better indicator of thermal shock

W. D. Kingery, J. Amer. Cer. Soc., 38:3–15 (1955).
It is interesting to note that the Hasselman solid is a highly idealized one where all the flaws
are the same size.
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Table 13.1 Comparison of thermal shock parameters for a number of ceramics. Poisson's
ratio was taken to be 0.25 for all materials

Material MOR, Y, a,
MPa GPa 106K–1 W/(m.K) MPa-m1 / 2 W/ m W/m2 exper.

SiAlON
HP+—Si3N4

RB+—Si3N4

SiC (sintered)
HP+—Al2O3

HP+—BeO
PSZ
Ti3SiC2

Hot-pressed

945
890
240
483
380
200
610
300

300
310
220
410
400
400
200
320

3.0
3.2
3.2
4.3
9.0
8.5

10.6
9.1

21
15–25
8-12

84
6-8

63
2

43

7.7
5.0
2.0
3.0
3.9

~10.0
^10.0

16,500
16,800
2,557

17,300
633

2,800
435

180
126
28

143
8

9
149

900
500-700

~500
300-400

200

500
>1400

* Reaction-bonded
§ Partially stabilized zirconia

resistance is to multiply Eq. (13.16) or (13.17) by kth. These values are
calculated for a number of ceramics and listed in Table 13.1 in columns 7
and 8. Also listed in Table 13.1 are the experimentally determined values.
A correlation between the two sets of values is apparent, giving validity to
the aforementioned models.

Note that in general the nitrides and carbides of Si, with their lower
thermal expansion coefficients, are more resistant to thermal shock than
oxides. In theory, a material with zero thermal expansion would not be
susceptible to thermal shock. In practice, a number of such materials do
actually exist commercially, including some glass-ceramics that have been
developed which, as a result of thermal expansion anisotropy, have extremely
low o-'s (see Ch. 4). Another good example is fused silica which also has an
extremely low a and thus is not prone to thermal shock.

13.4 Spontaneous Microcracking of Ceramics

In the previous section, the emphasis was on thermal shock, where failure
was initiated by a rapid and/or severe temperature change. This is not
always the case; both single- and multiphase ceramics have been known to
spontaneously microcrack upon cooling. Whereas thermal shock can be
avoided by slow cooling, the latter phenomenon is unavoidable regardless
of the rate at which the temperature is changed.

Spontaneous microcracking results from the buildup of residual stresses
which can be caused by one or more of the following three reasons:

• Thermal expansion anisotropy in single-phase materials



Thermal Properties 453

Table 13.2 Thermal expansion coefficients for some ceramic crystals with anisotropic
thermal expansion behavior

Material Normal to c axis Parallel to c axis

A12O3

Al2TiO5

3A12O3 • 2SiO2 (mullite)
CaCO3

LiAlSi2O6 (B-spodumene)
LiAlSiO4 (B-eucryptite)
NaAlSi3O8 (albite)
SiO2 (quartz)
TiO2

ZrSiO4

8.3
-2.6

4.5
-6.0

6.5
8.2
4.0

14.0
6.8
3.7

9.0
11.5
5.7

25.0
-2.0

-17.6
13.0
9.0
8.3
6.2

• Thermal expansion mismatches in multiphase materials
• Phase transformations and accompanying volume changes in single- or

multiphase materials

In the remainder of this section each of these cases is explored in some
detail.

13.4.1 Spontaneous Microcracking due to Thermal Expansion Anisotropy

Noncubic ceramics with high thermal expansion anisotropy have been
known to spontaneously microcrack upon cooling.240 The cracking, which
occurs along the grain boundaries, becomes progressively less severe with
decreasing grain size, and below a certain "critical" grain size, it is no
longer observed. The phenomenon has been reported for various solids
such as A12O3, graphite, Nb2O5, and many titania-containing ceramics
such as TiO2, Al2TiO5, Mg2TiO5, and Fe2TiO5. Data for some anisotropic
crystals are given in Table 13.2.

Before one attempts to quantify the problem, it is important once again
to understand the underlying physics. Consider the situation shown in
Fig. 13.4a, where the grains, assumed to be cubes, are arranged in such a
way that adjacent grains have different thermal expansion coefficients
along their x and y axes as shown, with a1 < a2. To further elucidate the
problem, use the aforementioned trick of equating the lower thermal expan-
sion to zero, i.e. pretend a1 = 0. If during cooling the grains are uncon-
strained, the shape of the assemblage would be that shown in Fig. 13.4b.
But the cooling is not unconstrained, which implies that a buildup of stresses

240 The thermal expansion coefficients of cubic materials are isotropic and hence do not exhibit
this phenomenon.
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Figure 13.4 Schematic of how thermal expansion anisotropy can lead to the development
of thermal stresses upon cooling of a polycrystalline solid, (a) Arrangement of grains prior
to cooling shows relationship between thermal expansion coefficients and grain axis. (b)
Unconstrained contraction of grains. Here it was assumed that a1 = 0.

at the boundaries will occur. It is this stress that is ultimately responsible for
failure.

To estimate the critical grain size above which spontaneous microcrack-
ing would occur, the various energy terms have to be considered. For the
sake of simplicity, the grains are assumed to be cubes with grain size d in
which case the total energy of the system is241

£/ = u - 6Nd2Gfegh (13.18)

where N is the number of grains relieving their stress and Gc gb is the grain
boundary toughness; Us is the energy of the unmicrocracked body, and Ug

is the strain energy per unit volume stored in the grains. Differentiating
Eq. (13.18) with respect to d and equating to zero yields the critical grain size

4G
(13.19)-•cm j jug

Ug is estimated as follows: For a totally constrained grain, the stress devel-
oped is given by Eq. (13.7). Extending the argument to two adjacent
grains, the residual stress can be approximated by

(13.20)

where Aamax is the maximum anisotropy in thermal expansion between two
crystallographic directions. Substituting Eq. (13.20) in the expression for the

241 The treatment here is a slightly simplified version of that carried out by J. J. Cleveland and
R. C. Bradt. J. Amer. Ccr.. 61:478 (1978).
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strain energy per unit volume, that is, Ug = a /(2F), and combining with
Eq. (13.19), one obtains

<4-it - „ A 7 ' A ^? (13.21)

In general, however,

dcrit = (const) (13.22)

where the value of the numerical constant one obtains depends on the details
of the models. This model predicts that the critical grain size below
which spontaneous microcracking will not occur is a function of the thermal
expansion anisotropy, the grain boundary fracture toughness, and Young's
modulus. Experimentally, the functional relationship among dcrit, AT, and
Aamax is reasonably well established (see Prob. 13.8).

Experimental Details: Determination of Microcracking

Unless a ceramic component totally falls apart in the furnace as the sample is
cooled from the sintering or processing temperature, it is experimentally
difficult to observe directly grain boundary microcracks. There are, however,
a number of indirect techniques to study the phenomenon. One is to fabricate
ceramics of varying grain sizes and measure their flexural strengths after
cooling. A dramatic decrease in strength over a narrow grain size variation
is usually a good indication that spontaneous microcracking has occurred.

13.4.2 Spontaneous Microcracking due to Thermal Expansion Mismatches in
Multiphase Materials

Conceptually there is little difference between this situation and the preceding
one; the similarity of the two cases is easily appreciated by simply replacing
one of the grains in Fig. 13.4 by a second phase with a different thermal
expansion coefficient from its surroundings.

13.4.3 Spontaneous Microcracking due to Phase-Transformation-Induced
Residual Stresses

Here the residual stresses do not develop as a result of thermal expansion
mismatches or rapid variations in temperature, but as a result of phase trans-
formations. Given that these transformations entail atomic rearrangements,
they are always associated with a volume changes (e.g., Fig. 4.5). Con-
ceptually, the reason why such a volume change should give rise to residual

farhad
Highlight

farhad
Highlight



456 Fundamentals of Ceramics

stresses should at this point be obvious. Instead of using Ac*, however, the
resultant stresses usually scale with AV/V0, where AF is the volume
change associated with the transformation. The stresses approximated by

(13.23)3 ( 1 – 2 v ) v 0

can be quite large. For example, a 3 percent volumetric change in a material
having a Y of 200 GPa and Poisson's ratio of 0.25 would provide a stress of
about 4GPa!

Residual stresses are generally deleterious to the mechanical properties
and should be avoided. This is especially true if a part is to be subjected to
thermal cycling. In some situations, however, residual stresses can be used
to advantage. A case in point is the transformation toughening of zirconia
discussed in Chap. 11, and another excellent example is the tempering of
glass discussed in the next section.

13.5 Thermal Tempering of Glass

Because of the transparency and chemical inertness of inorganic glasses,
their uses in everyday life are ubiquitous. However, for many applications,
especially where safety is concerned, as manufactured, glass is deemed to
be too weak and brittle. Fortunately, glass can be significantly strengthened
by a process referred to as thermal tempering, which introduces a state of
compressive residual stresses on the surface (see Sec. 11.3.3).

The appropriate thermal process, illustrated in Fig. 13.5. involves
heating the glass body to a temperature above its glass transition
temperature, followed by a two-step quenching process. During the first
quenching stage, initially the surface layer contracts more rapidly than
the interior and becomes rigid while the interior is still in a viscous state.
This results in a tensile state of stress at the surface, shown in Fig. 13.5c.
However, since the interior is viscous these stresses will relax, as shown in
Fig. 13.5d.

During the second quenching step, the entire glass sample is cooled to
room temperature. Given that on average the glass interior will have
cooled at a slower rate than its exterior, its final specific volume will be smal-
ler than that of the exterior.242 The situation is shown in Fig. 13.5e and leads
directly to the desired final state of stress (Fig. 13.5f) in which the external
surfaces are in compression and the interior is in tension.

242 This effect was discussed briefly in Sec. 9.4.1 and illustrated in Fig. 9.8a. Simply put, the more
time the atoms have to arrange themselves during the cooling process (slow cooling rate), the
denser the glass that results.
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Figure 13.5 Thermal process that results in tempered glass, (a) Initial configuration, (b)
The glass is quenched to a temperature that is below Tg, which results in the rapid
contraction of the exterior, (c) Resulting transient state of stress, (d) The relaxation of
these stresses occurs by the flow and deformation of the interior. (e) Second quenching
step results in a more rapid cooling rate for the exterior than for the interior. This results
in a glass with a smaller specific volume in the center than on the outside. (f) Final state of
stress at room temperature.

By using this technique, the mean strength of soda-lime silicate glass can
be raised to the range of 150 MPa, which is sufficient to permit its use in large
doors and windows as well as safety lenses. Tempered glass is also used for
the side and rear windows of automobiles. In addition to being stronger,
tempered glass is preferred to untempered glass for another reason: the
release of large amounts of stored elastic energy upon fracture tends to
shatter the glass into a great many fragments which are less dangerous
than larger shards. Windshields, however, are made of two sheets of
tempered glass in between which a polymer layer in embedded. The function
of the latter is to hold the fragments of glass together in case of fracture and
to prevent them from becoming lethal projectiles.
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13.6 Thermal Conductivity

The conduction of heat through solids occurs as a result of temperature
gradients. In analogy to Fick's first law, the relationship between the heat
flux and temperature gradients dT/dx is given by

f = ̂ g (13.24)

where dQ/dt is the heat transferred per unit time across a plane of area A
normal to the flow of the thermal energy; and kth is a material property
(analogous to diffusivity) that describes the ability of a material to transport
heat. Its units are J / ( s . m . K ) or equivalently W/(m.K) . Approximate
values for kth for a number of ceramics are listed in Table 13.3.

Thermal conduction mechanisms

Describing the mechanisms of conduction in solids is not easy. Here only a
brief qualitative sketch of some of the physical phenomena is given. In
general, thermal energy in solids is transported by lattice vibrations, i.e.
phonons, free electrons, and radiation. Given that the concentration of
free electrons in ceramics is low and that most ceramics are not transparent,
phonon mechanisms dominate and are the only ones discussed below.

Imagine a small region of a solid being heated. Atoms in that region will
have large amplitudes of vibration and will vibrate violently around their
average positions. Given that these atoms are bonded to other atoms, it
follows that their motion must also set their neighbors into oscillation. As
a result the disturbance, caused by the application of heat, propagates
outward in a wavelike manner.243 These waves, in complete analogy to
electromagnetic waves, can be scattered by imperfections, grain boundaries.

Table 13.3 Approximate values for thermal conductivities of selected ceramic materials

Material kth W/ (m • K) Material k t h W / ( m . K )

A12O3

A1N
BeO
MgO
PSZ
SiC
SiAlON
SiO2

Si3N4

30.0-35.0
200.0–280.0
63.0-216.0

37.0
2.0

84.0-93.0
21.0

1.4
25.0

Spinel (MgAl2O4)
Soda-lime silicate glass
TiB2

Ti3SiC2

Cordierite (Mg-aluminosilicate)
Glasses
Forsterite

12.0
1.7

40.0
43.0

4.0
0.6-1.5

3.0

A situation not unlike the propagation of light or sound through a solid.
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and pores or even reflected at other internal surfaces. In other words, every
so often the disturbance will have the direction of its propagation altered.
The average distance that the disturbance travels before being scattered is
analogous to the average distance traveled by a gas molecule and is referred
to as the mean free path A th.

By assuming the number of these thermal energy carriers to be Nth, and
their average velocity vth, it is reasonable to assume that, in analogy to the
electrical conductivity equation of a = nuq, kth is given by

kth = (const) (N thA thU th)

In general, open, highly ordered structures made of atoms or ions of
similar size and mass tend to minimize phonon scattering and result in
increased values of kth. An excellent example is diamond, which has one of
the highest thermal conductivity values of any known material. Other
good examples are SiC, BeO, and A1N. More complex structures, such as
spinels, and ones where there is a large difference in mass between ions,
such as UO2 and ZrO2, tend to have lower values of kth. Similar arguments
suggest that the thermal conductivity of a solid will be decreased by the
addition of a second component in solid solution. This effect is well
known, as shown, e.g., by the addition of NiO to MgO or Cr2O3 to A12O3.

Furthermore, the lack of long-range order in amorphous ceramics
results in more phonon scattering than in crystalline solids and consequently
leads to lower values of k th.

Finally, it is important to mention the effect of porosity. Since the
thermal conductivity of air is negligible compared to the solid phases, the
addition of large (>25 percent) volume fractions of pores can significantly
reduce kth. This approach is used in the fabrication of firebrick. As noted
above, the addition of large-volume fractions of porosity has the added
advantage of rendering the firebricks thermal-shock-tolerant. Note that
heat transfer by radiation across the pores, which scales as T3, has to be
minimized. Hence for optimal thermal resistance, the pores should be
small and the pore phase should be continuous.

Experimental Details: Measuring Thermal Conductivity

Several techniques are used to measure kth. One method that has gained
popularity recently is the laser flash technique. In principle the technique
attempts to measure the time evolution of the temperature on one side of
the sample as the other side is very rapidly heated by a laser pulse. As it
passes through the solid, the signal will be altered in two ways: There
will be a time lag between the time at which the solid was pulsed and the
maximum in the response. This time lag is directly proportional to the
thermal diffusivity, Dth, of the material. The second effect will be a reduction



460 Fundamentals of Ceramics

in the temperature spike, which is directly related to the heat capacity, cp. of
the solid. The heat capacity, thermal diffusivity, and thermal conductivity
and density, cr, are related by:

Hence kth can be calculated if the density of the solid is known and Dlh and cp

are measured.

13.7 Summary

Temperature changes result in dimensional changes which result in thermal
strains. Isotropic, unconstrained solids subjected to uniform temperatures
can accommodate these strains without the generation of thermal stresses.
The latter will develop, however, if one or more of the following situations
are encountered:

• Constrained heating and cooling.
• Rapid heating or cooling. This situation can be considered a variation of

that above. By rapidly changing the temperature of a solid, its surface
will usually be constrained by the bulk and will develop stresses. The
magnitude of these stresses depends on the severity of thermal shock
or rate of temperature change. In general, the higher the temperature
from which a ceramic is quenched the more likely it is to fail or thermal
shock. Thermal shock can be avoided by slow heating or cooling. Solids
with high thermal conductivities, fracture toughnesses and/or low
thermal expansion coefficients are less prone to thermal shock.

• Heating or cooling of multiphase ceramics in which the various constitu-
ents have differing thermal expansion coefficients. The stresses generated
in this case will depend on the mismatch in thermal expansion coefficients
of the various phases. These stresses cannot be avoided by slow heating
or cooling.

• Heating or cooling of ceramics for which the thermal expansion is
anisotropic. The magnitude of the stresses will depend on the thermal
expansion anisotropy, and can cause polycrystalline bodies to sponta-
neously microcrack. This damage cannot be avoided by slow cooling,
but can be avoided if the grain size is kept small.

• Phase transformations in which there is a volume change upon trans-
formation. In this case, the stresses will depend on the magnitude of
the volume change. They can only be avoided by suppressing the trans-
formation.

If properly introduced, thermal residual stresses can be beneficial, as in
the case of tempered glass.
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Finally, in the same way that solids conduct sound, they also conduct
heat, i.e., by lattice vibrations. Heat conduction occurs by the excitation
and interaction of neighboring atoms.

Problems

13.1. Give an example for each of (a) thermal strain but no stress, (b)
thermal stress but no strain, and (c) a situation where both exist.

13.2. (a) Derive Eq. (13.6).
(b) A metallic rod (a = 14 x 1 0 – 6 C – 1 , Y = 50 GPa at 800°C) is

machined such that it perfectly fits inside an alumina tube. The
assembly is then slowly heated; at 800°C the alumina tube
cracks. Assume Poisson's ratio to be 0.25 for both materials,
(i) Describe the state of stress that develops in the system as it is

heated,
(ii) Estimate the strength of the alumina tube.

Answer: 170 MPa

(iii) In order to increase the temperature at which this system can
go, several strategies have been proposed (some of which are
wrong): Use an alumina with a larger grain size; use another
ceramic with a higher thermal expansion coefficient; use a
ceramic that does not bond well with the metal; and use a
metal with a higher stiffness at 800°C. Explain in some
detail (using calculations when possible) which of these
strategies you think would work and which would not.
Why?

(iv) If the situation were reversed (i.e., the alumina rod were
placed inside a metal tube), describe in detail the three-
dimensional state of stress that would develop in that
system upon heating.

(v) It has been suggested that one way to bond a ceramic rotor
to a metal shaft is to use the assembly described in part (iv).
If you were the engineer in charge, describe how you would
do it. This is not a hypothetical problem but is used com-
mercially and works quite well.

13.3. Consider a two-phase ceramic in which there are spherical inclusions
B. If upon cooling, the inclusions go through a phase transformation
that causes them to expand, which of the following states of stress
would you expect, and why?

(a) Hydrostatic pressure in B; radial, compressive, and tangential
tensile hoop stresses.
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(b) Debonding of the interface and zero stresses everywhere.
(c) Hydrostatic pressure in B; radial, tensile, and tangential

compressive hoop stresses.
(d) Hydrostatic pressure in B; radial, compressive. and tangential

compressive hoop stresses.
(e) Hydrostatic pressure in 5; radial, tensile, and tangential tensile

hoop stresses.

13.4. (a) Plot the radial stress as a function of r for an inclusion in
an infinite matrix, given that Aa = 5 x 10–6(T6. Ar = 500C.
Yi = 300 GPa, Ym = l00GPa, and vi = vm = 0.25.

(b) If the size of the inclusions were 10 um, for what volume fraction
would the "infinite" matrix solution be a good one? What do you
think would happen if the volume fraction were higher? State all
assumptions.

Answer: ~5 to 10 vol.% depending on assumptions

13.5. (a) Is thermal shock more likely to occur as a result of rapid heating
or rapid cooling? Explain.

(b) A ceramic component with Young's modulus of 300 GPa and a
KIC of 4MPa.m1 / / 2 is to survive a water quench from 500CC. If
the largest flaw in that material is on the order of l0um, what
is the maximum value of a for this ceramic for it to survive the
quench? State all assumptions.

Answer: 5 x 10–6cC–1

13.6. (a) Derive Eq. (13.11).
(b) Which of the materials listed below would be best suited for an

application in which a part experiences sudden and severe
thermal fluctuations while in service?

Material

1
2
3

MOR.
MPa

700
1000
750

kth

W / ( m . K )

290
50

100

Modulus.
GPa

200
150
150

Kic.
MPa.m 1 :2

8
4
4

n.

K–1

9 x
4 x
3 x

10 6

10–6

10 h

13.7. (a) Explain how a glaze with a different thermal expansion can
influence the effective strength of a ceramic component. To
increase the strength of a component, would you use a glaze
with a higher or lower thermal expansion coefficient than the
substrate? Explain.

(b) Fully dense, 1-cm-thick alumina plates are to be glazed with a
porcelain glaze (Y = 70GPa. v = 0.25) of 1-mm thickness with
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a thermal expansion coefficient of 4 x 10–6 °C. Assuming the
"stress-freezing" temperature of the glaze to be 800°C, calculate
the stress in the glaze at room temperature.

13.8. Using acoustic emission and thermal contraction data, Ohya et al.244

measured the functional dependence of the microcracking tempera-
ture of aluminum titanate ceramics on grain size as the samples
were cooled from 1500°C. The following results were obtained:

Grain size, u m 3 5 9
Microcracking temperature upon cooling, C 500 720 900

(a) Qualitatively explain the trend observed.
(b) Are these data consistent with the model presented in Sec. 13.4.1?

If so, calculate the value of the constant that appears in
Eq. (13.22), given that G e g b = 0.5J/m2, F = 250GPa, and
Aamax = 1 5 x l 0 – 6 o C .

Answer: ~ 337 (°C)–2

(c) Based on these results, estimate the grain size needed to obtain a
crack-free aluminum titanate body at room temperature. State
all necessary assumptions.

Answer: ~ 1.47 um

13.9. Explain why volume changes as low as 0.5 percent can cause
grain fractures during phase transformations of ceramics. State all
assumptions.

13.10. (a) If a glass fiber is carefully etched to remove "all" Griffith flaws
from its surface, estimate the maximum temperature from
which it can be quenched in a bath of ice water without failure.
State all assumptions. Information you may find useful:
Y = 70 GPa, v = 0.25, 7 = 0.3 J/m2, and a = 10 x 10–6°C.

Answer: 5000°C

(b) Repeat part (a) assuming 1-um flaws are present on the surface.
Answer: 82°C

(c) Repeat part (b) for Pyrex, a borosilicate glass for which
a ~ 3 x 10–6°C. Based on your results, explain why Pyrex is
routinely used in labware.

13.11. Qualitatively explain how the following parameters would affect the
final value of the residual stresses in a tempered glass pane: (a) thick-
ness of glass, (b) thermal conductivity of glass, (c) quench tempera-
ture, (d) quench rate.

244 Y. Ohya, Z. Nakagawa, and K. Hamano, J. Amer. Cer. Soc., 70:C184—C186 (1987).
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13.12. Rank the following three solids in terms of their thermal conductivity:
MgO, MgO.A12O3, and window glass. Explain.

13.13. (a) Estimate the heat loss through a 0.5-cm-thick, 1000cm2 window
if the inside temperature is 25CC and the outside temperature is
0°C. Information you may find useful: kth conductivity of soda
lime is 1.7 W/(m.K).

(b) Repeat part (a) for a porous firebrick that is used to line a
furnace running at 1200°C. Typical values of kth for firebricks
are 1.3W/(m.K). State all assumptions.
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Chapter 14

It serves to bring out the actual mechanical connexions
between the known electro-magnetic phenomena; so I
venture to say that any one who understands the
provisional and temporary character of this hypothesis
will find himself rather helped than hindered by it in
his search after the true interpretation of the phenomena.

James Maxwell, Phil. Mag., 21:281 (1861).

14.1 Introduction

Dielectric materials will not conduct electricity and as such are of critical
importance as capacitive elements in electronic applications and as
insulators. It could be argued, with some justification, that without the
discovery of new compositions with very high charge-storing capabilities,
i.e., relative dielectric constants k' > 1000, the impressive miniaturization
of semiconductor-based devices and circuits would not have been as readily
implemented. In addition, the traditional use of ceramics as insulators in
high-power applications is still a substantial economic activity.

In contrast to electrical conductivity, which involves long-range motion
of charge carriers, the dielectric response results from the short-range
motion of these carriers under the influence of an externally applied electric
field. Inasmuch as all solids are comprised of positive and negative entities,
the application of an electric field to any solid will result in a separation of
its charges. This separation of charge is called polarization, defined as the
finite displacement of bound charges of a dielectric in response to an
applied electric field, and the orientation of their molecular dipoles if the
latter exist.

The dielectric properties can vary widely between solids and are a
function of temperature, frequency of applied field, humidity, crystal
structure, and other external factors. Furthermore, the response can be
either linear or nonlinear. This chapter examines linear dielectrics from a
microscopic point of view as well as the effects of temperature and frequency
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on the dielectric response. Materials for which the response is nonlinear are
discussed in the next chapter.

14.2 Basic Theory

Before polarization is discussed, it is imperative to understand how one
measures polarization and to gain a qualitative understanding of how readily
or not so readily polarizable a solid is. Consider two metal parallel plates of
area A separated by a distance d in vacuum (Fig. 14.la). Attaching these
plates to the simple electric circuit, shown in Fig. 14.la, and closing the
circuit will result in a transient surge of current that rapidly decays to zero.

0"

©
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© ©

°l
d

© t
•»

(a) (ft)

QBQ^QEIQ
Dielectric

P~J ̂ pd ©

Figure 14.1 (d) Parallel-plate capacitor of area A and separation d in vacuum attached to
a voltage source, (b) Closing of the circuit causes a transient surge of current to flow
through the circuit. Charge stored on the capacitor is equal to the area under the curve.
(c) Same as (a) except that now a dielectric is placed between the plates, (d) Closing of
the circuit results in a charge stored on the parallel plates that has to be greater than
that stored in (b).
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Figure 14.2 Functional dependence of Q on applied voltage. Slope of curve is related to
the dielectric constant of the material.

as shown in Fig. 14. \b. Given that

«-l Idt (14.:

the area under the / versus t curve is the total charge that has passed through
the circuit and is now stored on the capacitor plates.

Repeating the experiment at different voltages V and plotting Q versus
V should yield a straight line, as shown in Fig. 14.2. In other words, the well-
known relationship

Q = CV (14.2)

is recovered. The slope of the Q versus V curve is the capacitance Cvac of the
parallel plates in vacuum, given by

(14.3)
d

where e0 is the permittivity of free space, which is a constant245 equal to
8.85 x 10–12C2/(J .m). The units of capacitance are farads (F), where
I F = 1 C/V = 1 C2/J.

If a dielectric (which can be a gas, solid, or liquid) is introduced between
the plates of the capacitor (Fig. 14. Ic) and the aforementioned experiment is
repeated, the current that flows through the external circuit and is stored on
the capacitor plates will increase (Fig. 14.Id). Repeating the experiment at
different voltages and plotting the total charge stored on the capacitor
versus the voltage applied will again result in a straight line but with a

245 If cgS electrostatic units are used, then e0 = 1 and e — k' and a factor l/4?r appears in all the
equations. In SI where e0 = 8.85 x 1 0 – 1 2 C2/(J .m), the factor l/4vr is included in e0 and
omitted from the equations. Here only SI units are used.



468 Fundamentals of Ceramics

larger slope than that for vacuum (Fig. 14.2). In other words, Eq. (14.3) is
now modified to read

14.4)

where e is the dielectric constant of the material between the plates.
The relative dielectric constant of a material k' is defined as

(14.5)

Since e is always greater than E0, the minimum value for k' is 1. By combining
Eqs. (14.4) and (14.5), the capacitance of the metal plates separated by the
dielectric is

k e0A , t ̂ , ,,A s\C = —-— = k Cvac (14.6)

Thus k' is a dimensionless parameter that compares the charge-storing
capacity of a material to that of vacuum.

The foregoing discussion can be summarized as follows: when a voltage
is applied to a parallel-plate capacitor in vacuum, the capacitor will store
charge. In the presence of a dielectric, an additional "something" happens
within that dielectric which allows the capacitor to store more charge. The
purpose of this chapter is to explore the nature of this "something." First,
however, a few more concepts need to be clarified.

Polarization charges

By combining Eqs. (14.2) and (14.3), the surface charge in vacuum <rvac is

(14.7)

where E is the applied electric field. Similarly, by combining Eqs. (14.2) and
(14.4), in the presence of a dielectric, the surface charge on the metal plates
increases to

(14.8)

where crpol is the excess charge per unit surface area present on the dielectric
surface (Fig. 14. Ic). Also apol is numerically equal to and has the same
dimensions (C/m2) as the polarization P of the dielectric, i.e.,

P= apol (14.9)

Electromagnetic theory defines the dielectric displacement D as the
surface charge on the metal plates, that is, D = [Q/A]. Making use of this
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definition and combining Eqs. (14.7) to (14.9), one finds that

D = e0E+P (14.10)

In other words, the total charge stored on the plates of a parallel-plate
capacitor D is the sum of the charge that would have been present in
vacuum %£" and an extra charge that results from the polarization of the
dielectric material P. The situation is depicted schematically in Fig. 14.1c.
Note that if P — 0, D is simply given by Eq. (14.7).

Further combining Eqs. (14.7) to (14.10), and noting that the electric
field is the same in both cases, one sees that:

P=(k' - \)e0E = X d i e £ 0 (14.11)

where

Xdie

'pol

and Xdie (chi) is known as the dielectric susceptibility of the material. The next
task is to relate P to what occurs at the atomic scale.

Microscopic approach. A dipole moment \j, (Fig. 14.3) is defined as246

A* = qS

-ze

Figure 14.3 Definition of an electric dipole moment.

246 The dipole moment of a charge q = ze relative to a fixed point is defined as the vector zeC^,
where ^ is the radius vector from the fixed point to the position of the charge. The total
dipole moment of a system is the vector sum of all the individual dipoles

This quantity is independent of the position of the fixed point. In the absence of a field,
Yl z,£Co — 0. The application of an electric field results in the displacement of the charges
by an amount 6, from their equilibrium position, that is, C — Co + ^i- It follows that
[i — X^2(eCi = Y^zie^i- Practically, it follows that to calculate the dipole moment of any
ion, we need only know its position relative to its equilibrium position.
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where 6 is the distance separating the centers of the +ve and — ve charges
q — ±ze. u is a vector with its positive sense directed from the negative to
the positive charge.

If there are N such dipoles per unit volume, it can be shown that P is
simply

p = Nu = Nq6

Combining Eqs. (14.11) and (14.12), one sees that

Nq6
E0E

14.12)

14.13)

This result is fundamental to understanding the dielectric response of a
solid. It basically says that the greater the separation of the charges of a
dipole d for a given applied field, the greater the relative dielectric constant.
In other words, the more polarizable a medium, the greater its dielectric
constant.

One can further define the polarizability of an atom or ion as

P (14.14)Q =
NE,loc

where Eloc is the local electric field to which the atom is subjected. The SI
2x7 -1units of polarizability are C • m2 V–1 or Fm2.

For dilute gases, where the molecules are far apart, the local electric field
can be assumed to be identical to the externally applied field E and by
combining Eqs. (14.13) and (14.14), it follows that

k1 -1 = —
<=0

14.15)

However, in a solid, polarization of the surrounding medium can, and
will, substantially affect the magnitude of the local field. It can be shown
that (see App. 14A), for cubic symmetry, the local field is related to the
applied field by

which when combined with Eqs. (14.13) and (14.14) gives

14.16)

which can be rearranged as

k' -\
k' + 2
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preferred by some. This expression is known as the Clausius-Mossotti
relation,247 and it provides a valuable link between the macroscopic k' and
the microscopic a. It follows from this relationship that a measurement of
k' can, in principle, yield information about the relative displacement of
the positive and negative charges making up that solid. It should be empha-
sized here that this expression is only valid for linear dielectrics and is not
applicable to ferroelectrics, discussed in the next chapter. It is also worth
noting that whenever Na/3E0 << 1 Eq. (14.16) simplifies to Eq. (14.15), as
one would expect.

Up to this point, the discussion was restricted to static electric fields. In
most electrical applications, however, the applied electric field is far from
static — with frequencies that range from 60 Hz for standard ac power to
gigahertz and higher for communication networks. It is thus important to
introduce a formalism by which one can describe not only the static response
of a dielectric which is represented by k' or a, but also the effect of frequency
on both k' and any losses that occur in the dielectric as a result of the appli-
cation of a time-varying electric field. This is typically done by representing
the dielectric constant as a complex quantity that depends on frequency, as
described in the following section.

14.3 Equivalent Circuit Description of Linear Dielectrics

Ideal dielectric

The application of a sinusoidal voltage248, V = K0 exp iwt, to an ideal dielec-
tric, i.e., one without losses, will result in a charging current (see Prob. 14.1)
given by

7T

dt ~ dt "~~ ' ~~' « — r - v ~ • 24hg = -r- = C— = iuCV =wCV0expi( wt + -

or

Ichg = —wk'Cvac K0 sin wt (14.17)

Written in terms of the refractive index n — /ke, this relation is known as the Lorentz-
Lorenz relation. Since electromagnetic radiation, if one ignores the magnetic component, is
nothing but a time-varying electric field, it should come as no surprise later, in Chap. 16,
when it is discovered that the dielectric and optical responses of insulators are intimately
related.
Remember eiw = cos w + i sin w, where w is the angular frequency in units of radians per
second. To convert to hertz, divide by 2?r, since w = 27rz/, where v is the frequency in hertz
or s–1 ,
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In other words, the resulting current will be 7r/2 rad or 90° out of phase from
the applied field, which implies that the oscillating charges are in phase with
the applied voltage.249

Nonideal dielectric

As noted above, Eq. (14.17) is only valid for an ideal dielectric. In reality, the
charges are never totally in phase for two reasons: (1) the dissipation of
energy due to the inertia of the moving species and (2) the long-range
hopping of charged species, i.e., ohmic conduction. The total current is
thus the vectorial sum of Ichg and Iloss, or

Itot = Ichg + Iloss = iwCV + {]GL(w) + Gdc}V (14.18)

where G is the conductance of the material (see below). Iloss is defined as

+ Gdc}V (14.19)

and is written in this form to emphasize that GL is a function of frequency,
whereas Gdc is not. In the limit of zero frequency, GL => 0 and one recovers
Ohm's law or

Mot — Iloss
 = Gdc V

since Gdc = 1 /R , where R is the direct-current (dc) resistance of the material.
The total current in the dielectric is thus made up of two components

that are 90° out of phase with each other and have to be added vectorially.
as shown in Fig. 14.4. The total current in a nonideal dielectric will thus

4 Imaginary

Figure 14.4 Vectorial representation of applied voltage, charging, loss, and total currents.
Note that when 6 = 0, Itot, = Ichg, whereas when o — n/2. Itot = Iloss.

249 When the charges are in phase with the applied field, this automatically implies that the
current is x/2 rad ahead of the applied voltage. This comes about because I = dQ/dt.
Interestingly enough, the loss current is one in which the charges are oscillating Tr/2 out of
phase with the applied voltage.
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lead the applied voltage by an angle of 90° — 0, where 4> is known as the loss
angle or the loss tangent or dissipation factor.

It is important to note that the dielectric response of a solid can be
succinctly described also by expressing the relative dielectric constant as a
complex quantity, made up of a real k' component and an imaginary k"
component, i.e.,

k'*=k'—ik" (14.20)

Replacing k' in Eq. (14.6) by k*, making use of Eq. (14.2), and noting that the
Ichg = Itot — I(w = 0) = dQ/dt, one obtains

Itot — I(w = 0) = ̂  = k*CvaciwV = (k' — ik")CVaCiwV (14.21)

which, when rearranged, gives

Itot = iwCv.ack' V + (wk"CVac + Gdc) V (14.22)

Comparing this expression to Eq. (14.18) reveals immediately that
Gac =Gdc+Gl= Gdc + wk" Cvac

where Gac is the ac conductance of the material, with units of Siemens,
denoted by S, or J7 – 1 . The corresponding ac conductivity (S/M) is given by

(14.23)

Furthermore, from Fig. 14.4 one can define tan & as

(14.24)
. , 4>ss Gdc + wk Cvacland) —

Ichg

Note that for a dielectric for which Gdc << wk"Cvac, tan <p ~ k"/k'.

Power dissipation in a dielectric

In general, loss currents are a nuisance since they tend to heat up the
dielectric and retard electromagnetic signals. The average power dissipated
in a dielectric is

lo

where T = 2-ir/w is the time period. For an ideal dielectric, Itot = Ichg and

1 fr

.lv = — — wk
T Jo

cos wt dt = 0

During one-half of the cycle, the capacitor is being charged and the power
source does work on the capacitor; in the second half of the cycle, the
capacitor is discharging and does work on the source. Consequently, the
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average power drawn from the power source is zero, which is an important
result because it shows that an ideal dielectric is loss-free.

In a nonideal dielectric, however, the loss current and voltage are in
phase, and

1 [T 1 (T

av = ~ I^Vdt = -
1 Jo I Jo

cos wt dt = -

Note that for dc conditions, or w = 0, this expression is identical to the well-
known expression for the power loss under dc conditions, or I2R.

The corresponding power loss per unit volume is given by

(14.25)

where E0 = V0/d is the amplitude of the electric field. It follows that the
power loss per unit volume (W/m3) in a dielectric is directly related to crac

or adc, k" and frequency (i.e. Eq. (14.23)).
Although the mathematical representation, at first glance, may not

appear to be simple, the physics of the situation is more so: When a time-
varying electric field is applied to a dielectric, the charges in the material
will respond. Some of the bound charges will oscillate in phase with the
applied field and result in charge storage and contribute to k'. Another set
of charges, both bound and those contributing to the dc conductivity, will
oscillate 90° out of phase with the applied voltage and result in energy dissi-
pation in the dielectric.250 This energy dissipation ends up as heat (the
temperature of the dielectric will increase). In an ideal dielectric, the loss
angle </> is zero.

The remainder of this chapter is concerned with the various polarization
mechanisms operative in ceramics and their temperature and frequency
dependencies.

Experimental Details: Measuring Dielectric Properties

There are many techniques used to measure the dielectric properties of solids.
One of the more popular ones is known as ac impedance spectroscopy,
described below. Another technique compares the response of the dielectric
to that of a calibrated variable capacitor. In this method, the capacitance of a

250 This is a rather simplistic interpretation but one that is easily visualized. More realistically,
the charges will oscillate slightly out of phase, with an angle <p out of phase to be exact, with
respect to the applied field. It is worth emphasizing once more that k' describes the behavior
of the bound charges and that <rac has two contributions to it: the bound charges that are out
of phase with the applied field for which the conductance is k"wCvac and the "free" charges
whose conductance is simply Gdc. Whether a charge will jump back when the field reverses
sign, and would thus be considered a bound charge, or whether it will continue to drift
when the field reverses sign can only be distinguished in responses to dc fields.
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Sample
C

Figure 14.5 (a) Apparatus for measuring the dielectric constant of a material; L is the
inductance of the coil, (b) The actual response of a nonideal dielectric to an applied voltage
is such that the angle between the current and voltage is not 7r/2, but 7r/2 — 0. (c) Equiva-
lent circuit used to model the dielectric response of a solid. Here Gdc represents the dc
response of the material, whereas uk''Cvac is the conductance of the bound charges,
which vanishes as w goes to zero.

parallel-plate capacitor in vacuum is compared with one in the presence of
the material for which the dielectric properties are to be measured. Then k'
is simply calculated from Eq. (14.6). A typical circuit for carrying out such
an experiment is shown in Fig. 14.5a. Varying the capacitance of the cali-
brated capacitor to keep the resonance frequency w0 — {L(CS + C)}–1/2

constant when vacuum is between the plates, versus when the substance is
inserted, allows Cvac and Csolid to be determined and, in turn, k'.

AC impedance

Here a sinusoidal voltage is applied to the sample, and the magnitude and
phase shift of the resulting current are measured by using sophisticated elec-
tronics. From the ratio of the magnitude of the resulting current I0 to the
imposed voltage V0, and the magnitude of the phase difference (f> between
the two, all defined in Fig. 14.5b, k' and k" can be obtained. It can be
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shown (see Prob. 14. 1b) that if one assumes the equivalent circuit shown in
Fig. 14.5c, k' and k" are given by

• /k' = — - sin - -
2

and
i // _

where

C°S 2 "

and d and A are, respectively, the thickness and cross-sectional area of the
sample. It is important to remember, that both 0 and $ depend on the
frequency of the applied field uj. It is interesting here to look at the limits;
for dc conditions the current that passes through the capacitor will be deter-
mined by its dc conductivity. As the frequency increases, more and more of
the bound charges will start to oscillate out of phase with the applied voltage
and will contribute to crac.

In a typical experiment, the frequency of the applied voltage is varied
over the range between a few hertz and 100 MHz. Measurements in the
frequency range between 109 and 10 I2Hz are more complex and beyond
the scope of this book. However, in the IR and UV frequencies, the dielectric
constant and loss can once again be measured from measurements of the
reflectivity of the samples and the refractive index (see Chap. 16).

14.4 Polarization Mechanisms

Up to this point, the discussion was couched in terms of polarization, or the
displacement of charges with respect to each other. In this section, the
specifics of particle separation are considered. In solids, especially in cera-
mics, various charged entities are capable of polarization, such as electrons,
protons, cations, anions, and charged defects. The following mechanisms
represent the most important polarization mechanisms in ceramics.

Electronic polarization

This mechanism entails the displacement of the electron cloud relative to its
nucleus (Fig. 14.6a).

Ionic displacement polarization

In this case, there are two types of ionic displacements:
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E=0

Figure 14.6 Electronic polarization of the atomic cloud surrounding a nucleus, (a) At
equilibrium, i.e., in the absence of an external electric field (b) In the presence of an external
electric field, (c) Schematic of model assumed in text. S0 represents the stiffness of bond
between the electrons and the nucleus.

1. Displacements where the displaced charge is bound elastically to
an equilibrium position (Fig. 14.9) and referred to below as ionic-
polarization.

2. Displacements that occur between several equilibrium sites for which the
probability of occupancy of each site depends on the strength of the
external field. This mechanism is also known as dipolar or ion
jump polarization and is depicted schematically in Fig. 14.10. Another
definition of ion jump polarization is the preferential occupation of
equivalent or near-equivalent lattice sites as a result of the applied
field biasing one site with respect to the other. If the alignment occurs
spontaneously and cooperatively, nonlinear polarization results and the
material is termed ferroelectric. Because of the relatively large displace-
ments, relative dielectric constants on the order of 5000 can be attained
in these materials. Nonlinear dielectrics are dealt with separately in
Chap. 15. But if the polarization is simply due to the motion of ions
from one adjacent site to another, the polarization behavior is linear
with voltage. These solids are discussed below.

Space charge polarization

In Chap. 5, the notion of a Debye length was briefly alluded to, and it
was shown that whenever two dissimilar phases come into contact with
each other, an electrified interface will result. This so-called double layer
acts as a capacitor with properties and responses different from those
of the bulk material. The behavior and interpretation of interfacial
phenomena are quite complex and not within the scope of this book; they
fall more in the realm of solid-state electrochemistry and will not be discussed
further.
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The total polarizability is the sum of the contributions from the various
mechanisms, or

ktot* — 1 1
7l0t , > = T— [Neae + Nionalon + Ndipadip + Nspace chg aspace chg] (14.26)

where Ni represents the number of polarizing species per unit volume. In the
remainder of this section, electronic, ionic, and ion jump polarization are
discussed in some detail.

14.4.1 Electronic Polarization

Electronic polarization, shown schematically in Fig. 14.6a and b, occurs when the
electron cloud is displaced relative to the nucleus it is surrounding. It is operative
at most frequencies and drops off only at very high frequencies (~1015 Hz). Since
all solids consist of a nucleus surrounded by electrons, electronic polarization
occurs in all solids, liquids, and gases. Furthermore since it does not involve
hopping of ions or atoms between lattice sites, it is temperature-insensitive.

The simplest classical theory for electronic polarization treats the atom
or ion, of atomic number Zi as an electrical shell of charge Zie and mass
Zime, attached to an undeformable ion nucleus251 (Fig. 14.6c). If the natural
frequency of vibration of the system is w0, it follows that the corresponding
restoring force is

tester = Mr^b (14.27)

where Mr is the reduced mass of the oscillating system, defined as

Mr=
 Z""'m" (14.28)
Zime + mn

where me and mn are, respectively, the mass of the electrons and of the
nucleus. Since in this case me << mn, it follows that for electronic polarization
Mr ~ Zime.

The application of the electric field, as discussed above, will result in the
separation of charges and the creation of an electric dipole moment, since
now the center of negative charge and the center of positive charge will no
longer coincide, as shown schematically in Fig. 14.66.

An oscillator displaced by an amount 6 by a driving force F — ZteE —
ZieE0=ZieE0 e x p ( i w t ) with a restoring force and a damping constant or friction
factor, /, must obey the equation of motion

ZieE0 exp iwt (14.29)

251 Clearly, this is a gross oversimplification. The restoring force, and consequently the
resonance frequency of each electron, has to be different. See Eq. (14.40) for a more accurate
expression.
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which is nothing but Newton's law with a restoring force and a friction factor
f (rad/s). If f is small, there is little friction, while for large f the frictional
forces are large.252 It can be shown (see Prob. 14.3) that

eE()
o — exp i(wt

and

me

6 =

or

-exp

(14.30)

(14.31

are both equally viable solutions to Eq. (14.29), provided </>, which represents
the phase difference between the forced vibration and the resulting polariza-
tion, takes the value

tan) =
ur

(14.32)

Note that S is a measure of the displacement of the electron cloud as a
whole relative to its equilibrium position in the absence of a field, as
shown schematically in Fig. 14.6a and b.

By replacing k'e in Eq. (14.13) by ke*, and substituting for 8, it can be
shown that, assuming the applied field is identical to the local field (see
Prob. 14.5), the real and imaginary parts of ke are, respectively,

=

and

(14.33)

(14.34)

The frequency dependencies of k'e and ke" are plotted in Fig. 14.7 and are
characteristic of typical dispersion curves experimentally observed for
dielectrics. It is important to note that Eqs. (14.33) and (14.34) are only valid
for a dilute gas, since it was implicitly assumed that the local field was identical
to the applied field. To solve the problem more accurately for solids, the
local rather than the applied field would have to considered in Eq. (14.29).
Fortunately, doing this does not change the general forms of the solutions; it
only modifies the value of the resonance frequency w0 (see App. 14A).

Based on Eqs. (14.33) and (14.34), the frequency response can be divided
into three domains:

252 Damping constant/ is related to the anharmonicity of the vibrations as they become more
anharmonic, f increases.
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12

= 0.01

1 2 3

Frequency

Figure 14.7 General frequency dependence of (a) k'e. that is. Eq. (14.33) (note that as f
increases, the width of the resonance peak also increases); (b) ke", that is. Eq. (14.34). w'0
was assumed to be 2.

1. w0 >> w. Here the charges are oscillating in phase with the applied
electric field and contribute to k'e. Under dc conditions.

k'e -1 = (14.35)

and k" is zero.
2. w0 ~ w. When the frequency of the applied field approaches the natural

frequency of vibration of the system, the system is said to be at
resonance. The displacements, were it not for the frictional forces,
would go to infinity; and thus just before resonance, k'e goes through
a maximum. Exactly at resonance the charges are 90 out of phase
with the applied field and thus are not contributing to the dielectric
constant. Furthermore, at resonance k" and the energy losses are at a
maximum.

3. w0 << w. In this region, the electric field is changing direction too fast for
the electric charges to respond; no polarization results, and k'e goes to 1.

To summarize: when a varying electric field is applied to a solid, the
charges will start dancing to the tune of that externally applied field —
they will oscillate with the same frequency of vibration as the applied field.
The amplitude of the vibrations, however, will vary and will depend on the
relative values of w0 and w. The charges that are in phase with the applied
field will not absorb energy, but will contribute to k'c. Another set of charges
will oscillate out of phase with the applied field, will absorb energy, and will
contribute to dielectric loss. When the frequency of the applied field is much
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smaller than the natural frequency of vibration of the polarization process
involved, the charges can follow the field nicely, k", and the loss is negligible.
As the frequency of the field becomes comparable to the natural frequency of
vibration of the system, the latter goes into resonance; the amplitudes of
vibration tend to be very large, and consequently so is k'e. However, this
large increase in the amplitude of vibration results in the large losses
observed at resonance.253 At very high frequencies, the charges cannot
keep up with the applied field, their amplitude of vibration will be uncorre-
lated, and k'e will approach 1 . In other words, if the frequency of the applied
field is so large that the polarization mechanism cannot follow, then no
polarization ensues.

Microscopic factors affecting k'e

Comparing Eqs. (14.15) and (14.35) gives

(14.36)

immediately. This leads to the final, but not surprising, result that electronic
polarizability is related to the restoring force or the strength of the bond
holding the electrons in place to their nucleus, reflected in w0. It was
shown in Sec. 4.4 [see Eq. (4.6)] that for small displacements, the restoring
force can be assumed to be proportional to the displacement, i.e.,

Frestor = S0(r — r0) = S06 (14.37)

where S0 is the stiffness of the bond and S is the displacement from its
equilibrium position. Recall that So is defined as

(1438)

where F is the net force between the unlike charges. In other words, the
assumption is made that the electron cloud is attached to its nucleus by a
spring of stiffness So, as shown in Fig. 14.6c. Combining Eqs. (14.36) to
(14.38) together with Eq. (14.27) yields

ae~47re3
0 (14.39)

According to this result, ae should scale with the volume of the atom or
ion. Simply put, the larger the atom or ion, the less bound the electrons are to
their nucleus and the more amenable they are to polarization. According to

253 It is worth noting here that this description of resonance is applicable for any resonance
phenomenon, be it mechanical, electrical, or magnetic. The nature of the resonating species
and the driving forces may vary, but the physics and the interpretation really do not.
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Figure 14.8 Relationship between ionic or atomic radius and polarizability.254

Eq. (14.39), a plot of ae versus the cube of the atomic or ionic radii should
yield a straight line — a fact that, to a first approximation, is borne out by
experimental results, as shown in Fig. 14.8. For example, the noble gases
do indeed fall on a straight line; anions, however, tend to lie above that
line, and cations below it. Thus, in addition to the size effect, two other
factors (see also Sec. 4.2.2, where polarizability was first encountered)
come into play:

1. Charge. The polarizability of an ion is a strong function of its net charge,
as shown in Fig. 14.8. Anions are usually more polarizable than cations,
and the effect is greater than a simple volume argument. For example,
Kr, Cl—, and S2– are similar in size, yet S2– with its double negative
charge is almost 3 times more polarizable than Cl–, which in turn is
more polarizable than Kr. This is understandable, since the outer elec-
trons are less tightly bound in a negative ion and thus are expected to
contribute the most to the polarizability.

2. Nucleus shielding and the configuration of outer electrons. In general, d
electrons do not shield the nucleus as well as s or p electrons; hence the
polarizability of atoms with d electrons is less than that of similarly sized
atoms with s or p electrons.

254 For atomic radii, see R. D. Shannon, Acta Crystallogr.. 832:925 (1976). (See also App. 3A).
For polarizability data, see C. Kittel, Introduction to Solid State Physics. 4th ed.. Wiley.
New York, 1971. The polarizabilities were determined empirically from refractive-index
data.
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WORKED EXAMPLE 14.1

The relative dielectric constant of 1 mole of Ar gas was measured at 0'C
and 1 atm pressure to be 1.00056. (a) Calculate the polarizability of Ar.
(b) Calculate the relative dielectric constant if the pressure is increased to
2 atm. (c) Estimate the radius of an Ar atom and compare to that of tabulated
data.

Answer

(a) At 0°C, the number of atoms per cubic meter (assuming ideal gas behavior,
i.e., N = NAvP/RT)

(6.02 x 1023)(1.013x 105) „„, , ,5 ,
>

Substituting this value in Eq. (14.15) and solving for ae yields

(b) It is important to note polarizability is an atomic property. The dielectric
constant, on the other hand, depends on the density of the atoms or the
manner in which these atoms are assembled to form a crystal. Doubling the pres-
sure will double N, and once again applying Eq. (14.15), it follows that

2(2.69 x 1025) (1.84 X10–40)
8.85 x 10–12

Note that doubling the pressure almost doubles k'e — 1, but does not affect
the polarizability.
(c) To obtain the radius use is made of Eq. (14.39), from which it follows that

1.84 X 10 40

47T x 8.85 x 10–12

The experimental value for the radius of Ar is somewhere between 1.5 to
2 x 10–10m and 4 x 10–10m, depending on how it is measured. Thus our
estimate of r0 is off by a factor of about 1.5, which is not too surprising given
the simple model used to derive Eq. (14.39) in which the discreteness of the
electron cloud was not accounted for (see below).

Note that in the cgs system, the unit of polarizability is the cubic
centimeter. To convert from SI to cgs:

a(F.m 2 ) = 47re0 x 10–6 x a(cm3)

In the discussion so far and for the sake of simplicity, the electron cloud
was treated as one unit — an obvious oversimplification. In reality, each
atom has j (j = Zi) oscillators associated with it, each having an oscillator
strength 7,. The jth oscillator vibrates with its own natural frequency and
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damping constant fj. The total electronic polarizability of such an atom or
ion is given by the sum of all the oscillators

(14.40)

The oscillator strength rj, is related to (from quantum mechanics) the
probability of transition of an electron from one band to the next.

For covalent solids, by far the major contribution to the dielectric
constant results from electronic polarization. In ionic solids, the situation
is more complicated, as discussed below. It should also be pointed out that
the electronic polarizability of a compound can, to a very good approxima-
tion, be taken as the sum of the polarizabilities of the atoms or ions making
up that compound.

14.4.2 Ionic Polarization

Electron clouds are not the only species that can respond to an applied
electric field. Ionic charges in a solid can respond equally well and can
significantly contribute to the dielectric constant. Ionic polarization is defined
as the displacement of positive and negative ions toward the negative
and positive electrodes, respectively, as shown schematically in Fig. 14.9.
Ionic resonance occurs in the infrared frequency range (1012 to 1013Hz),
and consequently this phenomenon will be encountered once again in
Chap. 16.

Center of negative
charge

Center of positive
charge

Figure 14.9 Ionic polarizability. (a) Ion positions at equilibrium; (b) Upon the applica-
tion of the electric field, the center of negative charge is no longer coincident with the
center of positive charge, i.e., polarization occurs.
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The equation of motion to solve is similar to Eq. (14.29) except that

• The ions are assumed to be attached to one another by a spring having a
natural frequency of vibration wion which is directly related to the
coulombic attraction holding the ions together.

• The reduced mass of the system is now given by Mr = mcma/(mc + ma)
where mc and ma are the cation and anion masses, respectively.

• The friction factor fion will also be different in this case.

It is not surprising that the final result for ionic polarizability is very
similar to that for electronic polarization and is given by

(14.41

(14.42)

where Nion is the number of ion pairs per cubic meter. Note the similarity
between Eqs. (14.33) and (14.41); as noted above, the only differences are
the appearance of wion rather than w0, o f i o n rather than f, and the use of
Mr instead of me. Moreover, for w>> wion, the ions can no longer follow
the applied field and drop out, that is, kion => 1, as expected.

Under dc conditions, Eq. (14.41) reduces to

(14.43)

In other words, the ionic polarization is inversely proportional to the ionic
masses and the square of wion, which depends on the strength of the ionic
bond. Stronger bonds with higher wion values will be less readily polarized.
The factors that influence the strength of an ionic bond were discussed in
detail in Chap. 4 and will not be repeated here. Finally, it is important to
note that ceramics in which the bond is predominantly covalent (i.e., the
atoms are not charged) exhibit little or no ionic polarization.

Also since it does not entail migration, ionic polarization is quite
temperature-insensitive.

WORKED EXAMPLE 14.2

(a) In a similar approach used to derive Eq. (14.39), derive an expression for kion.
(b) Based on the expression derived in part (a) calculate kion of NaCl and MgO,
given that the Born exponent for NaCl is ~8 and that for MgO is ~7. State all
assumptions, and compare to experimental results listed in Table 14.1.
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Answer

(a) Replacing u2
ion in Eq. (14.43) by S0/Mr and noting that for the ionic bond

(see Prob. 4.2)

where r0 is the equilibrium interionic spacing and n is the Born exponent, it is
easy to show that

47TCO/-Q

which when combined with the Clausius-Mossotti equation yields

It is interesting to note that the charges on the ions does not appear in the final
expression, because both the electric force and the restoring force scale with z1z2

(b) The number of ion pairs in NaCl (p = 2.165g/cm3) and in MgO
(p = 3.6g/cm3) are. respectively.

A7 ,KI ™ ' ' 0 ,1 ,^8 • • '
?Vion(NaCl) = - -)3 + 3S45 - = X 1On pairs m

., ,*. ^ 3.6 x 6.02 x 1023 x 106 ^ ,„ ,8. . ,
Arjon(MgO) = - - = 5.38 x 10-8 ion pairs 'm3

24.31 + lo

From App. 3A, rion (NaCl) = 116 + 167 = 283pm. and ron(MgO) =
86+ 126 = 212pm. Substituting these values in the expression given above
and solving for kion one obtains

kion (NaCl) = 2.3 and kion (MgO) - 2.67

Experimentally (see Table 14.1), kion(NaCl) = 5.89 - 2.41 = 3.48. and
kion(MgO) = 9.83 - 3 = 6.83. And although the agreement between theory
and experiment is not excellent, given the simplicity of the model used (i.e..
assuming the ions to be hard spheres, etc.), it is satisfactory. This is especially
true when it is appreciated that, as discussed in the following section, the
values of the static dielectic constants listed in Table 14. 1 include other contribu-
tions in addition to ionic polarization.

14.4.3 Dipolar Polarization

In contrast to electronic polarization and ionic polarization, which occur
at high frequencies (u; > 1010Hz), dipolar polarization occurs at lower
frequencies and is thus important because it can greatly affect the capaci-
tive and insulative properties of glasses and ceramics in low-frequency
applications.
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(a ) (b )

Figure 14.10 Dipolar polarization; (a) energy versus distance diagram in the absence of
applied field; the two sites are equally populated. (b) The application of an electric field
will bias one site relative to the other.

As noted above, ion jump polarization is the preferential occupation of
equivalent or near-equivalent lattice sites as a result of the applied fields bias-
ing one site over the other.255 The situation is depicted schematically in
Fig. 14.10, where an ion is localized in a deep energy well, but within
which two equivalent sites, labeled A and B in Fig. 14.10b, exist. The sites
are separated from each other by a distance As and an energy barrier
AHm. In the absence of an electric field (Fig. 14.10a), each site has an
equal probability of being occupied and there is no net polarization. In the
presence of a field (Fig. 14.10b) the two sites are no longer equivalent —
the electric field will bias the B sites, resulting in a net polarization.256

As discussed in Chap. 7, the probability of an ion making a jump in the
absence of a bias is given by the Boltzmann factor,

(14.44)

255 The discussion in this section is applicable to any polar solid (i.e., one that has a permanent
dipole) in which relaxation of the permanent dipoles occurs. In principle this approach
could be applicable to piezoelectric and ferroelectric solids at temperatures above their transi-
tion temperature as well (see next chapter). However, the same response, as shown in Fig. 14.11,
can also occur as a result of heavily damped resonance. This is easily seen in Fig. 14.7a; as f.
which is a measure of the damping, increases, the resultant resonance curves become flatter.
Experimentally it is not easy to distinguish between the two phenomena.

256 The following analogy should help: think of the crystal as a ship in which the ions are passen-
gers, confined to cabins with two beds each, where the beds are arranged parallel to the ship
axis. In the absence of a bias, it is fair to assume the passengers will occupy either bed equally
such that the center of gravity of the ship remains at its center. If now the ship tilts to either
side, the passengers will tend to favor that side and the center of gravity of the ship will no
longer be at its center.
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The potential energy of a dipole depends on the orientation of the dipole
moment /zdip with respect to the applied field E or

(14.45)

where 9 is the angle between n and E. For 9 = 0° or 180°, the potential energy
is simply ±/zdipE' depending on whether the moment aligns with or against
the field. It follows that the energy difference between the two locations is
2//dipE. Assuming Ndip bistable dipoles per unit volume, in the presence of
a field, the jump probability A => B is

B = K exp
/ A//,,, -
I

For the most part, the applied fields are small enough that //dipE/(kT)
and this equation simplifies to

(14'46)

Similarly, the jump probability B — A is given by

e,^ = (i-^)e (14.47)

At steady state,

NAeA_B = NB0B^A (14.48)

where NA and NB are the number of ions in each well. Combining Eqs. (14.46)
to (14.48) and rearranging yields

NB-NA = (NB + NA) = AW (14-49)

The static polarization per unit volume Ps is defined as

Ps = (NB - NA)^ = AW ^ (14.50)

from which it is obvious that if NB = NA, there would be no polarization.
Combining Eqs. (14.13) and (14.50), and noting that /idip = ~e\J2, one
obtains

dip
2

kT0

(ze}2N^\]
4kT£o

(14.51)

It is important to note the following:

• Now k'dip is a function of the total number of dipoles per unit volume, the
charge on the ions that are jumping, and the distance of the jump.
Neither AHm nor the frequency of the applied field play a role because
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Eq. (14.51) represents the equilibrium situation under static (i.e., dc)
conditions. It gives the equilibrium value, but says nothing about how
rapidly or slowly equilibrium is reached (see below).

• Increasing the temperature will reduce k'dip as a result of thermal randomi-
zation. This functionality on temperature is known as Curie's law and will
be encountered again in Chap. 15. In analogy to paramagnetism (see
Chap. 15), any solid for which the susceptibility is proportional to 1/T
can be termed a paraelectric solid.

• It is worth noting here, once again, that in deriving Eq. (14.51), the
assumption was made [Eq. (14.13)] that the local field is the same as
the applied field — not necessarily a good assumption in this case.

Dynamic response and the Debye equations

To understand and model the dynamic response of dipolar polarization is
quite a complicated affair. Debye, however, rendered the problem tractable
by making the following assumptions:

• At high frequencies, that is, LJ >> 1 /r, where r is the relaxation time of the
system or the average residence time of an atom or ion at any given site, the
relative dielectric constant is given by k', where k'^ = k'ion + k'e (i.e., the
sum of the ionic and electronic contributions).

• As uj => 0, the relative dielectric constant is given by k'static where

static — Kdip

The polarization decays exponentially as

From these assumptions it can be shown that257

,
l(llp

_ tri , K'static
K(XJ '

-A4

UJ2T2

tov, A, Kdip

^dip

(kf If' WV^static "-00^'

^tic +^^7^

(14.52)

(14.53)

(14.54)

(14.55)

These are known collectively as the Debye equations, and are plotted in
Fig. 14.11. At low frequencies, all polarization mechanisms can follow the
applied field, and the total dielectric constant is « k'static which includes the

257 See, e.g., L. L. Hench and J. K. West, Principles of Electronic Ceramics, Wiley-Interscience,
New York, 1990, p. 198.
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Figure 14.11 Frequency dependence of dielectric parameters for dipolar polarization on
(a) k' , assuming a time constant T of 10-6 s, and (b) k" and tan o. Note that the maximum
for k" is coincident with the inflection point in k' , whereas the maximum for tan <*> is shifted
to higher frequencies.

dipolar, ionic, and electronic contributions. When u;r = 1, k'dip goes through
an inflection point and k"dip is at a maximum. At higher applied frequencies,
the dipolar polarization component to k'static drops out and only the ionic and
electronic contributions remain.258

An implicit assumption made in deriving the Debye equations is that of
a single relaxation time. In other words, the heights of the barriers are
identical for all sites. And while this may be true for some crystalline
solids, it is less likely to be so for an amorphous solid such as a glass,
where the random nature of the structure will likely lead to a distribution
of relaxation times.

Temperature dependence of dipolar polarization

As noted above, r is a measure of the average time an ion spends at any
one site. In other words, r oc 1/9, which according to Eq. (14.44) renders
T exponentially dependent on temperature, or

= r0exp-
A//,,,
kT

(14.56)

and immediately implies that the resonance frequency should also be an
exponential function of temperature. As the temperature increases, the

258 If the electric field switches polarity in a time that is much shorter than an ion's residence time
on a site, the average energies of the two sites become equivalent (i.e.. the bias no longer exists
— the sites become energetically degenerate).
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Figure 14.12 (a) Effect of temperature on dielectric loss peak in an Li2O-SiO2 glass. As
the temperature increases, the frequency at which the maximum in loss occurs also
increases, since the mobility of the ions increases, (h) Temperature dependence of
frequency at which maximum in dielectric-loss peak occurs.

atoms vibrate faster and are capable of following the applied field to higher
frequencies. This is indeed found to be the case, as shown in Fig. 14.12a,
where the dielectric loss peaks are plotted as a function of temperature. As
the temperature increases, the maximum in the loss angle shifts to higher
frequencies, as expected. Furthermore, when the frequency at which the
peaks occur is plotted as a function of reciprocal temperature, the expected
Arrhenian relationship is observed (Fig. 14.12b).

14.4.4 Dielectric Spectrum

From the foregoing discussion, it is clear that the dielectric response is a
complex function of frequency, temperature, and type of solid. Under dc
conditions, all mechanisms are operative, and the dielectric constant is at
its maximum and is given by the sum of all mechanisms. As the frequency
increases, various mechanisms will be unable to follow the field and will
drop off, as shown in Fig. 14.13. At very high frequencies, none of the
mechanisms is capable of following the field, and the relative dielectric
constant approaches 1.0.
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Figure 14.13 Variation of (a) relative dielectric constant and (b) dielectric loss with
frequency.

Temperature will influence only the polarization mechanisms that
depend on long-range ionic displacement such as dipolar polarization.
Ionic polarization is not strongly affected by temperature since long-range
mobility of the ions is not required for it to be operative.259

14.5 Dielectric Loss

The dielectric loss is a measure of the energy dissipated in the dielectric in unit
time when an electric field acts on it. Combining Eqs. (14.23) and (14.25), it
can be shown that the power loss per unit volume dissipated in a dielectric is
related to k", the frequency of the applied field, and its dc conductivity, by

Py = 14.57)

This power loss represents a wastage of energy as well as attendant heating of
the dielectric. If the rate of heat generation is faster than it can be dissipated,
the dielectric will heat up, which, as discussed below, could lead to dielectric

259 This should not be confused with the effect of temperature on the dielectric loss (see the next
section).
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breakdown and other problems. Furthermore, as the temperature increases,
the dielectric constant is liable to change as well, which for finely tuned
circuits can create severe problems. Another reason for minimizing k" is
related to the sharpness of the tuning circuit that would result from using
the capacitor — lower losses give rise to much sharper resonance frequencies.

From Eq. (14.57) it is immediately apparent that in order to reduce
power losses, it is imperative to

• Use solids that are highly insulating, adc =>• 0. In other words, use very
pure materials with large band gaps such that the number of free carriers
(whether they are impurity ions, free electrons, or holes) is as low as
possible.

• Reduce k". Thus, almost by definition, a good dielectric must have very
low dc conductivity and a low k" — hence the need to understand what
contributes to k".

Since temperature usually tends to increase the conductivity of a ceramic
exponentially (Chap. 7), its effect on dielectric loss can be substantial. This is
demonstrated in Fig. 14.14a, where the loss tangent is plotted as a function of
temperature for different glasses that have varying resistivities. In all cases,
the increased mobility of the cations results in an increase in the dielectric
loss tangent. The effect of impurities, inasmuch as they increase the conduc-
tivity of a ceramic, can also result in large increases in the dielectric loss. This
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Figure 14.14 (a) Variation of loss angle with temperature for alkali glasses as a function
of their resistivity. The measurements were carried out at 1 Mc/s. (b) Effect of impurities
and frequency on tan<£ of NaCl.
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is shown in Fig. 14.14b, for very pure NaCl (lower curve) and one that
contains lattice impurities (top curve).

Needless to say, the frequency at which a dielectric is to be used must be
as far removed from a resonance frequency as possible, since near resonance.
k" can increase substantially.

Interestingly enough, the crystal structure can have an effect on k" and
the loss tangent. In general, for close-packed ionic solids, the dielectric loss is
quite small, whereas loosely packed structures tend to have higher dielectric
loss. This is nicely demonstrated when values of tan <p for a- and 7-aluminas
are compared. For a-alumina, tan 0 < 0.0003 at 100°C and 10-6 s - 1 . whereas
the loss tangent for the less dense 7 modification is greater than 0.1.

14.6 Dielectric Breakdown

When a dielectric is subjected to an ever-increasing electric field, at some
point a short circuit develops across it. Dielectric breakdown is defined as
the voltage gradient or electric field sufficient to cause the short circuit.
This phenomenon depends on many factors, such as sample thickness,
temperature, electrode composition and shape, and porosity.

In ceramics, there are two basic types of breakdown: intrinsic and
thermal.

• Intrinsic. In this mechanism, electrons in the conduction band are accel-
erated to such a point that they start to ionize lattice ions. As more ions
are ionized and the number of free electrons increases, an avalanche
effect is created. Clearly, the higher the electric field applied, the faster
the electrons will be accelerated and the more likely this breakdown
mechanism will be.

• Thermal breakdown. The criterion for thermal breakdown is that the rate
of heat generation in the dielectric, as a result of losses, must be greater
than the rate of heat removal from the sample. Whenever this condition
occurs the dielectric will heat up, which in turn will increase its con-
ductivity, which causes further heating, etc. This is termed thermal
breakdown or thermal runawav.

14.7 Capacitors and Insulators

Ceramic dielectric materials are typically used in electric circuits as either
capacitors or insulators. Capacitors act as electrical buffers, diverting spur-
ious electric signals and storing surges of charge that could damage circuits
and disrupt their operation. By blocking dc signals and allowing only ac
signals, capacitors can separate ac and dc signals and couple alternating
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currents from one part of a circuit to another. They can discriminate between
different frequencies as well as store charge.

Whether a dielectric solid is to be used as a capacitor or as an insulator
will depend on its characteristics. For capacitive functions, high relative
dielectric constants are required together with low losses. The perfect dielec-
tric would have a very large k' and no losses. But if the dielectric is used for its
insulative properties, whether in high-power applications or as a substrate
for integrated circuits, then it is desirable to have as low a dielectric constant
as possible and once again minimal losses. It is worth noting that the need for
low-loss insulators has grown significantly recently with the advent of high-
frequency telecommunications networks. Since the power losses [Eq. (14.57)]
are proportional to frequency, the need for lower and lower loss insulators is
more crucial than ever.

Table 14.1 lists the values of k'static and k'e (which, as discussed in
Chap. 16, is nothing but the square of the refractive index) together with
tan 0 of a number of ceramics.

In general, dielectrics are grouped into three classes:

Class 1 dielectrics include ceramics with relatively low and medium
dielectric constants and dissipation factors of less than 0.003. The
low range covers k'static = 5 to 15, and the medium K'static range is
15 to 500.

Class II dielectrics are high-permittivity ceramics based on ferroelectrics
(see Chap. 15) and have values of k' between 2000 and 20,000.

Class III dielectrics (not discussed here) contain a conductive phase that
effectively reduces the thickness of the dielectric and results in very
high capacitances. Their breakdown voltages are quite low,
however.

Low-permittivity ceramics are widely used for their insulative proper-
ties. The major requirements are good mechanical, thermal, and chemical
stability; good thermal shock resistance; low-cost raw materials; and low
fabrication costs. These include the clay- and talc-based ceramics also
known as electrical porcelains. A large-volume use of these materials is as
insulators to support high tension cables that distribute electric power.
Other applications include lead-feedthroughs and substrates for some types
of circuits, terminal connecting blocks, supports for high-power fuse holders,
and wire-wound resistors.

Another important low-permittivity, low-loss ceramic is alumina.
Alumina has such an excellent combination of good mechanical properties,
high thermal conductivity, and ease of metallization that it is widely used
today for thick-film circuit substrates and integrated electronic packaging.

Other low-permittivity ceramics that are emerging as likely candidates
to replace alumina are BeO and A1N. Broadly speaking, these compounds
have properties that are quite comparable to those of alumina, except that
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Table 14.1 Dielectric properties of some ceramic materials

Compound

AgCl
AgBr
CsBr
CsCl
Csl
KBr
KC1
KF
KI
LiBr
LiCl

A12O3

BaO
BeO
CaO
Cr2O3

Eu2O3

Ga2O3

Gd2O3

MgO

BaTiO3

CaTiO3

MgAl2O4

Pb-silica glass

Pyrex

A1N
C (diamond)

k'static

12.30
13.10
6.67
7.20
5.65
4.90
4.84
5.46
5.10

9.0-13.00
11.86

9.40

6.80
12.00
11.80

9.83

3000.00
180.00

8.20

19.00

4.00-6.00

8.80
5.68

k'e = n~ tan 6
(xlO 4 )

Compound

Halides

4.00
4.60
2.42
2.62
2.62
2.34 2
2.19 10
1.85
2.62
3.22
2.79

LiF
Lil
NaBr
NaCl
NaF
Nal
RbBr
RbCl
RbF
Rbl
TIBr

Binary oxides

3.13 0.4-2
3.90
2.95 2
3.40
6.50
4.45
3.72
4.41
3.00 3

MnO
Sc2O3

SiO2

SrO
TiO2 rutile
TiO2 (|| a)1

Ti02 (|| a)s

Y203

ZnO

Ternary oxides

5.76 1-200
6.00
2.96 5-8

MgTiO3

SrTiO3

Glasses

57 Soda-lime
glass
Vycor

Others

5-10
5.66

a-SiC
Si
ZnS

Kstatic

8.90
11.00
6.40
5.89
5.07
7.28
4.86
4.92
6.48
4.91

30.00

18.10

3.80
13.00

114.00
170.00
86.00

9.00

16.00
285.00

7.60

9.70
11.70
8.32

k'' = /r tan f*
(x104)

1.92 2
3.80
2.64
2.40 2
1.74
2.93
2.34
2.19
1.960
2.60
5.40

3.96
2.30 4
3.31

6.40-7.40 2-4
8.40 16
6.80 2
3.72
4.00

•>

6.20

2.30 100

8

6.70
11.70
5.13

The values quoted in the literature are quite variable especially for k's which depends strongly
on sample purity and quality.
Parallel to the c axis in a single crystal rutile.
Parallel to the a axis.
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their thermal conductivities are roughly 5 to 10 times that of alumina. A1N
has a further advantage that its thermal expansion coefficient of
4.5 x 10-6C-1 is a better match with that of Si (2.6 x 1 0 - 6 C - 1 ) than
that of alumina. With these properties, AIM, despite its higher cost, may
replace alumina as the size, number, and density of chips increase and
more heat needs to be dissipated.

Medium-permittivity ceramics are widely used as class I dielectrics, but
only if they have low dissipation factors. This precludes the use of most ferro-
electric compounds that tend to have higher loss tangents. The three princi-
pal areas in which these low-loss class I materials are used are high-power
transmission capacitors in the megahertz frequency range, stable capacitors
for general electronic use, and microwave-resonant cavities that operate in
the gigahertz range.

14.8 Summary

1. The application of an electric field E across a linear dielectric material
results in polarization P or the separation of positive and negative
charges. The relative dielectric constant k' is a measure of the capacity
of a solid to store charge relative to vacuum and is related to the
extent to which the charges in a solid polarize. Atomically there are
four main polarization mechanisms: electronic, ionic, dipolar, and
space charge.

For linear dielectrics, it is assumed that P is linearly related to E,
with the proportionality constant related to k'. When a sinusoidal
electric field of frequency u; is applied to a dielectric, some of the
bound charges move in phase with the applied field and contribute to
k'. Another set of bound charges oscillate out of phase with the applied
field, result in energy dissipation, and contribute to the dielectric loss
factor k". In addition to these bound charges, there will always be a
dc component to the total current which contributes to the total
conductivity of the sample and is a loss current.

2. Electronic polarization involves the displacement of the electrons
relative to their nucleus and exhibits a resonance when the frequency
of the applied field is comparable to the natural frequency of vibration
of the electronic cloud. The latter is determined by several factors, the
most important being the volume of the ion involved. Electronic
polarization is quite insensitive to temperature and is exhibited by all
matter.

3. Ionic polarization involves the displacement of cations relative to
anions. Resonance occurs when the frequency of the applied field is
close to the natural frequency of vibration of the ions. The latter is
determined by the strength of the bond holding the ions, which in
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turn is related to, among other things, the net charges on the ions and
their equilibrium interatomic distance. Since it does not involve ions
jumping from site to site, ionic polarization is also quite insensitive to
temperature.

4. For dipolar polarization to occur, two or more adjacent sites separated
by an energy barrier must exist. The preferential occupancy of one site
relative to the other as a result of the application of an electric field
results in solids that can have quite large k1 values. Increasing the
temperature increases the randomness of the system and tends to
decrease k'dlp. Such solids possess a relaxation time r that is a measure
of the average time an ion spends at any given site. When u,-r = 1, the
loss is maximized and k'dip has an inflection point.

5. Power dissipation in a dielectric depends on both its dc conductivity and
k". In general, a dielectric should be used at temperatures and frequen-
cies that are as far removed as possible from a resonance or relaxation
frequency. The composition should also be such as to minimize the dc
conductivity.

6. For a capacitor k' should be maximized, whereas for an insulator it
should be minimized. In both applications, however, the losses should
be minimized.

Appendix 14 A

Local Electric Field

To estimate the local field, refer to Fig. 14.15 where a reference atom is
surrounded by an imaginary sphere of such an extent that beyond it the
material can be treated as a continuum. If the reference atom is removed
while the surroundings remain frozen, the total field at point A will stem

I I I U I I I
I1 1 i n 1 1 1

Figure 14.15 Model for calculation of internal field.
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from three sources:

• EI , the free charges due to the applied electric field E
• E2 , the field that arises from the free ends of the dipole chains that line the

cavity
• E3 , the field due to atoms or molecules in the near vicinity of the reference

molecule.

In highly symmetric crystals such as cubic crystals, it can be assumed
that the additional individual effects of the surrounding atoms mutually
cancel, or E3, = 0.

By applying Coulomb's law to the surface of the sphere, it can be shown
that260

E2=(k'-l) (14A.1)

The local field is thus given by

Eloc = E1 + E2 = E + 1 (k1 - 1 ) = ~ (k1 + 2) (14A.2)

When combined with Eq. (14.13), one obtains

EIOC = EI + E2 = E + -£- (14/1.3)
J£Q

Substituting the local field instead of the applied field in Eq. (14.29) yields

(14A.4)
at \ 3Mr£Q

It follows that the effect of polarization on the surroundings is to lower
the resonance frequency of the individual oscillator from a;0 to

UJQ = \ UJQ — - (14A.5)

Problems

14.1. (a) Show that Eq. (14.17) can be written as

/
iuCV = uoCV(} exp iiujt+7

\ ^ /
and that consequently Ichg = — u;K'Cvac V{) sin

260 See, e.g., N. Ashcroft and N. Mermin, Solid State Physics, Holt-Saunders, International Ed.,
1976, p. 534, or C. Kittel, Introduction to Solid State Physics, 6th ed, Wiley, New York, 1988.
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(b) The admittance of a circuit is defined as

where I0, V0, and 0 are defined in Fig. 14.5b. Here the first term
represents the loss and the second term the charging current. By
equating this equation with the charging and loss currents
derived in text, show that

Id

14.2. A parallel-plate capacitor with plates separated by 0.5cm and with a
surface area of 100cm2 is subjected to a potential difference of 1000 V
across the plates.

(a) Calculate its capacitance.

Answer. C = 18pF

(b) A glass plate with a relative dielectric constant of 5.6, which just
fills the space between the plates, is inserted between them.
Calculate the surface charge density on the glass plate.

Answer: 8.14uC/m2

(c) What voltage is required to store a charge of 5 x 10~'°C on a
capacitor with plates 20mm x 20mm and separated by
0.01 mm of (i) vacuum and (ii) BaTiO3?

(d) A material is placed in an electric field of 2000 V/m that causes a
polarization of 5 x 10-8 C/m2. What is the dielectric constant of
this material?

14.3. Show that either Eq. (14.30) or Eq. (14.31) is a solution to Eq. (14.29).

14.4. (a) When an external field is applied to an NaCl crystal, a 5 percent
expansion of the lattice occurs. Calculate the dipole moment for
each Na+-Cl- pair. The ionic radii of Na and Cl are 0.1 16 and
0.167nm, respectively.

Answer: 2.30 x 10 - 3 0 C-m
(b) Calculate the dipole moment of an NaCl molecule in a vapor if

the separation between the ions is 2.5 A. State all assumptions.

14.5 (a) Starting with Eq. (14.30) or (14.31), derive Eqs. (14.33) and
(14.34).

(b) Plot Eqs. (14.33) and (14.34) for various values of f.

14.6. (a) Discuss the possible polarization mechanisms for (a) Ar gas, (b)
LiF, (c) water, and (d) Si.
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(b) The dielectric constant of a soda-lime glass at very high fre-
quencies (>1014 Hz) was measured to be 2.3. At low frequency
(wl MHz) constant k' was 6.9. Explain.

(c) The static dielectric constants of the following solids are given:

NaCl 5.9 MgO 9.6
SiO2 3.8 BaTiO3 1600.0
Soda-lime glass 7.0

Give a brief explanation for the different values. Discuss the
various contributions to k'static. Would you expect the ranking
of these materials to change at a frequency of 1014 s - l ? Explain.

14.7. The relative dielectric constant of O2 gas at 0°C was measured to be
1.000523. Using this result, predict the dielectric constant of liquid
O2 if its density is 1.19 g/cm3. Compare your answer with the experi-
mentally determined value of 1.507. State all assumptions and discuss
implications of your results vis a vis the assumptions made.

Answer: 1.509

14.8. Using the ion positions for the tetragonal BaTiO3 unit cell shown in
Fig. 14.16, calculate the electric dipole moment per unit cell and the
saturation polarization for BaTiO3. Compare your answer with the
observed saturation polarization (that is, Ps = 0.26C/m2). Hint:
Use the Ba ions as a reference.

Answer. Ps = 0.16C/m2

Figure 14.16 (a) In the tetragonal unit cell of BaTiO3 the Ba ions occupy the unit cell
corners, while Ti is near the center of the cell. The oxygens are near the centers of the
faces. (b) Projection of the (100) face. Because the ions are displaced with respect to the
symmetric position, the center of negative charge does not coincide with the center of
positive charge, resulting in a net dipole moment per unit cell.
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Figure 14.17 Temperature dependence of relative dielectric constants of some gases.

14.9. The temperature variation of the static dielectric constant for some
gases is shown in Fig. 14.17.

(a) Why do the dielectric constants for CC14 and CH4 not vary with
T?

(b) What type of polarization occurs in CC14 and CH4?
(c) Why is k' greater for CC14 than for CH4?
(d) What type of polarization leads to the inverse temperature

dependence of k' shown in CH3C1, CH2C12, and CHC13?
(e) Why is the temperature variation k' greater for CH3C1 than for

CHC13?

14.10. (a) Derive the following expression for dipolar polarization.

where A_v is defined in Fig. 14.10, and z is the charge on the dipole.
Hint: //dip in this case is ze\s/2.261

261 This comes about because in the absence of a field the ions would be situated on average at
A(/2, and the dipole moment would then be 0. See footnote 247.
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(b) Where do you expect to have more ions at equilibrium in
Fig. 14.10? Explain in your own words why the unequal distribu-
tion of ions in the two sites would give rise to polarization.

(c) The static relative dielectric constant of a ceramic was measured
at 200°C and found to be 140. Estimate the jump distance.
State all necessary assumptions. Information you may find
useful: Molar volume = 10 cm3/mol; charge on cations is +4.

Answer: 0.0362 nm

14.11. (a) The electric dipole moment of water is 6.13 x 10 - 3 0 C-m.
Calculate the dipole moment of each O-H bond.

Answer: 5.15 x 10 - 3 0 C-m

(b) The dielectric constant of water was measured as a function of
temperature in such a way that the number of water molecules
was kept constant. The results are tabulated below. Do the
results behave according to Curie's law, i.e., as 1/7? Explain.

(c) From the results estimate the density of the water molecules in
the experiment.

Temp. (°C) 119 148 171 200
k' 1.004 1.0037 1.0035 1.0032

Answer: N = 1.735 x 1025 m-3

14.12. (a) Show that the frequency at which tan 0 for dipolar polarization is
maximized is given by

(1, II W'2

(b) The dielectric loss for thoria was measured as a function of
temperature and frequency, and the results are tabulated
below.262 The static and high-frequency permittivities have
been found from other measurements to be

k's = 19.2 and k'x = 16.2

Assuming ion jump polarization is responsible for the variation
in tan^, estimate both T0 and A//m [defined in Eq. (14.56)].

262 Data taken from PhD. Thesis of J. Wachtman, U. of Maryland, 1962. Quoted in Lectures
on the Electrical Properties of Materials, 4th ed., Solymar and Walsh, Oxford Science
Publications, 1989.
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w = 695 Hz

T, K

475
485
494
503
509
516
524
532
543
555

tan &

0.029
0.042
0.063
0.081
0.086
0.092
0.086
0.070
0.042
0.023

*• = 6950 Hz

T. K

498
518
543
568
581
590
604
612
621
631

tan o

0.010
0.025
0.055
0.086
0.086
0.073
0.055
0.043
0.036
0.026

14.13. (a) Derive Eq. (14.24).
(b) The following data263 were determined for a technical ceramic as

a function of temperature. The ceramic was in the form of a
parallel plate capacitor with thickness 1/2 cm and diameter
2.54cm.

(i) Plot k' versus logo; for all three temperatures on same
plot.

(ii) Plot k" versus logo; for all three temperatures on same
plot.

(iii) Plot tan0 versus logo; for all three temperatures on same
plot.

(iv) From your results, calculate the activation energy for the
relaxation process, and compare it to the activation energy
for dc conductivity. How do these activation energies
compare? What conclusions can you reach regarding the
basic atomic mechanisms responsible for conductivity and
those for polarization?

(v) What is the most probable polarization mechanism opera-
tive in this ceramic?

263 Problem adapted from L. L. Hench and J. K. West, Principles of Electronic Ceramics, Wiley-
Interscience, New York, 1990. The frequencies as reported in Hench and West are incorrect
at the low end, and have been corrected here.
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Frequency,
Hz

20 K
15 K
10 K
5 K
3 K
2K
1.5K
1.2K
1 K
500
340
260
200
100

72CC

Gac,
usr1

0.885

0.792
0.748

0.732

0.706
0.676
0.672
0.603
0.598
0.574

C,
pF

4.76

5.44
6.12

7.11

8.91
14.50
22.53
32.40
47.08
139.00

90oC

Gac,
nn-'

3.764

3.672
3.636

3.605

3.572
3.514

3.292

C,
pF

5.72

6.47
7.90

15.21

36.12
104.70

455.40

112°C

Gac,

î r1

6.827
6.781
6.732
6.678
6.628
6.557
6.534
6.480
6.405
6.058

C,
pF

6.36
6.83
8.04
12.85
21.80
39.40
62.20
91.10
118.70
353.40

14.14. Clearly stating all assumptions, calculate the power loss for a
parallel-plate capacitor (d — 0.02 cm, A — 1 cm2) made of MgAl2O4

subjected to
(a) A dc voltage of 120 V
(b) An ac signal of 120 V and a frequency of 60 Hz

Answer: 1.9 x 10-6 W
(c) An ac signal of 120 V and a frequency of 60 MHz

Answer: 0.05 W

14.15. (a) Explain why microwaves are very effective at rapidly and
efficiently heating water or water-containing substances.

(b) In the microwave, the food is heated from the inside out, whereas
in a regular oven the food is heated from the outside in. Explain.

Additional Reading

1. H. Frohlich, Theory of Dielectrics, 2d ed., Oxford Science Publications, 1958.
2. L. L. Hench and J. K. West, Principles of Electronic Ceramics, Wiley-Interscience,
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3. A. J. Moulson and J. H. Herbert, Electroceramics, Chapman & Hall, London, 1990.
4. N. Ashcroft and N. Mermin, Solid State Physics, Holt-Saunders International Ed.,

1976.
5. C. Kittel, Introduction to Solid State Physics, 6th ed, Wiley, New York, 1988.
6. J. C. Anderson, Dielectrics, Chapman & Hall, London, 1964.
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8. A. Von Hippel, ed.. Dielectric Materials and Applications, Wiley. New York. 1954.
9. R. C. Buchanan, ed.. Ceramic Materials for Electronics. Marcel Dekker. New York.

1986.
10. "Capacitors," Scientific American, July 1988, p. 86.



Chapter 15

Magnetic and Nonlinear Dielectric
Properties

Magnetic Atoms, such as Iron, keep
Unpaired Electrons in their middle shell,
Each one a spinning Magnet that would leap
The Bloch Walls whereat antiparallel
Domains converge. Diffuse Material
Becomes Magnetic when another Field
Aligns domains like Seaweed in a swell.
How nicely microscopic forces yield
In Units growing visible, the World we wield!

John Updike, Dance of the Solids

15.1 Introduction

The first magnetic material exploited by man as a navigational tool was a
ceramic — the natural mineral magnetite (Fe3O4) also known as lodestone.
It is thus somewhat paradoxical that it was as late as the mid-fifties of this
century that magnetic ceramics started making significant commercial
inroads. Since then magnetic ceramics have acquired an ever-increasing
share of world production and have largely surpassed metallic magnets in
tonnage. With the advent of the information communication revolution,
their use is expected to become even more ubiquitous.

In addition to dealing with magnetic ceramics, this chapter also deals
with dielectric ceramics, such as ferroelectrics, for which the dielectric
response is nonlinear. Ferroelectricity was first discovered in 1921 during
the investigation of anomalous behavior of Rochelle salt. A second ferro-
electric material was not found until 1935. The third major ferroelectric
material, BaTiO3, was reported in 1944. Ferroelectric ceramics possess

J. Updike, Midpoint and other Poems, A. Knopf, Inc., New York, New York, 1969. Reprinted
with permission.
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some fascinating properties that have been exploited in a number of appli-
ations such as high permittivity capacitors, displacement transducers and
actuators, infrared detectors, gas igniters, accelerometers, wave filters,
color filters, and optical switches, and the generation of sonic energy,
among others.

And while at first glance magnetic and nonlinear dielectric properties
may not appear to have much in common, they actually do. The term ferro-
electric264 was first used in analogy to ferromagnetism. It is thus instructive at
the outset to point out some of the similarities between the two phenomena.
In both cases, the properties that result can be traced to the presence of
permanent dipoles, magnetic in one and electric in the other, that respond
to externally applied fields. An exchange energy exists between the dipoles
that allows them to interact with one another in such a way as to cause
their spontaneous alignment, which in turn gives rise to nonlinear responses.
The orientation of all the dipoles with the applied field results in saturation of
the polarization, and the removal of the field results in a permanent or
residual polarization. The concept of domains is valid in both, and they
both respond similarly to changes in temperature.

This chapter is structured as follows: Section 15.2 introduces the basic
principles and relationships between various magnetic parameters. Section
15.3 deals with magnetism at the atomic level. In Sec. 15.4, the differences
and similarities between para-, ferro-, antiferro-, and ferrimagnetism are
discussed. Magnetic domains and hysteresis curves are dealt with in
Sec. 15.5, while Sec. 15.6 deals with magnetic ceramics. The remainder of
the chapter deals with the nonlinear dielectric response of ceramics in light
of both the discussion in Chap. 14 and magnetic properties. Hopefully, the
similarities will become clear, resulting in a deeper understanding of both
phenomena.

15.2 Basic Theory

A magnetic field intensity H is generated whenever electric charges are in
motion. The latter can be simply electrons flowing in a conductor or the
orbital motion and spins of electrons around nuclei and/or around them-
selves. For example, it can be shown that the magnetic field intensity at the
center of a circular loop of radius r through which a current i is flowing is

H = ( 1 5 - 1 )

264 As will become clear shortly, there is nothing "ferro" about ferroelectricity. It was so named
because of the similarities between it and ferromagnetism which was discovered first.
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Figure 15.1 (a) Magnetic field intensity resulting from passage of a current through a loop
of radius r. (b) Magnetic moment of current loop of area A.

and it is normal to the plane of the loop as shown in Fig. 15. la. The units of
magnetic field are amperes per meter: 1 A/m is the field strength produced by
a 1 -A current flowing through a loop of 1 m.

In vacuum, H will result in a magnetic field265 B given by

(15.2)

where the constant p,Q is the permeability of free space which is
4?r x 10~7 Wb/(A • m). B can be expressed in a number of equivalent units,
such as V-s/m2 = Wb/m2 = T(tesla) = 104 G(gauss) (see Table 15.1). A
magnetic induction of 1 T will generate a force of 1 N on a conductor carry-
ing a current of 1 A perpendicular to the direction of induction.

In the presence of a solid, B will be composed of two parts — that which
would be observed in the absence of the solid plus that due to the solid, or

15.3)

where M is the magnetization of the solid, defined as the net magnetic
moment //ion per unit volume,

M _ /fion (154)
V V "' ;

The origin of /xion is discussed in detail in the next section. The units of ^,ion

are ampere-square meters. A magnetic moment of 1 A • m2 experiences a
maximum torque of I N - m when oriented perpendicular to a magnetic
induction of 1 T.

265 The magnetic field B has been known by a variety of names: magnetic induction, magnetic
field strength, and magnetic flux density. Here B is referred to strictly as the magnetic field.
In many cases, H is also called the magnetic field, which, needless to say, can be quite confus-
ing. This came about historically, because in the cgs system p,0 was 1 and so B and H were
numerically identical. To avoid confusion, H is strictly referred to here as the magnetic field
intensity or magnetizing field.
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Table 15.1 Definitions, dimension of units, and symbols used in magnetism+

Symbol

H

M
B

Mo
P-
Mr

Xmag

Mion

/Av
Morb

t*B

Quantity

Magnetic field intensity
or magnetizing field
Magnetization
Magnetic field
Permeability of free space
Permeability of a solid
Relative permeability
Relative susceptibility
Net magnetic moment
of an atom or ion
Spin magnetic moment
Orbital magnetic moment
Bohr magneton

Value Units

A/m*

A m
Wb/m2 = T = V-s/m 2 = 104G

4 7 T X 1 0 " 7 Wb/ (A-m) = V - s / ( A - m )
Wb/ (A-m) = V . s / ( A - m )
Dimensionless
Dimensionless
A -nr = C -nr/s

A-nr
A-nr

9.274 xlO" 2 4 A - m 2

It is unfortunate that both ^o and ^iion have the same symbol, but they will be clearly marked at
all times to avoid confusion.

J 1 A/m = 0.01257 Oersted(Oe).

In paramagnetic and diamagnetic solids (see below), B is a linear func-
tion of H such that

B = (15.5)

where p, is the permeability of the solid ( not to be confused with (JL\on). For
ferro- and ferrimagnets, however, B and H are no longer linearly related,
but as discussed below, p, can vary rapidly with H.

The magnetic susceptibility is defined as

Xmag

The relative permeability p,r is given as

M
77 (15.6)

(15.7)

and it compares the permeability of a medium to that of vacuum. This
quantity is analogous to the relative dielectric constant k'. And ^/r and
Xmag are related by

Mr = X m a g + l (15.8)

Note that M and H have the same units, but in contradistinction to H.
which is generated by electric currents or permanent magnets outside the
material (which is why it is sometimes referred to as the magnetizing field).
M is generated from the uncompensated spins and angular momenta of
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electrons within the solid. In isotropic media, B, H, and M are vectors that
point in the same direction, whereas x and M are scalars.

Experimental Details: Measuring Magnetic Properties

Consider the experimental setup266 shown in Fig. \5.2a, which is composed
of four elements:

• A sample for which the magnetic properties are to be measured
• A sensitive balance from which the sample is suspended
• A permanent bar magnet with its north pole pointing upward
• A solenoid of n turns per meter, through which a current / flows so as

to produce a magnetic field intensity that is in the same direction as
that of the permanent magnet (i.e., with the north pole pointing up)

To measure the magnetic properties, a small cylinder of the solid is
suspended from a sensitive balance into the center of the solenoid
(Fig. 15.2a). According to Ampere's law, passing a current i through the sole-
noid will create an axial uniform magnetic field intensity H of strength

H = ni (15.9)

This magnetizing field will in turn induce the magnetic moments (what that
means is discussed later) in the material to align themselves either with or
against the applied field. It can be shown that the magnetic force on a
material with magnetization M and volume V is given by267

F= = mon^- = VM^- (15.10)
dz dz

where dB/dz is the gradient in magnetic field along the z axis due to the
permanent magnet. Combining Eq. (15.10) with Eq. (15.6), shows that

dB
F:=VXmgH — (15.11)

In other words, the force on the sample is directly proportional to its suscept-
ibility and the applied field. Since in this case dB/dz is negative, if the sample
is attracted to the permanent magnet, it implies xmag is positive and vice versa
(see Worked Example 15.1).

266 In reality, a shaped pole piece which creates a uniform magnetic field gradient dB/dz is used
instead of the solenoid. The setup shown in Fig. 15.2a is simpler and is used to clarify the
various concepts.

267 If the permanent magnet were not present, no force would be exerted on the sample, since to
experience a force, the magnetic field has to have a gradient (i.e., it cannot be uniform).
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Sensitive balance

Solenoid with &
wtums ^-^

\ (xj

Sample-

AW

Hysteresis curve

Figure 15.2 (cr) Schematic of arrangement by which the magnetic properties of a material
can be measured. The solenoid results in a uniform magnetic field and hence by itself will
not create a force on the sample. It is only the nonuniformity of the magnetic field (that is.
dB/dz ^ 0) of the permanent magnet that will create the force, (b) Typical response of a
diamagnet. (c) Typical response of a paramagnet. (d) Typical response of a ferromagnet.
Note that upon removal of the field a remnant magnetization remains.

There are four possible outcomes of such an experiment:

1. The sample is very weakly repelled by the permanent magnet, and the
weight of the sample will appear to diminish (Fig. 15.2b), implying
that Xmag is negative. Increasing H by increasing the current in the
solenoid will linearly increase the repulsive force. Such a material is
termed a diamagnetic material, and most ceramics fall in this category.

2. The sample is weakly attracted to the permanent magnet, with a force of
attraction that is proportional to H. The sample will appear to have
gained weight (Fig. 15.2c), implying a positive xmag. Such solids are
known as paramagnets. Repeating the experiment at different tempera-
tures quickly establishes that the force of attraction, or xmag, decreases
with increasing T. When the field intensity is removed, the sample will
return to its original weight; in other words, all the changes that
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occurred in the presence of the field are completely reversible. The same
is true for diamagnetic materials.

3. The sample is strongly attracted to the permanent magnet (Fig. 15.2d).
The shape of the curve obtained, however, will depend on the sample's
history. If one starts with a virgin sample, i.e., one that was never
exposed to a field before, the weight gain will follow the line Oxy,
shown in Fig. 15.2d. At low H, the sample is initially weakly attracted,
but as H is further increased, the rate of weight increase will be quite
rapid. At high magnetizing fields, the force will appear to be saturated
and further increases in H will have a minimal effect (Fig. 15.2d). The
plateau is known as the saturation magnetization.

Furthermore, as H is reduced, the sample's response is non-
reversible in that it follows the line yz. When H = 0, the sample will
appear to have permanently gained weight! In other words, a permanent
magnet with a remnant magnetization Mr has been created. Upon further
cycling, the sample's response will follow the loop yztu. So-called hyster-
esis loops represent energy losses and are typical of all ferromagnetic
materials. The reason for their behavior is described more thoroughly
below. Such behavior is termed ferromagnetic or ferrimagnetic.

Repeating the same experiment at increasing temperatures would
result in essentially the same behavior except that the response of the
magnet would weaken and Mr would also diminish. At a critical
temperature Tc, the material will totally lose its ferromagnetism and
will behave as a paramagnet instead.

4. An antiferromagnetic material behaves similarly to a paramagnetic one,
i.e., it is weakly attracted. However, to differentiate between the two, the
experiment would have to be carried out as a function of temperature:
The susceptibility of an antiferromagnetic material will appear to go
through a maximum as the temperature is lowered (Fig. 15.5b); in
contrast to that of a paramagnet which will continually increase with
decreasing temperature (Fig. 15.3c).

Before this plethora of phenomena can be satisfactorily explained, it is
imperative to understand what occurs at the atomic level that gives rise to
magnetism, which is the topic of section 15.3.

WORKED EXAMPLE 15.1

A chunk of a magnetic ceramic weighing 10 g is attached to the sensitive balance
shown in Fig. 15.2a and is suspended in the center of a toroidal solenoid with 10
turns per centimeter. A current of 9 A is passed through the coils. The magnetic
field gradient due to the permanent magnet was measured to be 100 G/cm. When
the current was turned on, such that H was in the same direction as the
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permanent magnet, the weight of the sample was found to increase to 10.00005 g.
The density of the solid is 5g/cm3. (a) Calculate the susceptibility of this
material, (b) Calculate the magnetization M of the solid, (c) What conclusions
can be inferred concerning its magnetic properties?

Answer

(a) The force in the r direction, H, dB/d:. and V in SI units are. respectively.

F- = A W - g = 0.00005 x 10~3 x 9.8 = -4.9 x 10~7N
9 x 10

H = ni = ——- = 9000 A/m

dB -100 x lO- 4

— = —^ =-1.0 T/m

V- —_ _ :

Substituting these values in Eq. (15.11) and solving for \mae. one obtains

4.9 x IP'7

Xmag 2 x ,0-6 x 9000 X 1 ~ / X 1 U

(b) M = XmagH = 2.7 x 10 -5 x 9000 = 0.245 A/m. Note that in this case,
because Xmag is small with very little loss in accuracy.

B = ^(H + M) *s MM (15 .12)

(c) Given that the sample was attracted to the magnet, it must be paramagnetic,
ferromagnetic, or antiferromagnetic. However, given the small value of Xmag.
ferromagnetism can be safely eliminated, and the material must either be
paramagnetic or antiferromagnetic. To narrow the possibilities further, the
measurement would have to be repeated as a function of temperature.

15.3 Microscopic Theory

For a solid to interact with a magnetic field intensity, it must possess a net
magnetic moment which, as discussed momentarily, is related to the angular
momentum of the electrons, as a result of either their revolution around the
nucleus and/or their revolution around themselves. The former gives rise to
an orbital angular moment /xorb, whereas the latter is the spin angular moment
Hs. The sum of these two contributions is the total angular moment of an
atom or ion, /zion.

15.3.1 Orbital Magnetic Moment

From elementary magnetism a current i going around in a loop of area A' will
produce an orbital magnetic moment ^orb given by

iA1 (15.13)
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that points normal to the plane of the loop (Fig. 15.1b). A single electron
rotating with an angular frequency u;0 gives rise to a current

/ = ?* (15.14)
27T

Assuming the electron moves in a circle of radius r, then combining
Eqs. (15.13) and (15.14), one obtains

u K- 15.15)P-orb — <•> V ' ->• ' - ' ;

But since meLj0r
2 is nothing but the orbital angular momentum II0 of the

electron, it follows that

/^orb = ;r— (15.16)
^'rte

where me is the rest mass of the electron. This relationship clearly indicates
that it is the angular momentum that gives rise to magnetic moments.

Equation (15.16) can be slightly recast in units of h/(2n] to read

_ _ _ _
Porb — A , — A ' ( I J . l / )

where the integer /(= 2^I\.Q/h] is the orbital angular momentum quantum
number (see Chap. 2). Note that this result is consistent with quantum
theory predictions that the angular momentum has to be an integral multiple
of/h/(27r).

The ratio eh/4^me occurs quite frequently in magnetism and has a
numerical value of 9.27 x 10 - 2 4A-m2 . This value is known as the Bohr
magneton p,B, and, as discussed below, it is the value of the orbital angular
momentum of a single electron spinning around the Bohr atom. In terms
of fi,B, Eq. (15.17) can be succinctly recast as:

^orb=/V (15.18)

In deriving Eq. (15.18), it was assumed that the angular momentum was
an integral multiple of /;quantum mechanically, however, it can be shown268

(not very easily, one should add) that the relationship is more complicated.
The more accurate expression given here without proof is

Morb = (15.19)

268 See, e.g., R. P. Feynman, R. B. Leighton, and M. Sands, The Feynman Lectures on Physics,
vol. 2, Chap. 34, Addison-Wesley, Reading, Massachusetts, 1964.
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15.3.2 Spin Magnetic Moment

This moment arises from the spin of the electrons around themselves.
Quantitatively, the spin magnetic moment fjts is given by

/Av = (15.20)
me

where IIs is the spin angular momentum. Given that IIs has to be an integer
multiple of /z/27r, it can be shown that

^s = 2^Bs (15.21)

where 5 is the spin quantum number. Since s = ±1/2, it follows that the ns of
an electron is one Bohr magneton. It is important to note, however, that
Eq. (15.21) is not quite accurate. Quantum mechanically, it can be shown
that the correct relationship — and the one that should be used — is

fjLs = 2nB^/s(s+l) (15.22)

15.3.3 Total Magnetic Moment of a Polyelectronic Atom or Ion

The total angular moment of an ion, with one unpaired electron, /^ ionA. is
simply

^ o n , = M , + Morb=^ + — (15.23)

The suffix 1 was added to emphasize that this expression is only valid for one
electron. Combining terms and introducing a factor g, known as the Lande
splitting factor, one arrives at

A*ion.l = Av + Morb = &\j ]ntot (15.24)\£me /

where IItot is the total angular momentum. If only the spin is contributing to
A^ion.i' tnen S — 2- Conversely, if only the orbital momentum is contributing
to the total, then g — 1. Thus in general, g lies between 1 and 2 depending on
the relative contribution of//s and ^orb to /^ion.i-

Equations (15.23) and (15.24) are only valid for ions that possess one
electron. If an atom or ion has more than one electron the situation is
more complicated. For one, it can be shown (App. 15A) that the orbital
magnetic momenta of the electrons add vectorially such that

L = ^m, (15.25)

where m/ is the orbital magnetic quantum number (see Chap. 2). Similarly,
the spins add such that the total spin angular momentum of the ion is
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given by

(15.26)

where s — ±1/2.
The total angular momentum J of the atom is then simply the vector sum

of the two noninteracting momenta L and S such that

This is known as Russell—Saunders coupling, and it will not be discussed
any further because, for the most part, the orbital angular momentum of
the transition-metal cations of the 3d series that are responsible for most
of the magnetic properties exhibited by ceramic materials is totally quenched,
that is, L = 0. Needless to say, this greatly simplifies the problem because
now J = S and //,ion is given by

Thus the total magnetic moment of an ion (provided that the angular
momentum is quenched) is related to the sum of the individual contributions
of the unpaired electrons. Needless to say, to predict the magnetic moment of
an atom or ion, one needs to know how many electrons are unpaired, or
which quantum states are occupied.269 The following examples make that
point clear.

WORKED EXAMPLE 15.2

Calculate the spin and total magnetic moment of an isolated Mn2+ cation,
assuming that the orbital angular momentum is quenched, that is, L = 0,

Answer

Mn2+ has five d electrons (see Table 15.2) that occupy the following orbitals:

- 2 2 1 0 - 1 - 2
1/2 -1/2 -1/2 -1/2 -1/2 -1/2
i

269 A set of empirical rules known as Hund's rules determine the occupancy of the available elec-
tronic state within an atom. Very briefly stated, the electrons will occupy states with all spins
parallel within a shell as far as possible. In other words, they will only pair up if absolutely
necessary. They will also start by occupying the state with the largest orbital momentum,
followed by the next largest, etc. The splitting of the d orbitals due to the presence of the
ligands (see Chap. 16) further complicates the problem. Suffice it to say here that if the split-
ting is large, the electrons will violate Hund's rule and pair up, rather than populate the
higher d orbitals.
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Table 15.2 Magnetic moments of isolated cations of 3d transition series

Cations Electronic configuration Calculated moments Classical

Sc3+.Ti4+ 3d0 |||

VMi- 3</< f| | |

V- tf |t|t| |

V~Cr" 3rf> I f l t l f l

Mn-Cr- 3^ | f | t | f | t

Mn- Fe- 3</> | f | t | t l t

Fe- 3^ l i t l t l t l f

Co J* 3rf lltl^tl 1 1 t

Ni- 3d8 litliflltlt

Cu- 3^ |tt|tt|it|t1

0.00 0

1.73 1

2.83 2

3.87 3

4.90 4

m 592 5

|f | 4.90 4

[ f | 3.87 3

"f 2.83 2

|t| !-73 !

Cu-,Zn- 3rf'u lltlltllflUIUI 0.00 0

Measured
moments in /*#

0.0

1.8

2.8

3.8

4.9

5.9

5.4

4.8

3.2

1.9

0.0

It follows that S = 53 m.T = 5 x 1/2 = 2.5. Since the angular momentum is
quenched, J = S, and according to Eq. (15.27), the total magnetic moment for
the ion is

which is in excellent agreement with the measured value of 5.9j/g (see
Table 5.2).

WORKED EXAMPLE 15.3

Show that the angular momentum of any atom or ion with a closed shell config-
uration is zero.

Answer

A good example is Cu~. It has 10 d electrons arranged as follows:

m, 2 1 0 - 1 - 2 2 1 0 -1 -2
I H , 1 2 1 2 1 2 1 2 1 2 - 1 2 - 1 2 - 1 2 - 1 2 - 1 2
s I I ! i ! T T ? T

Thus L = 53'"/ = 0 and S = 53'»., = 0, and consequently. 7 = 0.
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Two important conclusions can be drawn from these worked examples:

1. When an electronic shell is completely filled, all the electrons are paired,
their magnetic moments cancel, and consequently, their net magnetic
moment vanishes. Hence in dealing with magnetism, only partially
filled orbitals need to be considered. Said otherwise, the existence of
unpaired electrons is a necessary condition for magnetism to exist.

2. The fact that the calculated magnetic moment assuming only spin orbital
momentum for the isolated cations of the 3d transition series compares
favorably with the experimentally determined values (see Table 15.2)
implies that the orbital angular momentum for these ions is indeed
quenched.

15.4 Para-, Ferro-, Antiferro-, and Ferrimagnetism

As noted above, the vast majority of ceramics are diamagnetic with negative
susceptibilities (?al0 -6). The effect is thus small and of very little practical
significance, and will not be discussed further. Instead, in the following
sections, the emphasis will be on by far the more useful and technologically
important classes of magnetic ceramics, namely, the ferro- and ferrimagnetic
ones. Before one considers these, however, it is important to understand the
behavior of another class of materials, namely, paramagnetic materials, not
because of their practical importance (very little) but because they represent
an excellent model system for understanding the other, more complex
phenomena.

15.4.1 Paramagnetism

Paramagnetic solids are those in which the atoms have a permanent magnetic
dipole (i.e., unpaired electrons). In the absence of a magnetizing field, the
magnetic moments of the electrons are randomly distributed, and the net
magnetic moment per unit volume is zero (Fig. 15.3a). A magnetizing field
tends to orient these moments in the direction of the field such that a net
magnetic moment in the same sense as the applied field develops
(Fig. 15.3b). The susceptibilities are thus positive but small, usually in the
range of 10-3 to 10-6. This tendency for order is naturally counteracted, as
always, by thermal motion. It follows that the susceptibility decreases with
increasing temperature, and the relationship between the two is given by

Xmag — 'j, (15.28)

where C is a constant known as the Curie constant. This 1/T dependence,
shown schematically in Fig. 15.3c, is known as Curie's law; the remainder
of this section is devoted to understanding the origin of this dependence.
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Temperature (K)

(O
Figure 15.3 (a) In the absence of an applied magnetic field intensity, the magnetic
moments of the individual atoms are pointing in random directions, resulting is a net
magnetic moment of zero for the solid, (b) The application of a magnetizing field tends
to align the moments in the direction of the field, resulting in a net moment, (c) Variation
of Xmag with temperature for a paramagnetic solid.

The situation is almost identical to that worked out in Chap. 14 for
dipolar polarization, and the problem can be tackled by following a
derivation nearly identical to the derivation of Eq. (14.51). To simplify the
problem, it is assumed here that the ions in the solid possess a total magnetic
moment /zion given by Eq. (15.27) (i.e., it is assumed that the orbital angular
momentum is quenched). Furthermore, it is assumed that these moments can
align themselves either parallel or antiparallel to the applied field B. The
magnetic energy is thus ±p,-lonB, with the plus sign corresponding to the
case where the electron is aligned against the field and the minus sign when
it is aligned with the field. For p,ionB/(kT) <c 1, it can be shown that
(Prob. 15.2fl) the net magnetization is given by270

M = ( N } -
kT

15.29)

where N is total number of magnetic atoms or ions per unit volume, that is,
N = NI + N2. Here N1 and N2 represent, respectively, the number of elec-
trons per unit volume aligned with and against the applied field. In other
words, the net magnetization is proportional to the net number of electrons
aligned with the field, that is, N{ — N2. For paramagnetic solids, one can
further assume that B % fj^H [Eq. (15.12)] which, when combined with

The assumption that /j^onB/(kT) -C 1 is for the most part an excellent one. See Prob. 15.3.
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Eqs. (15.29) and (15.6), results in

Xmag ~ (15.30)

which is the sought-after result, since it predicts that xmag should vary as 1 / T.
It should be pointed out that Eq. (15.30) is slightly incorrect because the

electrons were assumed to be aligned either with or opposite to the applied
field. In reality, the electron momenta may have any direction in between,
and an angular dependence should be accounted for in deriving Eq. (15.30).
This problem was tackled by Langevin, with the final result being

Xmag T
(15.31'

which, but for a factor of 3 in the denominator (which comes about from
averaging the moments over all angles), is identical to Eq. (15.30).

15.4.2 Ferromagnetism

In a certain class of magnetic materials, namely, ferro- and ferrimagnets,
the temperature dependence of Xmag obeys not Curie's law, but rather the
modified version

(15.32)

known as the Curie-Weiss law, a plot of which is shown in Fig. 15.4a. Above
a critical temperature Tc, known as the Curie temperature, the material
behaves paramagnetically, whereas below Tc spontaneous magnetization
sets in. Furthermore, the extent of that spontaneous magnetization is a
function of temperature and reaches a maximum at absolute zero, as
shown in Fig. 15.4b.

Qualitatively, this is explained as follows: At high temperatures, thermal
disorder rules and the solid is paramagnetic. As the temperature is lowered,
however, a magnetic interaction energy comes into play that tends to align the
magnetic moments parallel to one another and produce a macroscopic
magnetic moment with maximum ordering occurring at OK. The tem-
perature at which this ordering appears is called the Curie temperature,
with high Curie temperatures corresponding to strong interactions and
vice versa.271

271 The situation is quite analogous to melting. The stronger the bond between the atoms the
higher the melting points. The Curie temperature can be considered to be the temperature
at which the magnetic ordering "melts."
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Figure 15.4 (a) Temperature dependence of Xmag for a ferromagnetic solid that undergoes
a transition at the Curie temperature Tc. (b) Spontaneous magnetization (H = 0) of a
ferromagnetic crystal as a function of temperature.

Given that ferromagnetism exists up to a finite temperature above
absolute zero and then disappears, one is forced to postulate that in these
materials:

• Some of the spins on the atoms must be unpaired.
• There is some interaction between neighboring electronic spins that tends

to align them and keep them aligned even in the absence of a field.
• This ordering energy, at a sufficiently high temperature, is no longer

capable of counteracting the thermal disordering effect, at which point
the material loses its ability to spontaneously magnetize.

Before one proceeds much further, it should be emphasized that the
nature of this interaction energy, also known as the exchange energy, is
nonmagnetic and originates from quantum mechanical electrostatic inter-
actions between neighboring atoms. Suffice it to say here that ferromagnet-
ism is caused by a strong internal or local magnetic field aligning the
magnetic moments on individual ions.

To understand the temperature dependence of ferromagnetic materials,
one needs to find an expression for the local field Bloc which an electron inside
a ferromagnetic material placed in a magnetizing field H experiences. This is
a nontrivial problem and only the end result, namely.

Bloc = + AM) 15.33)

is given here; A is the known as the mean field constant or coupling coefficient
and is a measure of the strength of the interaction between neighboring
moments — as noted above, the larger A. the stronger the interaction.
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Replacing B in Eq. (15.29) by Bloc one obtains

"^ - (1534)v1-'--' vlon ion i y

By further noting that Msat = Af/iion (see below) and defining

Equation (15.34) can be recast as

M UjonUo/-/ M TC , , r ^ s ,— r"iont~u . ^ /1 c T^\
nf — ; T, r ^u.ju;
Msat ^^/ A»sat T

which can be further simplified to

(15.37)

Finally, since by definition M/H — xmag, one obtains the final sought-after
temperature dependence of Xmag' namely, the Curie- Weiss law:

Xmag

Note that if one neglects the interaction between neighbors, i.e., if A, and
consequently TC, is assumed to be zero, then Eq. (15.28) is recovered, as
one would expect. It is thus easy to appreciate at this point that it is the
interaction of neighboring electrons that gives rise to TC and ferromagnetism.

Also, note that Eq. (15.38) only applies above Tc. Below Tc the material
behaves quite differently in that it will spontaneously (i.e., even when H = 0)
magnetize. The behavior below Tc is shown schematically in Fig. 15.4b,
where M/Msat is plotted versus T/TC- As T approaches absolute zero, M
approaches Msat.

The physics of the situation can be summarized as follows: When the
thermal motions are small enough, the coupling between the atomic magnets
causes them to all line up parallel to one another, even in the absence of an
externally applied field, which gives rise to a permanently magnetized
material.

To recap: By invoking that neighboring electrons interact in such a way
as to keep their spins pointing all in the same direction and in the same direc-
tion as the applied magnetizing field, it is possible to, at least qualitatively.
explain the general response of ferromagnetic materials to temperature and
magnetizing fields.

15.4.3 Antiferromagnetism and Ferrimagnetism

In some materials, the coupling coefficient is negative, which implies that the
magnetic moments on adjacent ions are antiparallel, as shown schematically
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in Fig. \5.5a. If these moments are equal, they cancel and the net moment is
zero — such solids are known as antiferromagnets. According to Eq. (15.35).
a negative A gives rise to a negative Tc, and the resulting susceptibility versus
temperature curve is shown in Fig. 15.5b, where maximum susceptibility is
observed at temperature TN, known as the Neel temperature. Above TN.
the Curie-Weiss law holds again, except that it is modified to read

r - (15.39)

which takes into account the fact that TC is negative.
Antiferromagnetism has been established in a number of compounds.

primarily the fluorides and oxides of Mn, Fe, and Co such as MnF2.

Figure 15.5 (a) In antiferromagnetic materials, nearest-neighbor moments are aligned
antiparallel to one another, and the net moment is zero, (b) Temperature dependence of
the susceptibility of an antiferromagnetic material. Maximum in Xmag occurs at the Neel
temperature 7*,v. (c) Antiparallel magnetic spins in MnO. (d) Unequal magnetic moments
on adjacent sites give rise to a net magnetic moment. This is termed ferrimagnetism.
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MnO, FeF2, CoF2, NiO, CoO, FeO, MnS, MnSe, and Cr2O3. The type of
ordering that occurs depends on the crystal structure of the compound in
question. For instance, it is now well established that the spins in NiO and
MnO are arranged as shown in Fig. 15.5c; where the spins in a single (111)
plane are parallel but adjacent (111) planes are antiparallel.

A variation of antiferromagnetism is seen in the situation depicted in
Fig. 15.5d, where the coupling is negative but the adjacent moments are
unequal, which implies that they do not cancel, and a net moment equal to
the difference between the two submoments results. Such materials are
termed ferrimagnets and, for reasons discussed later, include all magnetic
ceramics. Interestingly enough, the temperature dependence of their proper-
ties is the same as that for ferromagnets.

15.5 Magnetic Domains and the Hysteresis Curve

15.5.1 Magnetic Domains

In the foregoing discussion of ferromagnetism, it was concluded that the
material behaves parmagnetically above some temperature TC, with M
being proportional to H (or B), but that below a critical temperature spon-
taneous magnetization occurs. However, in the experiment described at the
beginning of this chapter, it was explicitly stated that a virgin slab of
magnetic material had a zero net magnetization. At face value, these two
statements appear to contradict each other. The way out of this apparent
dilemma is to appreciate that spontaneous magnetization occurs only
within small regions (« 10-5m) within a solid. These are called magnetic
domains, defined as regions where all the spins are pointing in the same direc-
tion. As discussed in greater detail below, these domains form in order to
reduce the overall energy of the system and are separated from one another
by domain or Bloch walls, which are high-energy areas,272 defined as a transi-
tion layer that separates adjacent regions magnetized in different directions
(Fig. 15.6d). The presence of the domain walls and their mobility, both
reversibly and irreversibly, are directly responsible for the B-H hysteresis
loops discussed below.

The reason magnetic domains form is best understood by referring to
Fig. 15.6a to c. The single domain configuration (Fig. 15.6a) is a high-
energy configuration because the magnetic field has to exit the crystal and
close back on itself. By forming domains that close on themselves, as
shown in Fig. 15.5b and c, the net macroscopic field is zero and the system
has a lower energy. However, this reduction in energy is partially offset by

272 The situation is not unlike grain boundaries in a polycrystalline material, with the important
distinction that whereas a polycrystalline solid will always attempt to eliminate these areas of
excess energy, in a magnetic material an equilibrium is established.
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the creation of domain walls. For instance, the structure of a 180° domain
wall is shown schematically in Fig. 15.6d. Some of the energy is also offset
by the anisotropy energy, which is connected with the energy difference
that arises when the crystal is magnetized in different directions. As noted
below, the energy to magnetize a solid is a function of crystallographic
direction — there are "easy" and "difficult" directions.

15.5.2 Hysteresis Loops

The relationship between the existence of domains and hysteresis is shown in
Fig. 15.7. The dependence of M on H for a virgin sample is shown in
Fig. 15.70. What occurs at the microscopic level is depicted in Fig. 15.7b

Figure 15.6 Schematic showing how formation of domains lowers the energy of the
system, (a) No domains, (b) Two domains separated by a 180 wall, (c) The 90 domains
are called closure domains because they result in the flux lines being completely enclosed
within the solid. Closure domains are much more common in cubic crystals than in hexa-
gonal ones because of the isotropy of the former, (d) Alignment of individual magnetic
dipoles within a 180o: wall.
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Figure 15.7 Relationship between domains and hysteresis, (a) Typical hysteresis loop for
a ferromagnet. (b) For a virgin sample, H = 0 and M = 0 due to closure domains, (c) With
increasing H, the shaded domain which was favorably oriented to H grows by the
irreversible movement of domain walls up to point X. (d) Beyond point X, magnetization
occurs only by the rotation of the moments, (e) Upon removal of the field, the irreversibil-
ity of the domain wall movement results in a remnant magnetization; i.e., the solid is now a
permanent magnet.

to e. Initially the virgin sample is not magnetized, because the moments of the
various domains cancel (Fig. 15.7b). The change in M very near the origin
represents magnetization by reversible Bloch wall displacements,273 and
the tangent OI to this initial permeability is called the initial relative perme-
ability Hi- As H is increased, the domains in which the moments are favorably
oriented with the applied field grow at the expense of those that are not.
(Compare shaded areas in Fig. 15.7b and c.) This occurs by the irreversible
movement of the domain walls, up to a certain point (point X in
Fig. 15.7a), beyond which wall movement more or less ceases. Further
magnetization occurs by the rotation of the moments within the domains
that are not aligned with the field, as shown in Fig. 15.7d. At very high H,
all the domains will have rotated, and magnetization is said to have saturated
at Ms. This saturation magnetization is simply the product of the magnetic
moment on each ion /uion and the total number of atoms N per unit

273 At low fields, the movement of the domain walls is very much like an elastic band (or a pinned
dislocation line) that stretches reversibly. If the field is removed at that point, the "unloading"
curve is coincident with the loading curve and the process is completely reversible.
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Figure 15.8 Comparison of hysteresis loops for (a) hard and (b) soft magnets. Note high
Hc values for hard magnets.

volume, or

(15.40)

Upon the removal of H, M does not follow the original curve, but instead
follows the line Ms — Mr and intersects the Y axis at the point labeled Mr,
which is known as the remnant magnetization. Note that upon removal of
the magnetizing field, the size of the domains and their orientation do not
change. The difference between Ms and Mr simply reflects the recovery of
the rotational component of the domains.

In order to completely rid the material of its remnant magnetization, the
polarity of the magnetizing field has to be reversed. The value of H at which
M goes to zero is called the coercive magnetic field intensity Hc (Fig. 15.8a).

Based on the shape of their hysteresis loops, magnetic materials have
been classified as either soft or hard. The B-H hysteresis loops for each are
compared in Fig. 15.8. Broadly speaking, soft magnetic materials have
coercive fields below about 1 kA/m, whereas hard magnetic materials have
Hc above about 10 kA/m. In addition to this classification, the shape of
the hysteresis curve is also used to estimate the magnetic energy stored per
unit volume in a permanent magnet. This value is given by the product
(BH)max (Fig. 15.8a).

This difference in behavior between the two types of materials is related
once again to the presence of domains and the ease or difficulty with which
they can be induced to migrate and/or demagnetize. In the discussion up
to this point, M was treated as if it were a unique function of H, but the
actual situation is more complicated; M depends on the relative orientation
of the various crystallographic planes to the direction of the applied field
intensity. In other words, it exhibits orientation anisotropy. Also M depends
on the shape of the crystal being magnetized; i.e., it exhibits shape anisotropy.
This shape factor is quite important; e.g., it is much easier to magnetize a
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Table 15.3 Saturation magnetostriction constants of
some polycrystalline ferrites

Composition A,,, (x 106)

Fe3O4

MnFe2O4

CoFe2O4

NiFe2O4

MgFe2O4

+40
— 5

-110
-26
-6

thin, long needle if its long axis is aligned parallel to the magnetizing field
than if it is perpendicular to it.

Orientational anisotropy is related to magnetostriction. When a material
is magnetized, it changes shape, which in turn introduces elastic strains in the
material. And since elastic properties are tensors, it follows that the penalty
for magnetizing crystals in different crystallographic directions is not equiva-
lent. Some crystallographic directions are easier to magnetize than others.
One measure of this effect is the magnetostriction constant Xm, defined as
the strain induced by a saturating field which is positive if the field causes
an increase in dimension in the field direction. Table 15.3 lists some values
for \m for a number of polycrystalline ferrites. The values listed represent
the average of single-crystal values.

The details of these intriguing phenomena are beyond the scope of this
book, but the interested reader is referred to Additional Reading for further
details. What is important here is to appreciate how these phenomena can
and have been exploited to increase magnetic energy density by an order
of magnitude for every decade since the turn of the last century!

15.6 Magnetic Ceramics and their Applications

As noted above, soft magnetic materials are characterized by large saturation
magnetizations at low H values and low coercive fields and are typically used
in applications where rapid reversal of the magnetization is required, such as
electromagnets, transformer cores and relays. The major advantage of soft
magnetic ceramics, compared to their metal counterparts, is the fact that
they are electrical insulators. This property is fundamental in keeping eddy
current losses low and is one of the main reasons why the major applications
of magnetic ceramics have been in areas where such losses have to be
minimized. Hard magnets, however, are characterized by high saturation
magnetization as well as high coercive forces; i.e., they are not easily demag-
netized. Hard magnetic solids are thus used to make permanent magnets and
recording media.
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Table 15.4 Magnetic properties of a number of magnetic ceramics. Magnetic moments
are given in Bohr magnetons per formula unit at 0 K

Material

Fe+

Spinel ferrites [AO • B2O3]
Zn2+[Fe3+Fe3+]04

Fe3+[Cu2+Fe3+]04

Fe3+[Ni2+Fe3"]O4

Fe3+[Co2+Fe3+]04

Fe3+[Fe2+Fe3+]04

Fe3+[Mn2+Fe3+]04

Fe3+[Lio.5Fe,.5]04

Mgo.]Feo.9[Mgo9Fe,.,]O4

Hexagonal ferrites
BaO : 6Fe2O3

SrO : 6Fe2O3

Y2O3 : 5Fe2O3

BaO : 9Fe2O3

Garnets
YIG{Y3}[Fe2]Fe3012

{Gd3}[Fe2]Fe3012

Binary oxides
EuO
CrO2

Curie B^ (T
temp.. K (a RT

1043

728
858

1020
858
573
943
713

723
723
560
718

560
560

69
386

2.14

0.20
0.34
0.50
0.60
0.51

0.14

0.48
0.48
0.16
0.65

0.16

0.49

) Calculated momentsf

T site O site Net

2.14

0 5-5 0
-5s 1+5 1
-5* 2 + 5 2
-5* 3 + 5 3
-5$ 4 + 5 4
-5s 5 + 5 5
-5* 5 + 2.5 2.5
0-4.5 0 + 5.5 1

5
16

Experi-
mental

2.22

(Antiferro.)
1.30
2.40
3.70-3.90
4.10
4.60-5.0
2.60
1.10

1.10
1.10
5.00

4.96
15.20

6.80
2.00

For the sake of simplicity, the moments were calculated by using the classical expression
[Eq. (15.21)] rather than the more accurate quantum mechanical result given in Eq. (15.27).
Fe is included for comparison purposes.
The minus sign denotes an antiferromagnetic coupling.

Magnetic ceramics are further classified according to their crystal struc-
tures into spinels, garnets, and hexagonal ferrites. Typical compositions and
some of their magnetic properties are listed in Table 15.4.

15.6.1 Spinels or Cubic Ferrites

Spinels were first encountered in Chap. 3 (Fig. 3.10), and their structure was
described as having an oxygen ion sublattice arranged in a cubic close-
packed arrangement with the cations occupying various combinations of
the octahedral and tetrahedral sites. The cubic unit cell is large, comprising
8 formula units and containing 32 O and 64 T sites (only one-eighth of
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Figure 15.9 Spinel unit cell showing antiferromagnetic coupling between A (T-sites) and
B (O-sites) sublattices.

that unit cell is shown in Fig. 15.9). In normal spinels, for which the general
chemical formula is A2+B3+O4 (or equivalently AO • B2O3), the divalent
cations A are located on the tetrahedral (or T) sites and the trivalent cations
B on the octahedral (or O) sites. In inverse spinels, the A cations and one-half
the B cations occupy the O sites, with the remaining B cations occupying the
T sites.274

As noted in Chap. 6, the spinel structure is very amenable to large
substitutional possibilities which has led to considerable technological
exploitation of ferrites. The simplest magnetic oxide, magnetite,275 or
Fe3O4, is a naturally occurring ferrite that has been used for hundreds of
years as a lodestone for navigational purposes. There are quite a number
of other possible compositions with the general formula MeO • Fe2O3,
some of which are listed in Table 15.4. The Me ion represents divalent ions
such as Mn2+, Co2+, Ni2+, and Cu2+ or a combination of ions with an
average valence of +2. In general, the divalent ions prefer the octahedral
sites, and thus most ferrites form inverse spinels. However, Zn and Cd ions
prefer the tetrahedral sites, forming normal spinels.

In spinels the interaction between the A and B sublattices is almost
always antiferromagnetic276 (i.e., they have opposite spins), as shown in
Fig. 15.9. The spin ordering is of the "superexchange" type, so called because
it occurs via the agency of the intervening oxygen ions. The net magnetic
moment will depend on the electronic configuration of the cations that
populate each type of site. The following examples clarify this concept.

274 It is the crystal field energy or ligand field splitting (see Chap. 16) that stabilizes the inverse
spinel.

275 Its structural relationship to spinel becomes apparent when its formula is rewritten as
FeO.Fe2O3.

276 There are exceptions, however. (See Worked Example 15.4c.)



532 Fundamentals of Ceramics

WORKED EXAMPLE 15.4

(a) Calculate the net magnetic moment277 of the inverse spinel Fe3O4. Also
calculate its saturation magnetization and magnetic fields, given that the lattice
parameter of the unit cell is 837 pm.
(b) The addition of nonmagnetic ZnO to a spinel ferrite such as Ni ferrite leads to
an increase in the saturation magnetization. Explain.
(c) Repeat part (a) for the normal spinel ZnO • Fe2O3. It is worth noting that in
this spinel the octahedral or O-sites are coupled antiferromagnetically.

Answer

(a) Fe3O4 can be written as FeO- Fe2O3 or Fe3+[Fe2+Fe3+]O4. Because it is an
inverse spinel, one-half the Fe3+ cations occupy the T sites, and the other half the
O sites. These cations interact antiferromagnetically which implies that their net
moment is zero. The Fe2+ cations occupy the remaining O sites, and their net
magnetic moment is (see Table 15.2) 4.9nB. The calculated net moment is thus
4.9//s, which is in reasonably good agreement with the measured value of 4.1
(Table 15.4). Note that this agreement implies that for the most part the orbital
angular momentum of the ions in these solids is indeed quenched.

Since each unit cell contains eight Fe2+ ions (see Fig. 15.9). the saturation
magnetization is given by Eq. (15.4), or

8 x 4.9 x 9.274 x 1(T24 „ nS 4 ,
M, = - 77--; - = 6.2 x 105 A/m

(8.37 x 10-10)3

It follows that the saturation magnetic field is given by

Bsat = HoMs = 4 x TT x 1(T7 x 6.2 x 10~5 = 0.78 T

which compares favorably with the measured value of 0.6 (see Table 1 5.4).
It is interesting to note that, for reasons that are not entirely clear, even

better agreement between the measured and theoretical values is obtained if
the classical expression for /iion, that is, ^ion = 2//gS. is used instead of the
more exact expression [Eq. (15.27)].
(b) According to Table 5.4, the saturation magnetization of NiO • Fe2O3 is
2//B. The substitution of Ni by Zn, which prefers the tetrahedral sites, results
in an occupancy given by

which results in diminishing the number of magnetic moments on the tetrahedral
sites (first set of parentheses) and increasing the number on octahedral sites.
resulting in a higher magnetization. Furthermore, as the occupancy of the A
sites by magnetic ions decreases, the antiparallel coupling between the A and
B sites is reduced, which lowers the Curie temperature.

277 In a typical spinel, solid solutions, quenching, and redox equilibria can very rapidly compli-
cate the simple analysis presented here. Additional Reading contains a number of references
that the interested reader can consult.
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(c) Being a normal spinel implies that the Zn2+ ions occupy the tetrahedral A
sites and the Fe3+ ions occupy the octahedral sites. The Zn ions are diamagnetic
and do not contribute to the magnetic moment (Table 15.2). Given that the Fe3+

cations on the O sites couple antiferromagnetically, their moments cancel and
the net magnetization is zero, as observed.

In commercial and polycrystalline ferrites processing, variables and
resultant microstructures have important consequences on measured proper-
ties. Only a few will be mentioned here. For example, the addition of a
few percent of cobalt to Ni-ferrite can increase its resistivity by several
orders of magnitude by ensuring that the iron is maintained in the Fe3+

state. Similarly, it is important to sinter MnZn ferrites under reducing
atmospheres to ensure that the manganese is maintained in the Mn2+ state
but not too reducing so as to convert the Fe3+ to Fe2+.

Changes in the microstructure in the form of additional inclusions such
as second-phase particles or pores introduce pinning sites that impede
domain wall motion and thus lead to increased coercivity and hysteresis
loss. Conversely, for high-permeability ceramics, very mobile domain wall
motion is required. It is now well established that one of the most significant
microstructural factors that influence domain motion and hence the shape of
the hysteresis curves in magnetic ceramics is the grain boundaries. For
example, increasing the average grain size of some Mn-Zn ferrites from 10
to 30 urn increases fa from 104 to 2.5 x 104.

Applications of spinel ferrites can be divided into three groups: low-
frequency, high-permeability applications; high-frequency, low-loss applica-
tions; and microwave applications. It is important to note that the properties
of magnetic materials are as much a function of frequency as dielectric
materials. The ideas of resonance and loss and their frequency dependencies,
which were discussed in detail in Chap. 14, also apply to magnetic materials.
The coupling in this case is between the applied magnetic field and the
response of the magnetic moment vectors. And while these topics are
beyond the scope of this book, it is important to be cognizant of them
when choosing magnetic materials for various applications.278

15.6.2 Garnets

The general formula of magnetic garnets,279 is P3Q2R3O12 or 5Fe2O3 •
5Fe2O3, where Me is typically yttrium but can also be other rare earth
ions. The basic crystal structure is cubic with an octahedron, a tetrahedron,

278 For more information see, e.g., A. J. Moulson and J. M. Herbert, Electroceramics, Chapman
& Hall, London, 1990.
Magnetic garnets are isostructural with the semiprecious mineral Ca3Al2(SiO4)3. In natural279

4+garnets, which are nonmagnetic, the R ions are always Si , the divalent cations such as Ca
or Mn are the P cations, whereas the trivalent cations such as A13+ or Fe3+ are the Q cations.
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and a two dodecahedra (a distorted or skewed cube) as building blocks
arranged as shown in Fig. 15.10a (here only one dodecahedron is shown for
clarity's sake). The Q and R cations occupy the octahedral a and tetrahedral
d sites, respectively. The c sites are occupied by the P cations. Each oxygen
lies at the vertex that is common to four polyhedra, i.e., one tetrahedron,
one octahedron, and two dodecahedra.

Dodecahedron

(_) Oxygen

100 200 300 400 500 600

Temperature (K)

0 100 200 300 400 500 600

Temperature, (K)

(c)

Figure 15.10 (a) Structural units and positions of cations in a, c. and d sites. The oxygen
ions are shared by four polyhedra — an octahedron, a tetrahedron, and two (one not
shown) dodecahedra. (b) Magnetization of the sublattices in Gd-iron garnet or GdIG as
a function of temperature. Because of weak coupling between the Gd and the Fe. its
magnetization drops more rapidly with temperature. Note compensation point at =«290
K. (c) Resulting magnetization versus temperature curves for some Fe garnets.
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The most investigated and probably the most important magnetic garnet
is the yttrium-iron garnet, {Y3}[Fe2]Fe3O12 or 3Y2O3 • 5Fe2O3, commonly
referred to as YIG. In YIG, the Y3+ cations occupy the c sites and because
of their closed-shell configuration are diamagnetic. The Fe3+ cations are
distributed on the a and d sites, and the net magnetization is due to the differ-
ence between their respective moments. Given that there are 3 Fe3+ ions on the
d sites for every 2 Fe3+ ions on the a sites, the net magnetic moment per
formula unit (at T = OK) is 3 x 5.92 — 2 x 5.92 = 5.9^,#, which is in reason-
able agreement with the measured value of 4.96. Note once again that if the
classical value for p,s, that is, 5/%, is used, even better agreement is obtained
between theory and experiment.

The situation becomes more complicated when magnetic rare-earth ions
are substituted for the Y, as shown in Fig. 15.10b. For these so-called rare-
earth garnets, the M3+ ions are paramagnetic trivalent ions that occupy
the c sites. The magnetization of these ions is opposite to the net magnetiza-
tion of the ferric ions on the a + d sites (see inset in Fig. 15.10c). At low
temperatures, the net moment of the rare-earth ions can dominate the
moment of the Fe3+ ions (Fig. 15.106). But because of the c-a coupling
and c-d coupling, the rare-earth lattice loses its magnetization rapidly with
increasing temperature (Fig. 15.106). The total moment can thus pass
through zero, switch polarity, and increase once again as the Fe3+ moment
starts to dominate. Typical magnetization versus temperature curves for
various iron garnets are shown in Fig. 15.10c. The point at which the mag-
netization goes to zero is known as a compensation point. One consequence
of having this compensation point is that the magnetization is quite stable
with temperature, an important consideration in microwave devices. It is
this property that renders Fe garnets unique and quite useful.

15.6.3 Hexagonal Ferrites

Here the material is not ferromagnetic in the sense that all adjacent spins
are parallel; rather, all the spins in one layer are parallel and lie in the
plane of the layer.280 In the adjacent layer, all the spins are once again parallel
within the layer, but pointing in a different direction from the first layer, etc.
Commercially the most important hexagonal ferrite is BaO • 6Fe2O3, which is
isostructural with a mineral known as magneto-plumbite and is the reason
hexagonal ferrites are sometimes called magnetoferrites.

The crystallographic structure of hard ferrites is such that the magneti-
cally preferred (i.e., easy) orientation is the c axis, i.e., perpendicular to the
basal plane. Consequently, hexagonal ferrites have been further classified
as being either isotropic or anisotropic depending on whether the grains

280 For more details, see L. L Hench and J. K. West. Principles of Electronic Ceramics, Wiley,
New York, 1990, p. 321.
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Figure 15.11 Demagnetization curves for oriented (top) and isotropic or random
(bottom) hexagonal ferrites.281

are arranged randomly or aligned. The latter is attained by compacting
the powder in a magnetic field. The effect of aligning the grains on the
B-H loop is shown in Fig. 15.11, from which it is obvious that the energy
product is significantly improved by the particle orienting during the
fabrication process. Other important microstructural factors include
particle size and shape and the volume fraction of the ferrite phase. Typical
values for the latter are 0.9 for sintered materials and 0.6 for plastic-bonded
materials.

One of the major attributes of hexagonal ferrites is their very high
crystal anisotropy constants, and consequently, they are used to fabricate
hard magnets with high coercive fields. Typical hexagonal ferrites have
(BH)max values in the range of 8 to 27 kJ/m3, quite a bit lower than those
of good metallic permanent magnets (w 80 kJ/m3). Despite this disadvan-
tage, their low conductivity (10 - 1 8 S/m), together with high coercive forces
(0.2 to 0.4 T), low density, ease of manufacturing, availability of raw
materials, and especially low cost per unit of available magnetic energy
renders them one of the most important permanent magnetic materials
available. They are mainly used in applications where large demagnetizing
fields are present such as flat loudspeakers and compact dc motors. They
are also used, for example, to produce "plastic" magnets, in which the
magnetic particles are embedded in a polymer matrix.

281 Adapted from F. Esper, in High Tech Ceramics. G. Kostorz. ed.. Academic Press. London.
1989.
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15.7 Piezo- and Ferroelectric Ceramics

The solids discussed in the remainder of this chapter have one thing in
common: They exhibit various polar effects, such as piezoelectricity, pyro-
electricity, and ferroelectricity. Piezoelectric crystals are those that become
electrically polarized or undergo a change in polarization when subjected
to a stress, as shown in Fig. 15.12c to f. The application of a compressive
stress results in the flow of charge in one direction in the measuring circuit
and in the opposite direction for tensile stresses. Conversely, the application
of an electric field will stretch or compress the crystal depending on the
orientation of the applied field to the polarization in the crystal.

Pyroelectric crystals are ones that are spontaneously polarizable (see
below) and in which a change in temperature produces a change in that
spontaneous polarization. A limited number of pyroelectric crystals have
the additional property that the direction of spontaneous polarization can
be reversed by application of an electric field, in which case they are
known as ferroelectries. Thus a ferroelectric is a spontaneously polarized
material with reversible polarization. Before proceeding much further it is
important to appreciate that not all crystal classes can exhibit polar effect.

15.7.1 Crystallographic Considerations

Of the 32 crystal classes or point groups (see Chap. 1), 11 are centro-
symmetric and thus nonpolar (e.g., Fig. 15.12a and b). Of the remaining 21
noncentrosymmetric, 20 have one or more polar axes and are piezoelectric,
and of these 10 are polar.282 Crystals in the latter group are called polar
crystals because they are spontaneously polarizable, with the magnitude of
the polarization dependent on temperature. In the polar state, the center of
positive charge does not coincide with the center of negative charge
(Fig. 15.12c); i.e., the crystal possesses a permanent dipole. Each of these
10 classes is pyroelectric with a limited number of them being ferroelectric.
It thus follows that all ferroelectric crystals are pyroelectric and all pyro-
electric crystals are piezoelectric, but not vice versa. To appreciate the
difference between a piezoelectric and a ferroelectric crystal it is instructive
to compare Fig. 15.12c and e. An unstressed piezoelectric (Fig. 15.12c)
crystal only develops a dipole when stressed (Fig. 15.12d) as a consequence
of its symmetry. A ferroelectric crystal, on the other hand, possess a dipole
even in the unstressed state (Fig. 15.12e). The application of a stress only
changes the value of the polarization (Fig. 15.12f). For example, quartz is
piezoelectric but not ferroelectric, whereas BaTiO3 is both. In the remainder
of this chapter, ferro- and piezoelectricity are described in some detail.

282 One of the noncentrosymmetric point groups (cubic 432) has symmetry elements which
prevent polar characteristics.
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15.7.2 Ferroelectric Ceramics

Given the definition of ferroelectricity as the spontaneous and reversible
polarization of a solid, it is not surprising that ferroelectricity and

Figure 15.12 (a) Unstressed centrosymmetric crystal. The arrows represent dipole
moments, (b) Applying a stress to such a crystal cannot result in polarization. (c)
Unstressed noncentrosymmetric crystal, i.e., piezoelectric. Note that this structure is not
ferroelectric because it does not possess a permanent dipole. (d) Stressed crystal develops
a polarization as shown, (e) Unstressed polar crystal, i.e.. a ferroelectric, possesses a
permanent dipole even in the unstressed state, (f) Stressed ferroelectric crystal. The
applied stress changes the polarization by AP.
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Table 15.5 Comparison of dielectric and magnetic parameters

Magnetic Dielectric

General
Applied field H(A/m)

Material response M(A/m) P(C/m")

Field equations B = p.(}(H + M) D = e(,£ + P

Susceptibility //r — 1 = Xmag ~ u k' — \ — Xdie = —^
H ^()E

Energy of moment U = ~p.\on • B U = —/-tdip • E

Paramagnetism Dipolar polarization
A/ / /? R

P =
kT kT

2

Curie constant (K) C = Mo//ion (Eq. (15.31)) C =
3A; ke()

Ferromagnetic Ferroelectric

C C
Curie-Weiss law (T > Tc) Xmag = ^—^r~ Xdie — ^—^

Saturation M, = Na-,nn P, = NA-^UM,

ferromagnetism have a lot in common (Table 15.5). Ferroelectricity usually
disappears above a certain critical temperature TC; above that temperature
the crystal is said to be in a paraelectric (in analogy with paramagnetism)
state and obeys a Curie—Weiss law. Below TC, spontaneous polarization
occurs in domains. A typical plot of polarization versus electric field will
exhibit a hysteresis loop (see Fig. 15.4).

Structural origin of the ferroelectric state

Commercially, the most important ferroelectric materials are the titania-
based ceramics with the perovskite structure such as BaTiO3 and PbTiO3.
In contradistinction to magnetism, ferroelectric materials go through a
phase transition from a centrosymmetric nonpolar lattice to a noncentro-
symmetric polar lattice at TC. Typically these perovskites are cubic at
elevated temperatures and become tetragonal as the temperature is lowered.
The crystallographic changes that occur in BaTiO3 as a function of tempera-
ture and the resulting polarization are shown in Fig. 15.13a. In the cubic
structure, the TiO6 octahedron has a center of symmetry, and the six Ti—O
dipole moments cancel in antiparallel pairs. Below TC, the position of the
Ti ions moves off center, which in turn results in a permanent dipole for
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Figure 15.13 (a) Crystallographic changes in BaTiO3 as a function of temperature.
(b) Temperature dependence of relative dielectric constant of BaTiO3 single crystal, for
the c and a axis, (c) Temperature dependence of the saturation polarization for polycrystal-
line BaTiO3. Note similarity between this figure and Fig. 15.4b.

the unit cell (see Worked Example 15.5). The resulting changes in the dielec-
tric constant are shown in Fig. 15.13b, the most salient feature of which is the
sharp increase in k' around the same temperature that the phase transition
from cubic to tetragonal phase occurs.

In order to understand the origin of the paraelectric to ferroelectric
transition and the accompanying structural phase transitions it is important
to understand how the local field is affected by the polarization of the lattice.
Equation (14A.3), which relates the local field Eloc to the applied field E, and
the polarization P can be generalized to read

= £ + 3^ 15.41

where (3 is a measure of the enhancement of the local field.283 By postulating
that the polarizability a varies inversely with temperature, i.e.. Wo = C'/T.

283 In App. 14A, 3 was found to be 1 3. a value only valid, however, if the material is a linear
dielectric with cubic symmetry.
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Table 15.6 Summary of dielectric data for a number of ferroelectric ceramics

Material

Rochelle salt
BaTiO3

SrTiO3 [is paraelectric down
PbTiO3

PbZrO3 (antiferroelectric)
LiNbO3

NaNbO3

KNbO3

LiTaO3

PbTa2O5

PbGeO11

SrTeO3

Tc, C

24
120

to about 1 K]
490
230

1210
-200

434
630

260
178
485

Curie k'
constant, K at T(-

2.2 x 102 5000
1.7 x 105 1600

7.8 x 105

1.1 x 105

3500

2.4 x 105 4200

Psat, C/nr

0.25 (RT)
0.26 (RT)
0.18 @ Tc

0.50 (RT)

0.71 -3.00 (RT)
0.12 @ Tc

0.26 @ Tc

0.50 (a: Tc

0.23 (ai 450
0.10 @ Tc

0.05 (a Tc

0.40 @ Tc

and combining Eqs. (15.41), (14.13), and (14.14), one can show that:

where Tc = ßC'/e0. Comparing this expression to the Curie- Weiss law
[Eq. (15.32)], it follows that

T C =ßC (15.43)

where C is the Curie constant for ferroelectric ceramics. A perusal of
Table 15.6 shows that for the titanate and niobate-based ceramics the
Curie constant, C, is of the order of 105 K.284

Equation (15.42) is important because it predicts that in the absence of a
phase transition, the crystal would fly apart as T approached TC, or equiva-
lently when £0 — ßNa. As discussed in Chap. 2, for every bond there is an
attractive component and a repulsive component to the total bond energy.
If, as the temperature is lowered, the repulsive component becomes weaker
or softer, it follows that the anharmonicity of the bond will increase,
which, as seen in Chap. 4, will increase the magnitude of the displacements
of the ions, which in turn increases the dielectric constant as observed. The

284 It is instructive once again to compare ferromagnetic and ferroelectric solids. In both cases,
an exchange energy or interaction energy is responsible for the spontaneous polarization.
For ferromagnetic solids typical values of the exchange coupling coefficient A are of the
order of 350 (see Prob. 15.5). For ferroelectric solids, on the other hand, the interaction,
as measured by 0, is of the order of 2 x 10-3 (see Prob. 15.13). It follows that the interaction
factor is about 5 orders of magnitude larger in ferromagnets than in ferroelectrics.
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anharmonicity of the bond cannot increase indefinitely, however, and at
some critical temperature the energy well for the Ti4+ ions in the center of
the unit cell bifurcates into two sites, as shown in Fig. 14.10a. As the ions
populate one site or the other, the interaction between them ensures that
all other ions occupy the same site, giving rise to spontaneous polarization.

WORKED EXAMPLE 15.5

Using the ion positions for the tetragonal BaTiO3 unit cell shown in Fig. 14.16.
calculate the electric dipole moment per unit cell and the saturation polarization
for BaTiO3. Compare your answer with the observed saturation polarization
(that is, PS = 0.26C/m2).

Answer

The first step is to calculate the moment of each ion in the unit cell. Taking the
corner Ba ions as reference ions:

Ion

Ba2+ (reference)
Ti4*
2O2~
O2~

Q,C

+2(1
+4(1

.6

.6
-4(1.6
-2(1 .6

x
x
X

X

10~19)

JO"1 9)

io-'9)
io-19)

d, m

0
+0.006 x
-0.006 x
-0.009 x

Sum

P = Qd

io-9

10-9

10 -9

0.0
3.84
3.84
2.88

10.56

x
x
X

X

10"
10-

10-

10-

30

?o
30
30

Thus the dipole moment per unit cell is 10.56 x 10-30 C • m.
Since Ps = jj,/ V, where V is the volume of the unit cell, it follows that the

saturation polarization is given by:

Ps = 10.56 x 10-30/(0.403 x 0.398 x 0.398) x 10 -27 = 0.18C/m2

This value is less than the observed value because it does not take the
contribution of electronic polarization of the ions into account.

Hysteresis

In addition to resulting in very large k' at Tc, spontaneous polarization will
result in hysteresis loops, as shown in Fig. 15.14. At low applied fields, the
polarization is reversible and almost linear with the applied field. At higher
field strengths, the polarization increases considerably due to switching
of the ferroelectric domains. Further increases in the electric field continue
to increase the polarization as a result of further distortions of the TiO6

octahedra.285

In contrast to ferromagnetic materials, ferroelectrics exhibit true saturation.
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Figure 15.14 (a) Ferroelectric hysteresis loop for a single-crystal, (b) Polycrystalline
sample.

Upon removal of the applied field, P does not go to zero but remains at a
finite value called the remnant polarization Pr. As in the ferromagnetic case,
this remnant is due to the fact that the oriented domains do not return to
their random state upon removal of the applied field.286 In order to do
that, the field has to be reversed to a coercive field Ec.

Ferroelectric domains

As defined above, a domain is a microscopic region in a crystal in which
the polarization is homogeneous. However, in contrast to domain walls in
ferromagnetic materials that can be relatively thick (Fig. 15.6d), the ferro-
electric domain walls are exceedingly thin (Fig. 15.15). Consequently, the
wall energy is highly localized and the walls do not move easily.

Practically, it is important to reduce the sharp dependence of k' on
temperature. In other words, it is important to broaden the permittivity
versus temperature peaks as much as possible. One significant advantage
of ceramic ferroelectrics is the ease with which their properties can be
modified by adjusting composition and/or microstructure. For example,
the substitution of Ti by other cations results in a shift in TC, as shown in
Fig. 15.16. Replacing Ti4+ by Sr2+ ions reduces Tc while the substitution
of Pb2+ increases it. This is very beneficial because it allows for the tailoring

286 It seems natural to assume that polar crystals would be a source of electric fields around them
just as magnets are a source of magnetic fields. In practice, however, the net dipole moment is
not detectable in ferroelectrics because the surface charges are usually rapidly neutralized by
ambient charged particles.
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Figure 15.15 Ferroelectric domain wall thickness.

of the peak permittivity in the temperature range for which the ferroelectric
capacitor is to be used. Furthermore, certain additions (for example.
CaZrO3) to BaTiO3 can result in regions of variable composition that
contribute a range of Curie temperatures so that the high permittivity is
spread over a wider temperature range.

Sintering conditions can also have an important effect on the permit-
tivity. The replacement of various aliovalent cations such as La3+ and
Nb5+ in BaTiO3 has also been shown to inhibit grain growth which, as
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Figure 15.16 Effect of cationic substitutions in BaTiO3 on Tc.
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Figure 15.17 Effect of grain size on permittivity of BaTiO3.

seen in Fig. 15.17, has the effect of increasing the permittivity below Tc.
3+Finally, lower-valency substitutions such as Mn on Ti sites act as

acceptors and enable high-resistivity dielectrics to be sintered in low-
partial-pressure atmospheres.

Examples of a number of ceramic ferroelectric crystals and some of their
properties are listed in Table 15.6.

Experimental Details

The signature of a ferroelectric material is the hysteresis loop. This loop can
be measured in a variety of ways, one of which is by making use of the electric
circuit shown schematically in Fig. 15.18. A circuit voltage across the
ferroelectric crystal is applied to the horizontal plates of an oscilloscope.

Oscilloscope

Figure 15.18 Circuit used to measure ferroelectric hysteresis.
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The vertical plates are attached to a linear capacitor in series with the
ferroelectric crystal. Since the voltage generated across the linear capacitor
is proportional to the polarization of the ferroelectric, the oscilloscope will
display the hysteresis loop.

15.7.3 Antiferroelectric Ceramics

In some perovskite ceramics, the instability that occurs at the Curie tem-
perature is not ferroelectric but rather antiferroelectric. In antiferroelectric
crystals, the neighboring lines of ions are displaced in opposite senses
which creates two alternating dipole sublattices of equivalent but opposite
polarization. Consequently, the net polarization is zero, and the dielectric
constant does change at the transition temperature. Examples of antiferro-
electric crystals are WO3, NaNbO3, PbZrO3, and PbHfO3.

In general, the difference in energies between the ferroelectric and anti-
ferroelectric states is quite small (a few joules per mole); consequently, phase
transitions between the two states occur readily and can be brought about
by slight variations in composition or the application of strong electric fields.

15.7.4 Piezoelectric Ceramics

Piezoelectric materials are solids that are capable of converting mechanical
energy to electrical energy and vice versa. This is shown schematically in
Fig. 15.19a, where the application of a stress changes the polarization.
When an external force is applied to produce a compressive or tensile
strain in the ceramic, a change is generated in the dipole moment, and a
voltage is developed across the ceramic (Fig. 15.19a). The opposite is also
true; application of an electric field will result in a change in the dimensions
of the crystal (Fig. 15.19b).

Charge development

Figure 15.19 (a) The direct piezoelectric effect is that polarization charges are created
by stress, (b) The inverse effect is that a strain is produced as a result of the applied
voltage.
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The main uses of piezoceramics are in the generation of charge at high
voltages, detection of mechanical vibrations, control of frequency, and
generation of acoustic and ultrasonic vibrations. Most, if not all, commercial
piezoelectric materials are based on ferroelectric crystals. The first com-
mercially developed piezoelectric material was BaTiO3. One of the most
widely exploited piezoelectric materials today, however, is based on the
Pb(Ti,Zr)O3 or PZT solid solution system.

To produce a useful material, a permanent dipole has to be frozen in the
piezoelectric. This is usually done by applying an electric field as the specimen
is cooled through the Curie temperature. This process is known as poling and
results in the alignment of the dipoles, and an electrostatic permanent dipole
results.

15.8 Summary

1. The presence of uncompensated or unpaired electron spins and their
revolution around themselves (spin magnetic moment) and around
their nuclei (orbital magnetic moment) endow the atoms or ions with
a net magnetic moment. The net magnetic moment of an ion is the
sum of the individual contributions from all unpaired electrons.

2. These magnetic moments can
(i) not interact with one another, in which case the solid is a para-

magnet and obeys Curie's law where the susceptibility is inversely
proportional to temperature. Thermal randomization at higher
temperature reduces the susceptibility.

(ii) interact in such a way that adjacent moments tend to align them-
selves in the same direction as the applied field intensity, in which
case the solid is a ferromagnet and will spontaneously magnetize
below a certain critical temperature TC. The solid will also obey
the Curie-Weiss law (above TC, it will behave paramagnetically).
To lower the energy of the system the magnetization will not
occur uniformly, but will occur in domains. It is the movement of
these domains, which are separated by domain walls, that is
responsible for the hysteresis loops typical of ferromagnetic
materials.

(iii) interact is such a way that the adjacent moments align themselves
in opposite directions. If the adjacent moments are exactly equal
they cancel each other out; and the solid is an antiferromagnet.
However, if the adjacent moments are unequal they will not
cancel, and the solid will possess a net magnetic moment. Such
materials are known as ferrimagnets and constitute all known
magnetic ceramics. Phenomenologically ferrimagnets are indistin-
guishable from ferromagnets.
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3. Magnetic ceramics are ferrimagnetic and are classified according to their
crystal structure into spinels, hexagonal ferrites, and garnets.

4. The interaction between, and the alignment of, adjacent dipoles in a
solid give rise to ferroelectricity.

5. The interaction between adjacent moments (magnetic as well as dipolar)
causes the solid to exhibit a critical temperature below which spon-
taneous magnetization or polarization sets in, where all the moments
are aligned parallel to one another in small microscopic domains. The
rotation and growth of these domains in externally applied fields give
rise to hysteresis loops and remnant magnetization or polarization,
whichever the case may be.

Appendix 15A

Orbital Magnetic Quantum Number

In Eq. (15.25), L is the summation of ml, rather than /. The reason is shown
schematically in Fig. 15.20, for the case where / = 3; in the presence of a
magnetizing field H, the electron's orbital angular momentum is quantized
along the direction of H. The physical significance of ml and why it is referred
to as the orbital magnetic quantum number should now be more transparent
— it is the projection of the orbital angular momentum / along the direction
of the applied magnetic field intensity.

H

Figure 15.20 The total number of quantized allowed projections of the orbital angular
momentum for / = 3 in the direction of the applied magnetic field is determined by ml.
Note that for / = 3 there are seven allowed projections: 3. 2, 1, 0. -1. -2, and -3.
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15.1. In the Bohr model for the hydrogen atom,287 the electron travels in a
circular orbit of radius 5.3 x 10 - 1 1m. Calculate the current and
magnetic moment associated with this electron. How does the
moment calculated compare to IJLB! Hint: Calculate the potential
energy of the electron and equate it to the vibration energy.

Answer: i w 1.05mA, fj,mb w 9.25 x 10-24 A - m 2

15.2. (a) Derive Eq. (15.29).
(b) A solid with electron spins is placed in a magnetizing field H of

1.6 x 106 A/m. The number of spins parallel to the field was 3
times as large as the number of antiparallel spins. What was
the temperature of the system? State all assumptions.

Answer: T w 2.54K
(c) At what temperature would you expect all spins be aligned to the

field? At what temperature would the number of spins upward
exactly equal the number of spins downward?

15.3. (a) Show that if the assumption faonB -C kT is not made, then the
susceptibility will be given by

M = (N1 — N2)Mion — A^jon tanh
kT

Plot this function as a function of nionB/kT. What conclusions
can you reach about the behavior of the solid at high fields or
very low temperatures?

(b) For a solid placed in a field of 2 T, calculate the error in using this
equation as opposed to Eq. (15.29) at 300 K. You may assume
Mion t^B'

Answer: ^0.001 percent

(c) Repeat part (b) at 10 K.

Answer: «0.6 percent

15.4. A beam of electrons enters a uniform magnetic field of 1.2 T. What
is the energy difference between the electrons whose spins are parallel
to and those whose spins are antiparallel to the field? State all
assumptions.
Answer: 1.4 x 10 - 4eV

287 It is important to note that, this problem notwithstanding, 5 electrons do not have an orbital
moment. Quantum mechanics predicts that their angular momentum is zero, since l = 0.
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15.5. (a) For a ferromagnetic solid, derive the following expression:

(b) For ferromagnetic iron, C % 1 and Tc is 1043 K. Calculate the
values of p,lon and A.

Answer. //jon = 2.13/ifl; A w 350

15.6. The susceptibility of a Gd3+ containing salt was measured as a func-
tion of temperature. The data are shown below. Are these results
consistent with Curie's law? If yes, then calculate the Curie constant
(graphically) and the effective Bohr magnetons per ion.

T. K 100 142 200 300

\. cm3 /mol 6.9 x 10 -5 5 x 10 -5 3.5 x 10 -5 2.4 x 10 -5

Information you may find useful: Molecular weight of salt = 851 g
mol and its density is 3 g/cm3.

15.7. ZnO • Fe2O3 is antiferromagnetic. If it is known that this compound
is a regular spinel, suggest a model that would explain the anti-
ferromagnetism.

15.8. Sketch the magnetization versus temperature curve for Fe3O4.

15.9. Each ion in an iron crystal contributes on average 2.22fj,B. In Fe3O4.
however, each Fe ion contributes an average of 4.08//fl. How can you
rationalize this result?

15.10. Consider Fe(NixFe2_x)O4. What value of x would result in a net
moment per formula unit of exactly 2nB. Hint: The Ni2+ occupies
the octahedral sites.
Answer: x = 1

15.11. (a) Calculate the spin-only magnetic moments of Ni2 + . Zn2+. and
Fe3+.

(b) Nickel ferrite (NiO • Fe2O3) and zinc ferrite (ZnO • Fe2O3) have
inverse and normal spinel structures, respectively. The two
compounds form mixed ferrites. Assuming that the coupling
between the ions is the same as in magnetite and that the orbital
momenta are quenched, calculate the magnetic moment per
formula unit for (Zn0.25Ni0.75O) • Fe2O3.

15.12. Figure 15.21 presents magnetization curves for a magnetic ceramic
fired at two different temperatures, shown on the plot.
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O Sintered 5 mins. at 1250°C
D Sintered 5 mins. at 1350°C

Applied Mag. Field (arb. units)

Figure 15.21 Upper half of the hysteresis loop for a barium ferrite as a function of proces-
sing time and temperature.

(a) Explain the general reasons for the shape of these curves. In other
words, what processes determine the shape of the curves at low,
intermediate, and large values of the applied magnetic field?

(b) What changes in the material might explain the change in
magnetic behavior with increased firing temperatures?

15.13. Using the data given in Table 15.6, estimate the value of the interac-
tion factor /3 in BaTiO3.

Answer: 2.3 x 10–3

15.14. (a) Calculate the dc capacitance of a BaTiO3 capacitor 1 um thick
and 1 cm2 in area that is operating near Tc.

Answer: 1.4uF

(b) Calculate the total dipole moment for a 2-mm thick disk of
BaTiO3 with an area of 1 cm2.

(c) Calculate the unit cell geometry of a unit cell of BaTiO3 that is
subjected to an electrical field applied in such a way as to increase
the polarization of the unit cell to 0.18 C/nr.

15.15. Estimate the density of Ar at which its polarization would go to
infinity. State all assumptions. The atomic weight of Ar is 39.94 g/mol.

Answer: 9.57 g/cm3
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Chapter 16

Optical Properties

White sunlight Newton saw, is not so pure;
A Spectrum bared the Rainbow to his view.
Each Element absorbs its signature:
Go add a negative Electron to
Potassium Chloride; it turns deep blue,
As Chromium incarnadines Sapphire.
Wavelengths, absorbed are reemitted through
Fluorescence, Phosphorescence, and the higher
Intensities that deadly Laser Beams require.

John Updike, Dance of the Solids

16.1 Introduction

Since the dawn of civilization, gems and glasses have been prized for their
transparency, brilliance, and colors. The allure was mainly aesthetic, fueled
by the rarity of some of these gems. With the advent of optical communi-
cations and computing, the optical properties of glasses and ceramics have
become even more important, an importance which cannot be over-
emphasized. For example, in its 150th anniversary issue devoted to the key
technologies for the 21st century, Scientific American288 devoted an article
to all-optical networks. Today commercial fiber-optic networks are based
on the ability of very thin, cylindrical conduits of glass to transmit
information at tens of gigabits289 of information per second. This multi-
gigabit transport of information is fast enough to move an edition of the
Encyclopedia Britannica from coast to coast in 1 s! In theory, a fiber can
transport 25 terabits of information, an amount sufficient to carry simulta-
neously all the telephone calls in the United States on Mother's Day (one
of the busiest days of the year).

• J. Updike, Midpoint and other Poems, A. Knopf, Inc., New York, New York, 1969. Reprinted
with permission.

288 V. Chan, Scientific American, September 1995, p. 72.
289 A gigabit is 1 billion bits; a terabit is 1 trillion bits.
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Figure 16.1 Electromagnetic spectrum. The visible spectrum constitutes a small window
between 0.4 and 0.7 urn or 1.7 and 3.1 eV.

Alternating currents, infrared radiation, microwaves, visible light, X-
rays, ultraviolet light, etc., all produce oscillating electromagnetic fields
differing only in their frequencies. And although sometimes they are thought
of as being distinct, they do constitute a continuum known as the electro-
magnetic (EM) spectrum that spans 24 orders of magnitude of frequencies
or wavelengths. (See Fig. 16.1.) Within that spectrum, the visible range
occupies a small window from 0.4 to 0.7um or 1.65 to 3.0eV.290

All EM radiation will interact with solids in some fashion or other.
Understanding the nature of this interaction has been and remains invaluable
in deciphering and unlocking the mysteries of matter. For instance, it is argu-
able, and with good justification, that one of the most important techniques
to study the solid state has been X-ray diffraction. Other spectroscopic tech-
niques are as varied as radiation sources and what is being monitored, i.e..
reflected, refracted, absorbed rays, etc.

In what follows, the various interactions between electromagnetic radia-
tion and ceramics will be discussed. However, the phenomena described in
this chapter relate mostly to the "optical" region of the electromagnetic spec-
trum, which includes wavelengths from 50 nm to 100 urn (25 to 0.1 eV). In
other words, the discussion will be limited to the part of the spectrum
shown at the top of Fig. 16.1. Furthermore, only insulating ceramics will
be dealt with here — the cases where the concentration of free electrons is
large will not be considered.

290 Remember, in vacuum the wavelength A and frequency v are related by v = c/\. where c is
the velocity of light. The energy, on the other hand, is given by E = hv. where h is Planck's
constant.
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16.2 Basic Principles

When a beam of light or electromagnetic radiation impinges on a solid
(Fig. 16.2), that radiation can be:

• Transmitted through the sample
• Absorbed by the sample
• Scattered at various angles

The scattered waves can be coherent or incoherent (see App. 16A for
more details). When the scattered waves constructively interfere with one
another, the scattering is termed coherent. Light scattered in the opposite
direction of the incident beam leads to reflection. Light scattered in the
same direction as the incident beam and recombining with it gives rise to
refraction. The recombination of the scattered beams can also give rise to
diffraction, where the intensity of the diffracted beams depends on the rela-
tive positions of the atoms and is thus used to determine the position of
atoms in a solid (e.g., X-ray diffraction, see Chap. 3). Incoherent interference,
on the other hand, gives rise to other forms of scattering, such as Rayleigh
scattering.

For a total incident flux of photons I0 energy conservation requires
that

where IT , IR, and 1A represent the transmitted, reflected, and absorbed
intensities, respectively. The intensity / is the energy flux per unit area and

Monochromated light v, I0

Transmitted

Reflected Rayleigh scattering

Raman scattering

Figure 16.2 Various interactions between radiation and solids. The monochromatic ray
with frequency v and intensity I0 can be transmitted (with the same frequency but a
reduced intensity), scattered (Rayleigh and/or Raman), absorbed, or reflected.
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has units of J/(m2 • s). Dividing both sides of this equation by I0 yields

l = T + R + A (16.1)

where T, R, and A represent, respectively, the fraction of light transmitted,
reflected, and absorbed.

In the following sections and throughout this chapter the relationship
between the makeup of a solid and its optical properties is discussed. The
optical properties of greatest interest here are the refractive index n, which
for low-loss materials determines the reflectivity and transmissivity. and
the various processes responsible for absorption and/or scattering.

Refraction

A common example of refraction is the apparent bending of light rays as they
pass from one medium to another, e.g., a rod immersed in a fluid will appear
bent. The extent of this effect is characterized by a fundamental property of
all materials, namely, the refractive index n. When light encounters a bound-
ary between two materials with different refractive indices, for reasons that
are touched upon below, its velocity and direction will change abruptly, a
phenomenon called refraction. As discussed below, the physics behind
what gives rise to n is intimately related to the electronic polarizability of
the atoms or ions in a solid. To understand the physical origin of the refrac-
tive index, it is useful to make the following two simplifying assumptions:
First, the frequency of the applied field is much greater than wion but smaller
than (JJQ, the natural frequency of vibration of the electronic cloud. Second.
k" = 0; in other words, the electronic charges are all oscillating in phase
with the applied field (see Chap. 14). As these charged particles oscillate,
they in turn reradiate an electromagnetic wave of the same frequency, creat-
ing their own electric field, which interacts with and slows down the incident
field.291

As noted, the major effect of the interaction of the incident and rera-
diated waves is to make the velocity of the transmitted light appear to
have traveled through the solid (vsol) more slowly than through vacuum
(vvac), which leads to perhaps the simplest definition of n, namely.

£ (16-2)

Refer to Fig. 16.3. Another equivalent definition is

» = Hi (16.3)
sin;-

291 The exact details of how this occurs are beyond the scope of this book but are excellently
described in R. P. Feynman, R. B. Leighton, and M. Sands. The Feynman Lectures on
Physics, vol. 1, Chap. 31, Addison-Wesley, Reading, Massachusetts. 1963.
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Incident ray i Reflected ray
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Blue

Refracted ra

Transmitted ray

Figure 16.3 (a) Light refraction and reflection. Each interface reflects and refracts a
portion of the incident beam, (b) Light refraction by a prism.

Typical values of n are listed in Table 16.1, from which it is obvious that
for most ceramics n lies between 1.2 and 2.6. Note that all the values are
greater than 1, indicating that the velocity of light in a medium is always
less than that in vacuum.

In the more general case where k" cannot be neglected, n has to be
complex, i.e.,292

n = n + iK (16.4)

where K is called the extinction coefficient or absorption index and is a measure
of the absorbing capability of a material. Kappa (K) should not be confused
with the k'e or k", although they are related (see below).

As discussed in Chap. 14, at frequencies greater than about l015s–1

only electrons can follow the field and all other polarization mechanisms
including ionic polarization drop out. In this situation, it can be shown
(not too easily) that the following relationships between the electronic
polarizability parameters k'c and k", on one hand, and n and K, on the
other, hold:

and

i i 2 2 ik,, — n — K — I

= 2nK =
N

(16.5)

(16.6)

It is instructive to note the similarity between this equation and Eq. (14.20).
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Table 16.1 Refractive Indices of Selected Ceramic Materials

Material

CaF2

BaF2

KBr
KC1
LiF
NaCl

A12O3 (Sapphire)
3A12O3 • 2SiO2

BaTiO3

BaO
BeO
CaCO3

MgAl204

MgO

C (diamond)
Q-SiC

Pb-silicate glasses
Fused quartz
Pyrex R *

Dense optical flint
* Borosilicate
5 96% silica

n Material

Halides and Sulfides

1.430
.480
.560
.510
.390
.550

NaF
Nal
PbF2

PbS
TIBr
ZnS

Oxides

.760

.640
2.400

.980

.720

.658, 1.486

.720

.740

PbO
Ti02

SrO
SrTiO,
Y2O3

ZnO
ZrSiO4

ZrO2

Covalent Ceramics

2.424
2.680

a-SiO2 (quartz)

Glasses

2.500
2.126
1.470

Soda-lime-silicate glass
Na2O-CaO-SiO2

VycorH§

n

1.330
1.770
1.780
3.910
2.370
2.200

2.610
2.710
1.810
2.490
1.920
2.000
1.950
2.190

1.544. 1.553

1.510
1.458
1.458

Furthermore, from these two equations it can be shown that (see Prob. 16.1)

1
n =

x/2
' 2 \ l / 2 k'c (16.7)

and

Equations (16.5) to (16.8), are important for the following reasons:

1. They clearly demonstrate the one-to-one correspondence between
electronic polarization and n. Typically, for ceramics k" is on the
order of 0.01 to 0.0001 (see Table 14.1); consequently, without much
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Figure 16.4 Change in refractive index with frequency for select glasses and crystals.

loss in accuracy, k" term can be neglected with respect to k'e in Eq. (16.7),
in which case

« = V%| (16-9)

2. Since k'e is a function of frequency, it follows that the refractive index
also has to be a function of frequency (see Worked Example 16.1).
This change in refractive index with frequency or wavelength is called
dispersion. Typical dispersion curves for a number of ceramics are
shown in Fig. 16.4, where it is clear that the refractive index increases
as the frequency of light increases.

3. Even at the high end of the range of k" (that is, 0.01) and assuming the
lowest value of k'e possible, that is, 1, the K calculated from Eq. (16.8) is
on the order of 0.005 and thus can be ignored for most applications.
Note that this conclusion is valid only as long as the system is far
from resonance.

WORKED EXAMPLE 16.1

Based on Eq. (16.5), explain the phenomenon of light refraction by a prism
shown in Fig. 16.3b. What does that say about the nature of white light?

Answer

According to Eq. (16.5), for w < UQ, k'e increases with increasing frequency of the
incident light. Consequently, according to Eq. (16.9), n should also increase with
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increasing frequency. In other words, a higher-frequency light (e.g., blue) will be
refracted or deflected by a larger angle than a lower-frequency light (e.g., red
light), as observed in Fig. 16.3b. This simple experiment makes it clear that
"white" light is composed of a spectrum of frequencies.

Reflectivity

Not all light that is incident on a surface is refracted; as shown in Fig. 16.3.
a portion of it can be reflected. It can be shown, again not too easily, that
the reflectivity of a perfectly smooth solid surface at normal incidence is
given by

*= ' " "— (.6.10)

which is known as Fresnel's formula.
Again, given that for most ceramics and glasses K <c 1, it follows that

reflectivity is simply related to n. For example, lead-silicate glasses, also
known as crystal glasses,293 with refractive indices of about 2.6, would reflect
about 20 percent of the incident light (which explains why crystal glass
sparkles). By contrast, a typical soda-lime silicate glass with an n of about
1.5 only reflects about 4 percent.

Interestingly enough, near resonance, n will increase dramatically, and
so, according to Eq. (16.10), will reflectivity. This occurs because the various
secondary waves from the atoms in the surface will cooperate to produce a
reflected wavefront traveling at an angle equal to the angle of incidence.
Selective reflection is thus a phenomenon of resonance and occurs strongly
near those wavelengths corresponding to natural frequencies of bound
charges in the substance, i.e., near resonance. The substance will not transmit
light of these wavelengths; instead, it reflects strongly. True absorption (see
below), where the light is converted to heat (i.e., processes associated with
k" or K), also occurs at these frequencies to a greater or lesser extent because
of the large amplitudes of vibrating charges involved. If true absorption were
entirely absent, however, the reflecting power would be 100 percent at the
wavelengths in question.

Absorbance and transmittance

The transmittance T through a transparent medium is proportional to
the amount of light that is neither reflected nor absorbed. For low-loss
(low-absorbing) materials, the absorption A in Eq. 16.1, can be neglected.
and T = 1 — R. In other words, the fraction of light not reflected is
transmitted.

293 This is an unfortunate nomenclature. There is nothing crystalline about this glass, or any
other glass for that matter.
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In general, however, as light passes through a medium, it is attenuated
or lost by one of two mechanisms: Either it is absorbed, i.e., the light is
transformed to heat; or it is scattered, i.e., a portion of the beam is
deflected.294

Intrinsic absorption. In Chap. 14 the power dissipation per unit volume in a
dielectric was shown to be [Eq. (14.25)]

Pv = { (rM£$ = { (adc + uk?!e0)E$ (16.11)

where E0 is the applied electric field. Energy conservation dictates that in the
absence of any other energy-dissipating mechanisms, this loss will result in a
decrease in the intensity / of the light, that is, Pv = -dl/dx, passing through
a material of thickness dx. Furthermore, it can be shown295 that the intensity
of light in a medium of refractive index n is given by

(16.12)

where c is the velocity of light. Ignoring crdc in Eq. (16.11), which for most
insulators and optical materials is an excellent assumption (see Prob. 16.1),
noting that k" — 2nk, and combining Eqs. (16.11) and (16.12), one obtains

_«/ (16.13)
dx c a ( }

Integrating from the initial intensity I0 to the final or transmitted intensity IT

gives

(16.14)

where x is the optical path length and aa is the absorption constant, given by
2WK/C. Here aa is measured in m–1 and is clearly a function of frequency.

Note that aa is proportional to k", which in turn reflects the fact
that the oscillating charges not in phase with the applied EM field are
the ones responsible for the absorption. For an ideal dielectric, k", K, and
aa all vanish, and no energy is absorbed (see Worked Example 16.2). Finally,
note that when the frequency of the incident radiation approaches the
resonance frequency of either the bonding electrons or the ions, then strong
absorptions occur, absorptions that, as discussed below, are ultimately

294 A good example of scattering is the way that rays of sunlight from a window are made visible
by very fine dust particles suspended in air.

295 See, e.g., R. P. Feynman, R. B. Leighton, and M. Sands, The Feynman Lectures on Physics,
vol. 1, pp. 31-110, Addison-Wesley, Reading, Massachusetts, 1963.



562 Fundamentals of Ceramics

responsible for delineating the frequency range over which a material is
transparent.

Absorbance by impurity ions. As discussed in greater detail below, impurity
ions in a material can selectively absorb light at specific wavelengths. Such
a chemical species is called a chromophore. Attenuation is proportional to
the path traveled dx and the concentration of absorbing centers c,, as
described by the Beer-Lambert law:

-™ = £BLc,/ (16.15)

where £BL is a constant that depends on the impurities and the medium in
which they reside; £BL is referred to sometimes as the linear absorption
coefficient and sometimes as the extinction coefficient. Once again, integrating
this expression yields

-^ = exp(-EBLc,-v) (16.16)

This is an important result because it predicts that the reading of a radia-
tion detector (which measures the rate of flow of energy per unit area and
unit time) will decrease exponentially with the thickness of the medium
and the concentration of absorbing centers.

An implicit assumption made in deriving Eqs. (16.14) and (16.16) was
that scattering could be neglected. In general, however, the loss coefficient
must account for all losses, hence

C*tot = Cta + £BLCj + as (16.17)

where as is the absorption coefficient due to scattering (Sec. 16.4). In the most
general case

IT = /0exp(-Qtot.Y)| (16.18)

In many cases some of these mechanisms are negligible with respect to
the others, but it is important to realize their existence and the fact that
more than one mechanism may be operating.296

296 It is not possible to distinguish between absorption and scattering losses from a simple
measurement of the attenuation; both phenomena cause attenuation. One method to
differentiate between the two, however, is to measure the light intensity at all angles. If the
measurements show that all the light taken away from the original beam reappears as
scattered light, the conclusion is that scattering — not absorption — is responsible for the
attenuation. If the energy is absorbed, it will not disappear, but reappears at a different
frequency, i.e., as heat.
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Experimental Details: Measuring Optical Properties

Clearly two important optical properties are n and K. Described briefly below
is a method by which these parameters can be measured.297

The basic idea is to measure both the transmission and the reflectivity of a
thin slab of material, which is usually carried out in a device known as a
spectrophotometer. Figure 16.5 schematically illustrates the four major
components of such a device: a source of radiation, a monochromator, the
sample, and a number of detectors. In a typical experiment, both T and R
are measured, preferably simultaneously. Because of multiple reflections at
the various planes of the crystal, T is not given by Eq. (16.14), but rather by298

^ji-*)V^
70 1 - R2e–2a"x V ;

where R is given by Eq. (16.10) and x is the thickness of the sample. Note this
expression is only valid for normal incidence and is identical to Eq. (16.14)
when R = 0.

In principle, the observed reflectivity .Robs can be measured by providing
a second detector position, as shown in Fig. 16.5. The observed reflectivity is
related to R by

(16.20)

Thus by measuring both the reflectivity and the transmittivity of a sample, n
and K, can be calculated from Eqs. (16.10), (16.19), and (16.20) (see Worked
Example 16.2).

An alternate approach is to measure the transmission of two different
samples of different thicknesses with identical reflectivities.299

Monochromator

Light source
Detector | Sample

Figure 16.5 Schematic of measuring the optical constants of a solid.

297 Implicit in this discussion is that the material is fully dense and pore-free, with a grain size
that is either much smaller than or much greater than the wavelength of the incident radia-
tion. If that were not the case, as discussed in greater detail below, scattering would have to
be taken into account. Furthermore, it is assumed that the material is pure enough that the
tBLc, term can be neglected.

298 J. C. Slater, Electromagnetic Theory, McGraw-Hill, New York, 1941.
299 Interestingly enough (and it is left as an exercise to the reader to show that) strongly absorb-

ing samples are also quite reflective, and vice versa.
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WORKED EXAMPLE 16.2

If 80 percent of an Na lamp light incident on a 1-mm glass panel is transmitted
and 4 percent is reflected, determine the n and k for this glass. The wavelength of
Na light is 0.59 or 5.1 x l014s–1

Answer

Given that R = 0.04, applying Eq. (16.10) and ignoring K (see below) yields
n = 1.5. To calculate aa use is made of Eq. (16.19). However, given that the
loss is small, the second term in the denominator can be neglected, and

Vacuum Solid
n=2, a=0

Vacuum

Incident wave Transmitted wave

Vacuum Solid
77=2,0 = 0.

Vacuum

Incident wave Transmitted wave

Figure 16.6 Schematic of changes that occur to an electromagnetic wave transmitted
through a solid with (a) n = 2 and aa = 0. Note the halving in wavelength. Since
aa = 0, there is no loss in intensity or energy of the wave as it passes through the solid.
(b) Here n = 2 and aa = 0.4. The sample absorbs a portion of the energy of the incident
wave, and the intensity of the transmitted wave is thereby reduced. Since n = 2. the wave-
length in the solid is again half that in vacuum.
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Eq. (16.19) simplifies to

r = ( l -R)2e~n°x

0.8 = (1–0.04) e(0-001)

Solving for aa yields 141 m–1. Furthermore, given that aa = 2wK/c , it follows
that

_ aac _ 141(3 x 108) _ ft
K ~ 4m; ~~ (4x"3.14)(5.1 x 1011) ~

Note that the error in ignoring K in Eq. (16.10) is fully justified.

WORKED EXAMPLE 16.3

Carefully describe the changes that occur to an EM ray when it impinges on a
solid for which (a) n = 2 and atol = aa = 0 and (b) n= 2 and atot = aa = 0.4.

Answer

(a) When a wave propagating in vacuum impinges normally on a solid for which
n — 2 and aa = 0, the outcome is shown schematically in Fig. 16.6a. Since n = 2,
the velocity of the wave is halved, which implies that the wavelength also is
halved inside the solid. Note that because aa = 0, the intensity of the transmitted
light and its frequency remain constant throughout.
(b) When, aa is nonzero, the intensity of the transmitted wave is reduced as a
result of absorption by the solid (Fig. 16.6b). For simplicity in both these
cases, reflection was neglected.

16.3 Absorption and Transmission

In the previous section, the relationships between transmittance and
absorbance were described, with few details given. In this section, some of
the specifics are elucidated. Scattering is dealt with separately in Sec. 16.4.

The complexity of the situation is depicted in Fig. 16.7, where the
reflectance300 of KBr at 10 K is plotted as a function of incident photon
energy over a wide range from the IR to the UV. The salient features are
an IR absorption edge at 0.03 eV, an absorption peak at about 2eV, and a
number of absorption peaks in the UV part of the spectrum around 7 eV.

From the previous discussion it is clear that the requirements for a
material to be transparent are the absence of strong absorption and/or
scattering in the visible range. The range over which a solid is transparent

As noted earlier, near resonance, crystals become considerably more reflective.



566 Fundamentals of Ceramics

2.00

1.50

tao 1.00

0.50

0.00

KBr at 10 K
UV excitation of electrons from
valence to conduction bands

ER absorption edge
- occurs *0.03 eV

IF center

2 3 4 5 6 7
Incident photon energy, eV

Figure 16.7 Spectral reflectance of KBr over a wide energy range of incident radiation.301

Note that at resonance, the solid becomes very reflective, whereas away from resonance,
most of the light is transmitted.

is called the transmission range and is bounded on the high-frequency (low-
wavelength) side by UV absorption phenomena and on the low-frequency
side by IR absorption. The spectral transmission ranges of a number of
ceramics are compared in Figs. 16.8 and 16.9, from which it is obvious
that most ceramics are indeed transparent over a wide range of frequencies.

•o<u

I
C/3

I ««
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o
reUH

l0xl014

Frequency, s–1

3xl014 0.35 xl014

Quartz

Window glass

Sapphire
A12O3

Visible range

0.1 0.3 0.5 0.7 0.9 1 2 3 4 5 6 7 8 9

Wavelength (/um) *•

Figure 16.8 Spectral transmission of a number of materials.

301 It is worth noting here that the information embedded in this graph, between the IR absorp-
tion edge and the UV spectrum, is the same information that appears in Fig. 14.13/> over the
same range.
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Barium fluoride
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Figure 16.9 Useful transmission ranges for optical materials.

15 7.5 x 1013s–1For example, window glass transmits light from 1 x 10 to
which is why, not surprisingly, it is used for windows. It is interesting to
note that typical semiconductor materials such as Si and GaAs are only-
transparent in the IR range.

16.3.1 UV Range

Electronic resonance

This was discussed in Sec. 16.2. The factors that affect the frequency at which
resonance occurs were discussed in Chap. 14 and will not be repeated here,
except to point out that in glasses the formation of nonbridging oxygens
tends to decrease the frequencies (increase the wavelength) at which reso-
nance will occur. This is clear from Fig. 16.8 — quartz is transparent to
higher frequencies than window glass that contains nonbridging oxygens.
It was also noted in Chap. 14 (see Fig. 14.8) that S2–, Te2–, and Se2– are
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some of the more polarizable ions. It is thus not surprising that ceramics
containing these ions tend to be opaque in the visible spectrum and have
absorption edges that are shifted into the IR range; CdS (Fig. 16.8) is a
good example.

Photoelectric effect

As discussed in Chap. 2, insulating crystalline materials exhibit an energy gap
Eg between their valence and conduction bands. When the incident photon
with energies is greater than Eg, that is,

hv>Eg (16.21)

it will be absorbed by promoting an electron from the valence band to the
conduction band. This is known as the photoelectric effect, and in addition
to increasing the conductivity of the solid, it results in the absorption of
the incident wave. It is important to note that if the light has an energy
less than Eg, absorption will not occur. Hence a well-established technique
for measuring the band gap of a material is to measure the conduction of
the sample as a function of the frequency of incident light — the frequency
at which the onset of photoconductivity is related to Eg through Eq. (16.21).

16.3.2 Visible Range

For appreciable absorption to occur in the visible range, electronic transi-
tions must occur. The nature of these transitions can result from various
sources, as described now.

Transition-metal cations

It is well known that the colors of crystals and minerals are a strong function
of the type of dopant or impurity atoms, especially transition-metal cations,
present. For example, rubies are red and some sapphires are blue, yet both
are essentially A12O3. It is only by doping A12O3 with parts per million of
Cr ions that the magnificent red color develops. Similarly, the sapphire
develops its blue color as a result of Ni doping. Since rubies are red and
pure alumina is transparent, it follows that the Cr ions must absorb blue
light and transmit the red light, which is what is registered by the eyes.

To explain this phenomenon the ligand field theory has been proposed
which successfully accounts for the coloring and magnetic properties of
many transition-metal-containing ceramics. The basic idea is that the transi-
tion metal interacts directionally with the ligands surrounding it in such a
fashion that its energy levels are split. A ligand is a negatively charged,
nonspherical environment surrounding the centrally located transition-
metal ion and is partially covalently bonded with it. A free transition-
metal ion will have five d orbitals (see Fig. 2.2b) that are degenerate in
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Negatively charged ligand

Negatively charged ligaad
tetrahedrally coordinated
with central cation

Negatively charged ligand

Figure 16.10 Interaction of octahedral and tetrahedral ligands with d orbitals. (a) Inter-
action of dz

2 and dx*_v2 orbitals with six ligands in octahedral field, (b) Interaction of dxv,
dxz, and d:x orbitals with six ligands in octahedral field, (c) Interaction of dz2 and dx2_v2
orbitals with four ligands in tetrahedral field, (d) Interaction of d:2 and d x2_ y2 orbitals
with four figands in tetrahedral field.

energy and in which the electrons can be found with equal probability
(Fig. 16.11a). However, if that ion is placed in a field where the ligands
surround it octahedrally, as shown in Fig. 16.10a and b, symmetry dictates
that the dz2 and dx2__y2orbitals (Fig. 16.10a) will be repelled more strongly
than any of the dxv, dx,, or dzx orbitals. This in turn will result in a splitting
of the orbital energies such that the repulsion of the surrounding ligands
increases the energy of the dz2 and dz2 orbitals relative to the dxv, dx:,
and dzx orbitals. The resulting energy scheme is shown in Fig. 16.1 1c.

If the surrounding ligands are tetrahedrally coordinated (Fig. 16.10cf
and d), the opposite occurs — the dxy, dxz, and d,x orbitals are now the
ones that are repelled more strongly by the ligand field and consequently
have the higher energies. The corresponding energy diagram in this case is
shown in Fig. 16.11\d.
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Isolated ion «/ ,2_v2 d.2

Ion in field \
of spherical \ «/ .
symmetry * —£-

lon in octahedral site Ion in tetrahedral site

( a ) (b ) ( c ) ( d )

Figure 16.11 Energy of d orbitals of transition-metal cations (a) in a free or isolated
ion, (b) in a field of spherical symmetry, (c) with ion in octahedral site, (d) with ion in
tetrahedral site.

It is this energy split that gives rise to the various colors observed. If the
energy of the incoming photon is close to the energy difference between the d
orbitals, it is absorbed and the electrons will be promoted from the lower to
the higher level. The magnitude of the energy split, and consequently the
resulting color, depends on the strength of the interaction between the
transition ion and the host crystal as well as on the coordination number
of the central ions. This can be clearly seen in Table 16.2, in which various
absorption bands for transition-metal ions in soda-lime silicate glasses are
summarized.

Note, the probability of the transition decreases as the energy of the
incident light differs significantly from the energy split between the d orbitals.
In other words, the maximum probability for transition occurs when the
energy of the incident light is the same as the energy split between the
levels. Furthermore, objects remain colored as they are observed, because
the electrons that are excited rapidly lose their energy to their immediate
surroundings as heat (i.e., at a different frequency) and hence the number

Table 16.2 Absorption maxima and colors of transition-metal ions in soda-lime silicate
glasses

Ion

Cr3+

V3"
Fe2+

Mn3+

Mn2+

Ni2+

Cu2+

Number of
d electrons

1
2
6
4
5
8
9

Absorption
maximum, nm

0.660
0.645
1.100
0.500
0.435
1.330
0.790

Coordination
number with oxygen

6
6
4 or 6?
6
4 or 6?
6
6

Color

Green
Green
Blue
Purple
Brown
Purple
Blue
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of ions available for excitation remains approximately constant even though
absorption occurs.

Absorption by color centers produced by radiation or reduction

It is often observed that ceramics, especially oxides, will turn black when they
are heavily reduced or exposed to strong radiation for extended periods. In
either case, the formation of color centers is responsible for the observed
phenomena. A color center is an impurity or a defect onto which an electron
or a hole is locally bound. For example, how the reduction of an oxide
can result in the formation of both VQ and VQ defects was discussed in
some detail in Chap. 6 (see Fig. 6.4a and b). In the context of this chapter,
both are considered color centers. If EJ for these defects is the
energy needed to liberate the electron into the conduction band (see
Fig. 7.12c), it follows that light of that frequency will be absorbed. Note
here that all incident wavelengths with energies equal to or greater than
£"</, and not just the ones that are w Ed, will be absorbed because electrons
can be promoted into any level in the conduction band, because of the latter's
finite width.

The formation of color centers in the alkali halides, especially silver, has
been studied extensively and in great detail, in an attempt to understand the
photographic process. At least half a dozen color centers have been identified
in these materials, of which the most widely studied is probably the F center,
defined as an electron trapped at an anion vacancy. The name comes from
the German word for color Farbe. In the case of KBr, the F center
(Fig. 16.7) is believed to be an electron trapped at a bromine vacancy. The
F center can be modeled by assuming the electron is trapped in a box of
side d, which scales with the lattice parameter of the alkali halide. The F
center transition is believed to be between the ground and first excited
state of this particle in a box. This model, while crude, qualitatively explains
the data for some of the alkali halide F center spectra.

Absorption by microscopic second phases

Small metallic particles dispersed in glasses scatter light and can create strik-
ing colors. This phenomenon is essentially a scattering effect and is discussed
in greater detail in the next section.

WORKED EXAMPLE 16.4

Given the band structure shown in Fig. 16.12a, schematically sketch the optical
absorption spectrum as a function of incident photon energy. Also discuss the
expected photoconductivity. The arrows in Fig. 16.12a denote the allowable
transitions. All others are not allowed.
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60
Si

Incident photon energy, eV

(a) (b)

Figure 16.12 (a) Energy-level diagram, (b) Corresponding optical response.

Answer

The absorption spectrum is shown in Fig. 16.126 and is characterized by the
following: below E\ there is no absorption. The first absorption peak centered
on E1 corresponds to the excitation of an electron from the ground state to the
excited state of the imperfection. This transition does not affect the photoconduc-
tivity, however, because the electron is still localized. The next absorption centered
on E-, is due to the excitation of an electron from the ground state of the imperfec-
tion to the conduction band. This will give rise to a current. Finally, the last
absorption centered on E? is due to the intrinsic transitions across the band gap.

16.3.3 IR range

Ionic polarization

This phenomenon was dealt with in detail in Sec. 14.4.2. As the frequency of
the incident light approaches the natural frequency of vibration of the ions in
a solid u;ion, resonance occurs and energy is transferred from the incident light
to the solid. In other words, the incident wave is absorbed. The frequency at
which this occurs is called the IR absorption edge; as discussed in Sec. 14.4.2.
it depends on the strength of the ionic bond as reflected by the natural
frequency of vibration of the ions u;ion, their charges, and their mass. These
factors and their effect on the IR absorption edge are clearly demonstrated
in Fig. 16.13, where the IR absorption edge is plotted as a function of
frequency of incident light for a number of ceramic crystals.

16.4 Scattering and Opacity

Given that most ceramics have band gaps in excess of 1 eV (see Table 2.6).
and based on the foregoing discussion, the inevitable conclusion is that
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Figure 16.13 Infrared absorption edges of select ceramic crystals. Note the correlation
between the IR edge and the melting points of the solids.

most ceramics are intrinsically transparent. However, everyday experience
indicates that with the notable exception of glasses, most ceramics are not
transparent but rather are opaque. As noted above and elaborated on in
this section, the reason for this state of affairs is not related to any absorption
mechanisms per se, but is due to scattering of incident light by pores and/or
grain boundaries present within the ceramic. Note that dense single crystals
of most ceramics are indeed transparent, with gems being excellent examples.

Systems that are optically heterogeneous scatter light such as trans-
parent media containing small particles or pores. Scattering is probably
most easily described as being reflections from internal surfaces. Figure
16.14 schematically illustrates how a light beam is scattered by an isolated
spherical void. Note that the emerging rays are no longer parallel.

By neglecting multiple and intrinsic scattering and absorption due to
impurities, Eq. (16.18) simplifies to

LL
k (16.22)

where as was defined earlier as the scattering coefficient, sometimes referred
to as the turbidity or extinction coefficient.

Assuming there are Ns scatterers per unit volume, each with a radius ry,
it follows that the intensity scattered per unit volume in any given direction is
simply proportional to Nx times the intensity scattered by one particle. In
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Figure 16.14 Light scattering by a spherical pore in an otherwise homogeneous medium.

other words

(16.23)

where Qs is a dimensionless constant that depends on the angle between the
incident and scattered light as well as the relative size of the particles to
the wavelength of the incident light.

At this point it is useful to consider two limiting cases. First are the
particles whose dimensions are small with respect to the wavelength of
the light, that is, ry <g; A. In this case, the scattering in the forward direction
is equal to the scattering in the backward direction, and it can be shown
that302

( r \
Qs = (Const) I (" ~ (16.24)

where the n/ represent the refractive indices of the matrix and scattering
particles. This type of scattering is known as Rayleigh scattering and pertains
to single scattering by independent spheres of identical size. In other words.
this is under experimental conditions in which the particles are so far from
one another that each is subjected to a parallel beam of light and has
sufficient room to form its own scattering pattern, undisturbed by the
presence of other particles (see App. 16B for more details).

Second are particles that are very large compared to the wavelength of
light, or rv » A. Here it can be shown that the total energy scattered is simply
twice the amount it can intercept, or

Qs = 2 16.25)

See. e.g.. H. C. van de Hulst, Light Scattering hy Small Particles. Dover. New York. 1981.
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In other words the total light scattered by a particle of radius rv is simply
twice the cross-sectional area of that particle303

Finally, note that if the volume fraction of the scattering phase isfp, then
/• _ 4 3

Jp — 3 / l ' .v (16.26)

Based on the preceding discussion, the following salient points are
noteworthy:

1. Scattering of small particles is a very strong function of the wavelength
of incident radiation. Consequently, blue light is scattered much more
strongly than red light. This phenomenon is responsible for blue skies
and red sunsets. At sunset, the sun is observed directly, and it appears
red because the blue light has been selectively scattered away from the
direct beams. During the day, the molecules and dust particles in the
atmosphere scatter the blue light through various angles, rendering
the sky blue.

2. Scattering by small particles occurs only to the extent that there is a
difference between the refractive indices of the matrix and of the

Particle diameter (jum)

Figure 16,15 Effect of particle size on the scattering coefficient of a fixed volume of
particles. The light used was monochromatic, with a wavelength of 0.589 urn.

503 That a particle of area A removes twice the energy it can intercept is known as the extinction
paradox. After all, common experience tells us that the shadow of an object is usually equal
to the object — not twice as large! The paradox is removed when the assumptions made to
derive Eq. (16.25) are taken into account, namely, that all scattered light including that at
small angles is removed and (2) the observation is made at a very great distance, i.e., far
beyond the zone where a shadow can be distinguished.
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scatterers. In ceramics, pores, with n = 1, are very potent scatterers. It is
for the same reason that TiO2 is added to latex to create white paint.

3. Scattering is a strong function of particle size. By assuming a fixed
volume of particles and combining Eqs. (16.23), (16.24), and (16.26).
it is not difficult to show that for very small particles, as is proportional
to r3

s. Conversely, by combining Eqs. (16.23), (16.25), and (16.26), the
result that as scales as 1/rs is readily obtainable. The effect of particle
size on the scattering coefficient is illustrated in Fig. 16.15. The maxi-
mum in scattering occurs when the particle size is about equal to the
wavelength of incident radiation.

Experimental Details: Measuring Light Scattering

A typical arrangement for the study of light scattering is shown in Fig. 16.16.
The detector is mounted so that it can measure the angular dependence 0 of
the intensity of the scattered light from the direction of the incident beam.
The scattering coefficient as is determined by the integration of the scattered
intensity at all angles to the incident beam. Note that this arrangement is
needed to differentiate between scattering and absorption.

Light source

o

Figure 16.16 Basic construction of light-scattering apparatus.

16.5 Fiber Optics and Optical Communication

A fiber-optic waveguide is a thin device composed of a high-refractive-index
substance which is completely surrounded by a lower-refractive-index one.
The situation is depicted in Fig. 16.170, where according to SnelFs law,

n sin 0 = n' sin o (16.27)

If the angle of incidence is greater than a critical angle 0r total internal
reflection will occur rather than refraction, as shown in Fig. \6.\lb. This
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Figure 16.17 (a) Snell's law of refraction, (b) Total internal reflection, (c) Light rays from
point source enter at many angles. Rays that impinge at an angle that is less than the
critical angle are guided down the optical waveguide by total internal reflection.

angle is given by Snell's law when 0' = 90°, or

sin (f)c — —
n

(16.28)

Thus in an optical waveguide, some of the light which is launched into the
high-index core is carried along that region by reflecting off the interface
with the low-index cladding, as shown in Fig. 16.17c.

The process of optical telecommunications consists of four parts:

1. The electric signal is coded digitally and converted to an optical signal.
2. The optical signal consisting of high-frequency laser pulses is sent along

the waveguide, which is a silica fiber with a core and a cladding. The core
carries the light, and the cladding guides the light through the core.

3. As the light travels along the fibers, it broadens and weakens; hence, the
signals have to reamplified periodically.

4. The signal is received and decoded by converting the light pulses back to
electric signals in a form that a telephone or computer can interpret.

What is of interest in this section is the transmission medium and what
limits the length over which the light pulses that represent the digital 0s or 1s
can be transmitted without distortion or attenuation.

For short distances of roughly 1 km or less, polymer waveguides can
be used. For longer distances, however, the losses are unacceptable and
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inorganic glasses have to be used. To date, the material of choice is extremely
pure silica glass fibers. Ideally an optical fiber should be loss-free, in which
case the signal would not be attenuated. The attenuation is usually expressed
in decibels (dB) as

,~ ,~, / power output \ .„, ITdB = 10 log - ^— = 10 log —
\ power input / 70

16.29)

where IT/I0 is the ratio of the intensity at the detector to that at the source.304

A number of phenomena contribute to the scattering, absorption, and
overall deterioration of an optical signal as it travels down a waveguide.
These are discussed in some detail in the following sections. Typical absorp-
tion or loss data for a silica optical fiber are shown in Fig. 16.18, where the
following salient points are noteworthy:

1. Above 5 urn, absorptions of the Si-O—Si bond network, i.e.. ionic
polarizations, become important.

2. Trace amounts of impurities, particularly transition-metal oxides, can
have a profound effect on absorption due to electronic transitions
alluded to earlier. Furthermore, the presence of Si-OH in the glass
can cause significant absorption due to overtones of the O—H bond
vibrations. It is important to control these impurities since they lie in
the useful transmission window. For example, it has been estimated
that one part per billion of these impurities could lead to 1 dB/km loss
in silicate glass (see Prob. 16.25).

Electron transitions

Scattering

o.i 0.5 1.0 5.0

Wavelength (//m)

Figure 16.18 Sources of optical losses in fused silica.305

10 50

304 The conversion from absorbance to dB/km is 1 dB/km —0.23km - 1 (see Prob. 16.23).
305 Adapted from W. G. French, Journal of Material Education. Penn State University Press.

College Park. Pennsylvania, 1979. p. 341.
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3. Electronic transitions of the glass become important at wavelengths
shorter than 0.5 um.

4. Density and composition fluctuations are inherent in glasses and lead to
scattering. For example, Rayleigh scattering in fused silica amounts to
about 0.7dB/km at 1 urn. Since scattering scales as 1/A4, it becomes
most important at shorter wavelengths.

In addition to these mechanisms, scattering due to defects such as pores,
inclusions, or dust particles introduced in the fiber during processing have to
be eliminated. Another source of scattering is irregularities in fiber diameter;
this is especially important if the diameter fluctuations are regularly and
closely spaced (<1 mm apart).

Another limitation to the information-carrying capacity of a fiber
waveguide is how close together the light pulses can be transmitted without
overlapping. This is usually determined by pulse broadening. One reason for
this is called differential delay, which results from light traveling different
paths through the fiber. To avoid the problem, waveguides are often
constructed with a graded index, with the composition at the center being
silica-doped with germania and the amount of germania decreasing radially
outward. Since germania has a higher n than silica, n will decrease with
increasing distance from the center of the fiber. Given that light travels
faster in low-index media, the light waves that travel off center travel at a
faster rate than those transmitted down the center of the fiber, which tends
to minimize the undesirable broadening.

The transmission capacity, defined as the highest bit rate times the maxi-
mum transmission length, has increased by roughly an order of magnitude
every 4 years since 1975. By 1978, 1 billion bits (1 Gbit) could be transmitted
each second through a system 10 km long. The transmission capacity was
thus 10 gigabit-kilometers per second. During the next 3 years, improved
technology increased capacity to 100 Gbit • km/s. This was done by reducing
the size of the core to create "single-mode" fibers, which forced the light to
travel at nearly uniform velocity, which greatly reduced dispersion. The
second advance was in developing transmitters and receivers that could
handle light at 1.3um, a wavelength in which silica is more transparent
(Fig. 16.18). In 1982, the third generation began to appear as researchers
developed processing techniques that increased the purity of the silica
fibers in the 1.2 to 1.6um range. This improvement raised the transmission
capacity to hundreds of gigabites.

The development of erbium-doped silica glasses in the late 1980s
ushered in a new generation of light wave communications systems with
transmission capacities on the order of thousands of gigabit-kilometers per
second. The Er ions embedded in the glass amplify the signal as they
absorb infrared radiation produced by a laser diode chip at a wavelength
of 1.48 or 0.98 um. The light is absorbed by the Er atoms by pumping
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them to a higher energy level. When a weakened signal enters the Er-doped
fiber, the excited Er atoms transfer their energy to the weakened optical
signal, which in turn is regenerated. This was a major breakthrough because
it eliminated the need for signal regenerators or repeaters. The repeaters
convert the light to an electric current, amplify the current, and transform
it back to light. The Er-doped fibers do not interrupt the path of the light
as it propagates through the fiber, and much longer cables are now possible.

16.6 Summary

When electromagnetic radiation proceeds from one medium to another,
some of it is reflected, some is absorbed, and some is transmitted.

1. Electronic polarization results in the retardation of EM radiation, which
is directly responsible for refraction. The index of refraction n quantifies
the degree of bending or retardation, n is directly related to electronic
polarization, which in turn is determined by the polarizability of the
atoms or ions in the solid. The more polarizable the ions or atoms,
the larger n.

2. The reflectivity of a surface depends on its index of refraction as well.
Insulators with high indices of refraction are more reflective than ones
with low n's.

3. The processes by which light is absorbed by solids are several and
include:

• The photoelectric effect where electrons absorb the incident light
and are promoted into the conduction band. For this process to
occur the energy of the incident light has to be greater than the
band gap of the material. For ceramics this energy is typically in
the UV range.

• The split in energy of transition-metal ion d and f orbitals, as a
result of their interaction with their local environment, gives rise
to selective absorption in the visible range. It is this absorption
that is responsible for the striking colors exhibited by some glasses
and gems.

• Reduction and radiation can give rise to color centers defined as an
impurity or defect onto which an electron or hole is locally bound.
The localization of the electron and its promotion to higher
energy levels give rise to absorption.

4. In the IR range, absorption is usually associated with ionic polarization
in which the ionic lattice as a whole absorbs the radiation and starts
vibrating in resonance with the applied field. The most important
factor is the strength of the ionic bond; stronger bonds result in
higher resonance frequencies.
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5. In addition to absorption, light can be scattered in different directions. Scat-
tering is distinguishable from absorption in that the energy of the incident
light is not absorbed by the sample but simply scattered in various direc-
tions. Scattering is a complex function of the density of scatterers, their
relative size with respect to the wavelength of the incident light, and the rela-
tive values of the refractive indices of the scatterers and the medium in
which they reside. In general scattering is at a maximum when the size of
the scatterers is of the order of the wavelength of the incident light.

6. Optical communication depends on the ability of very thin silica fibers to
transmit light signals over large distances with little attenuation. The
glass fiber is designed such that its outside surface has a lower refractive
index than its center, which results in the total internal reflection of
the optical signal within the fiber. In other words, the light signal is
confined within the fiber with little loss and essentially acts as an optical
waveguide.

Appendix 16 A

Coherence

A requirement for refraction, reflection, and diffraction is that the light
beams be coherent.

Typically, light from common sources such as the sun or incandescent
lamp filaments is incoherent because the emitting atoms in such sources act
independently rather than cooperatively. Coherent and incoherent light are
treated differently. For completely coherent light, the amplitudes of the
waves are added vectorially, and the resultant amplitude is squared to
obtain a quantity proportional to the resultant intensity. For completely
incoherent light beams, first the amplitudes of the light are squared to
obtain a quantity proportional to the intensities and then the intensities are
added to obtain the resultant intensity. This procedure is consistent with the
fact that for completely independent light sources, the intensity at every
point is greater than the intensity due to either of the light sources acting alone.

Appendix 16B

Assumptions Made in Deriving Eq. (16.24)

Four assumptions are made in deriving Eq. (16.24):
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1. The scattered light has the same frequency as the incident light, which in
turn is monochromatic, i.e., confined to one frequency.

2. The scatterers are assumed to be independent; i.e., there are no co-
operative effects between scatterers, hence there is no systematic relation
between the phases of the scattered beams. To ensure independent
scattering, it is estimated that the distance between scatterers should
be about 3 times the radius of the particles. This assumption allows
for the intensities scattered by the various particles to be simply added
without regard to phase. In other words, intensities rather than ampli-
tudes are added, as noted above.

3. Multiple scattering is neglected. In other words, it is assumed that each
particle is exposed to the light of the original beam. Scattering where a
particle is exposed to light scattered by other particles is termed multiple
scattering and is neglected. To ensure that this condition is met. the
sample has to be thin or dilute. This implies that if there are Ns scattering
centers, the intensity of the scattered beam is simply Ns times that
removed by a simple particle.

4. The scattering centers are isotropic and the same size.

Problems

16.1. Typical values for k" for ceramics range from 0.01 to 0.0001. Estimate
the value of adc below which it can be safely neglected when one is
dealing with optical properties. State all assumptions.

Answer: R; 0.01 l / ( f J - m )

16.2. (a) Refer to Table 16.1. Identify the materials with the highest and
lowest values of n. Explain the differences in terms of what you
know about polarizabilities of the constituent ions.

(b) What differences in the indices of refraction and dispersion
would you expect between LiF and PbS? Explain.

(c) Which oxide would you expect to have the higher index of refrac-
tion, MgO or BaO? Explain.

16.3. If a highly reflective surface is required, should one use a material with
a high or low index of refraction? Explain.

16.4. One way to tell whether a glass plate is made of pure silica or soda-
lime silica glass is to view it on edge. The silica plate is clear, whereas
the window glass is green. Explain.

16.5. It was noted in Experimental Details that it is possible to measure aa

by measuring the transmission of two different samples of different
thicknesses that have identical reflectivities. Describe the experimental
setup you would use to carry out the measurements, what you would
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measure, and how you would extract a from the results you obtain.
Why is it important that the two samples have the same reflectivity?

16.6. For an ion for which eBL = 10m - 1 % -1, answer the following
questions:
(a} If the concentration of the light-absorbing ions in a solution is

tripled, how does the transmission change if the thickness is 1 cm?

Answer. I\ = 1.22/2
(b) How must the thickness of the sample be altered to keep the

transmission invariant through the two solutions?

Answer. x\ — 3x2

16.7. A 40-cm glass rod has an absorption coefficient aa of 0.429 m - 1 . If 50
percent of the light entering one end of the rod is transmitted, determine

(a) The scattering coefficient as

Answer: 1.304m-1

(b) The total coefficient atot

Answer: 1.733m-1

16.8. (a) Experimentally in IR absorption, two absorption bands are
measured at 3000 and 750cm -1. One is suspected to be due to
a C—H stretching vibration, while the other is suspected to be
due to a C—Cl stretching vibration. Assign each absorption
band to its appropriate bond. Explain your answer.

(b) Repeat part (a) for C—O and C=O; the absorption bands meas-
ured were at 1000 and 1700cm-1. Which band corresponds to
which bond? Explain your answer.

16.9. (a) Weaker bonds and heavier ions are preferable for extended IR
transmission. Is this statement true or false? Explain, using
examples from Fig. 16.9.

(b) Which of the following three materials will transmit IR radiation
to the longest wavelength, MgO, SrO, or BaO? Explain.

16.10. Which of the following materials do you anticipate to be transparent
to visible light? Explain.

Material Diamond ZnS CdS PbTe

Band gap, eV 5.4 3.54 2.42 0.25

16.11. (a) What material would you use for a prism for infrared investi-
gations?

(b) Which material would you use in making lenses for an ultraviolet
spectrograph?
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16.12. The transmitted light through a 5-mm sample of CdS which has a
band gap of 2.4 eV is observed. Under these conditions, what is
(a) The color of the sample?
(b) Cu can dissolve in CdS as an impurity and has an energy level

that is normally, in the dark, electron-occupied and lies 1.0 eV
above the valence band of CdS. What color changes, if any.
would you expect as the Cu concentration increases from 1 to
1000 ppm?

(c) The band gap of CdS changes with temperature according to
Eg = 2.56-5.2 x 10-4T. What color changes do you expect in
the transmitted light as CdS is heated from 0 to 1000 K?

16.13. Crystals of NaCl show strong absorption of electromagnetic radiation
at a wavelength of about 0.6 um. Assume this is due to the vibration of
individual atoms.
(a) Calculate the frequency of vibrations.

Answer. 5 x 1012 Hz

(b) Calculate the potential energy of a sodium ion as a function of
distance r from its equilibrium position, assuming the vibration
to be simple harmonic.

Answer: 1.89 x 10-4r2 J, where r is in angstroms

16.14. Calculate the ratio of molecules in a typical excited rotational, vibra-
tional, and electronic energy level to that in the lowest energy state at
25 and 1000°C, taking the levels to be 30, 1000, and 40,000cm-1,
respectively, above the lowest energy state.

16.15. The experimental values for absorption energies in electron volts of F
centers in alkali halides are listed below. Plot these values as a func-
tion of lattice parameter, and develop a qualitative model to explain
the results. Hint: Think of a particle in a box.
LiCl 3. leV NaCl 2.7 eV KC1 2.2 eV RbCl 2.0 eV

16.16. Using sketches, explain why s and p orbitals are unaffected (i.e.. do
not split) by ligands in octahedral fields.

16.17. Rayleigh scattering is a strong function of particle size. Plot the func-
tional dependence of the scattering coefficient as a function of r for a
given wavelength of light and volume fraction of scattering particles.

16.18. Typically, TiO2 particles are added to latex, a polymeric base with a
refractive index of 1.5, to make white paint.
(a) Discuss why TiO2 is a good candidate for this application.
(b) On the market you find three TiO2 particle sizes with narrow

distributions and an average particle size of 0.2. 2.0, and
20 (am. Which would you use to make white paint, and why?
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16.19. A 40-cm glass rod absorbs 15 percent of the light entering at one end.
When it is subjected to intense radiation, tiny particles are produced
in it that give rise to Rayleigh scattering. After radiation the rod trans-
mits 55 percent of the light. Calculate

(a) The absorption coefficient au

Answer. 0.406m-1

(b) The scattering coefficient as

Answer: 1.09m-1

16.20. The surface of a glass plate is rough on the scale of the incident light
wavelength. Use a sketch to show what happens when the beam of
light strikes the surface at a glancing incidence. Show what happens
when the surface is wet with a liquid of equal refractive index.

16.21. Why do car headlights appear brighter when the road is wet?

16.22. (a) Explain why optical waveguides often have a refractive index
gradient.

(b) Show how n can be calculated given knowledge of the critical
angle.

16.23. Show that 1 dB/km = 0.23 km - 1 .

16.24. (a) In an optical communications network, the ratio of the light
intensity at the source to that at the detector is 10-6. What is
the loss in decibels in this system?

Answer: *— 60 dB

(b) The attenuation of ordinary soda-lime silicate glass is about
–3000 dB/km. What fraction of the light signal will be lost in
1 meter?

Answer One-half

16.25. A certain glass containing 500 ppm of Cr3+ ions absorbs 10 percent of
the incident light in 10cm. Assume the Cr3+ ions are responsible for
the absorbance.
(a) What is the absorbance loss in dB/km of the original glass?

Answer: 4576 dB/km

(b) What must the concentration of Cr + be so that the absorbance is
10 percent in 100m?

Answer: 0.5 ppm

(c) Calculate the loss (dB/km) for the 100m sample.

Answer: 4.6 dB/km
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16.26. (a) What is the critical angle for total internal reflection for an opti-
cal fiber with a core refractive index of 1.52 and a cladding of
1.46?

Answer. 74°

(b) Repeat part (a) for a system for which the core refractive index is
1.46 and that for the cladding is 1.46.

16.27. (a) A ceramic body containing 0.25 vol% spherical pores transmits
50 percent of the incident light and scatters 50 percent in 1-mm
thickness. Estimate the average diameter of the pores. State all
necessary assumptions.

Answer: 10.8 um

(b) Calculate the fraction of light transmitted if the average diameter
of the pores is 1 urn. What does this result imply about the
requirements for obtaining polycrystalline transparent ceramics?

Answer. 0.05 percent

16.28. (a) Assuming the constant in Eq. (16.24) is 30, calculate the fraction
of light transmitted through 5cm of a solution with a concentra-
tion of 102 5m - 3 of scatterers for which the diameter is 1.2nm.
You can assume the incident light is monochromatic with
0.6 um wavelength. You can further assume that the relative
dielectric constant of the solution at this wavelength is 2.25.
while that of the particles is near 1.

Answer. 99.97 percent

(b) Repeat part (a) for particles with a diameter of 6 nm.

Answer. ~15 percent

16.29. (a) Why do you think that low-fat milk is more translucent than
regular milk? Explain.

(b) Why do you think fog headlights are yellow? Explain.

16.30. ZnS has a band gap of 3.64eV. When doped with Cu2+, it emits
radiation at 670 nm. When zinc vacancies are produced by the
incorporation of Cl- ions, the radiation is centered on 440 nm.
(a) Write the incorporation reaction that results in the formation of

the zinc vacancies.
(b) Using a sketch, locate the impurity levels in the band gap in rela-

tion to the valence band.

16.31. You are asked to compare the values of elastic modulus, thermal
conductivity, and thermal expansion coefficients in the temperature
range of 50 to 800°C, of optical-quality polycrystalline MgF2 from
different sources ranging in impurity levels from 300 to 5000 ppm
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impurity content. Do you expect the results to be almost the same or
markedly different for these properties and samples? Explain. List
other physical property measurements that you expect to be (a)
more variable, (b) less variable between samples than those measured.
Explain. What property can you think would be (c) most variable and
(d) least variable between samples? Explain. Include in your list
magnetic, electrical, thermal, mechanical, and optical properties.
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1. J. N. Hodgson, Optical Absorption and Dispersion in Solids, Chapman & Hall,
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H). E. Dusurvire, "Lightwave Communications: The Fifth Generation," Scientific

American, 266:(1) 114, 1993.
11. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, Wiley, New York, 1991.
12. F. A. Jenkins and H. E. White, Fundamentals of Optics, 4th ed., McGraw-Hill,
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3Al2O3-2SiO2 (mullite) thermal expansion
coefficient, 453

3Y-TZP cyclic fatigue, 424
abnormal grain growth, 330, 334
absorbance, 560–563

by impurity ions, 562
absorption, 565–573

constant, 561
index, 557

ac
conductance, 473
conductivity, 473
impedance, 475-476

spectroscopy, 474
activated state during diffusion, 188
activation energy, 183, 234
activity coefficient, definition, 120, 121
activity coefficient, Henrian, 121
activity, definition, 120
activity, measurement, 121
AgBr Frenkel defects, 148–149
AGG, see abnormal grain growth, 334
agglomerates, 377
Al alloy cyclic fatigue, 424
A12O3 (corundum), 30, 52, 61, 62

absorption coefficient, 572
creep, 413
-SiC cyclic fatigue, 424
spectral transmission, 566
thermal conductivity, 458
thermal expansion coefficient, 453
thermal shock parameters, 452

Al2TiO5 thermal expansion coefficient, 453

albite, 74
aliovalent impurities, 164, 171
aliovalent oxides, 197
A1N

dielectric properties, 496
thermal conductivity, 458

o-Agl, 197
«-SiC dielectric properties, 496
alumina cyclic fatigue, 424
aluminosilicates, 74–75
ambipolar diffusion, 176, 191, 212–224,

228
binary oxide, 220
coefficient, 218, 225

AmBnXp type structure, 54
amorphous SiO2, 98
amorphous solid, 3
angular quantum number, 18
anion

definition, 25
packing, 61
polarizability, 93
vacancy, 140

anisotropy energy initial relative
permeability, 527

annealing point, 287
anorthite, 74
antibonding orbital, 34, 35
antiferroelectric ceramic, 545–546
antiferromagnetic material, 513
antiferromagnetism, 523–525
antifluorite and fluorite, 62
antifluorite structure, 59, 61–62, 66

589
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antistructure disorder, 149
Archimedes' principle, 79
asbestos, 72, 73
atomic

diffusivity, 182
mobility, 275
number, 1

attractive restoring force, 99
aufbau principle, 20
axial stresses, 446
AX-type structure, 53
AX2-type structure, 54

B2O3 (boron oxide), 94, 280, 281. 291
band

gap, 38, 39, 41, 197
theory of solids, 38-47

BaO
•2SiO2 optical micrograph, 271
•6Fe2O3, 535

barium titanate, phase transformations,
246

basic oxides, 290
BaTiO3, 507, 539, 540, 541, 542, 544
BCC, see body-centered cubic
Beer-Lambert law, 562
BeO

creep, 413
thermal conductivity, 458
thermal shock parameters, 452

tf-AliOj. 197
3-alumina, 154
3-alumina structure, 199
binary

compounds, 61
ionic compounds, 59-65
oxide, 63, 96

ambipolar diffusion, 220
band gap, 41
dielectric properties, 496
magnetic moment, 530
standard free energies of formation,

124
systems, 247-255

Bloch wall, 525, 527
body-centered cubic, 52
Bohr magneton, 510, 515
Bohr radius, 16

Boltzman constant, 113
Boltzman distribution law. 180. 278
bonding, 13-51
bonding orbital, 34. 35
boride, 97

melting points, 90
Poisson's ratio, 364
Young's modulus. 364

Born exponent. 26
Born-Haber cycle. 31
Born-Lande equation. 30
boundary mobility. 331-334
Bragg diffraction. 231
Bragg reflection condition. 45
Bragg's law. 78
Bravais lattice. 4
bridging oxygen. 70
brittle

failure. 357
solids, 357

Brouwer approximation, 157
Burgers vector. 166. 167. 169. 412

CaCO3, 103
thermal expansion coefficient, 453

cadmium iodide structure. 61. 62
CaF2 (calcium fluorite)

absorption coefficient. 572
structure. 53. 54. 103

capacitance, 467
capacitors and insulators. 494-497
capillary forces. 339-341
capillary forces contact angle. 339-340
carbide, 97

band gap, 41
melting points. 90
Poisson's ratio. 364
Young's modulus. 364

CaSiO3. 280
catastrophic failure. 359
cation

definition. 25
electron configuration. 93
interstitial, 140. 215
ionic potential, 92. 93
polarizing power. 92
vacancy, 140

CCR. see critical cooling rate
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CdI2 layered structure, 91
CdS spectral transmission, 566
ceramic

applications, 8–10
bonding, 13 –51
covalent, 93
defects, 137-174
definition, 2
design, 387 394
fatigue, 422
ferroelectric, 537-547
general characteristics, 7-8
magnetic, 529-536
microcracking, 452–456
microstructure, 6
piezoelectric, 537–547
strength, 373 380
structure, 52-87
surface energy, 105-106
traditional, 7

chain silicates. 74
charge, 482
charged interfaces, 127-129
chemical

diffusion, 225
equilibrium, 122-123
forces, physical properties, 88–109
potential, 119–121

gradient diffusion, 187–190
stability domains, 123–126

chemisorption of water, 420
chevron notch specimen, 367-368
chromophore, 562
Clausius-Mossotti relation, 471
clay, 154
CO2

molecular lattice, 91
structure, 59

coarsening, 304, 313-314
and grain growth kinetics, 327-334
model, 327– 328

Coble creep, 407, 413
coefficient of linear expansion, 94
coercive field, 543
coercive magnetic field intensity, 528
coherence, 581
coherent scattering, 555
coincident grain boundary, 168, 169

color centers, 571
compensation point, 535
complete solid solubility, 247, 249-250
complete solid solutions, 258-260
composite crystal structure, 65-67
compressive failure, 369-370
compressive surface residual strength, 379
conduction band, 38
conductivity, 192, 193
configurational entropy, 113–115

of glass, 284
congruently melting phases, 254
CoO

electrical conductivity, 209
stability domain, 135

cooperatively rearranging regions, 288
coordination number, 30, 54, 56, 80-84
cordierite, 97

thermal conductivity, 458
correlation coefficient, 179
Coulomb's law, 15, 25
coupling coefficient, 522
covalent bond, 23, 33–38, 92
covalent ceramic

refractive indices, 558
structure, 67-69, 93

crack, 137
bridging, 381–382
deflection, 380–381
interior, 360
propagation rates, 417
surface, 360
tip, 358

blunting, 372
plasticity, 371

creep, 132,400,401–415
diffusion, 402–403
dislocation, 411–412
driving force, 403–406
effect of grain size, 414
flow, 313
general, 412-415
law exponent, 402
measurement, 401-402
primary, 401, 402
secondary, 401, 402
steady-state, 401, 402
tertiary, 401, 402
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creep (continued)
viscous, 409–411

cristabolite, 72. 95, 98
critical cooling rate, 278, 279
critical radius, 272
critical stress intensity factor, 363
crystal

growth, 274-277
screw dislocation. 276
standard, 275
surface nucleation, 276

stoichiometry, 54–55
structure and lattice parameters, 77–79
system. 4

crystalline solid, 3
crystallization, 132
CsCl. 30

structure, 53, 54, 59, 61
Csl microstructure, 329
Cu2O electrical conductivity. 208
cubic. 4, 5
cubic close packed, 59-62
Curie constant, 519. 541
Curie temperature, 521, 544, 545
Curie's law, 519
Curie-Weiss law, 521, 539, 541
curvature versus equilibrium pressure, 312
curvature versus partial pressure, 311
curvature versus vacancy concentrations,

312
curved boundary, atomic view. 330
cyclic stress amplitude, 422

d orbital shape, 19
damping constant, 478
Darken-type expression. 222
Debye equation. 489
Debye length, 127–129,477
Debye model. 116
defect, 137–174

anion vacancy, 140
cation interstitial. 140

vacancy. 140
diffusivity. 181–182,225
equilibria. 155–161
formation energies. 166
interstitial impurity, 140
misplaced atom. 140

reactions, 145
substitutional impurity. 140

defective crystal, free energy. 142–145
densification. 304. 314–-315

kinetics. 322–327
versus grain size. 333

density. 76-77. 79
of states. 200, 230-232
theoretical. 332

designing with ceramics. 387-394
devitrification. 286
diamagnetic material. 511. 512
diamond

dielectric properties. 496
lattices. 167

dielectric
breakdown. 494

intrinsic. 494
thermal. 494

constant. 468
displacement, 468
ideal. 471–472
loss. 492–494
nonideal. 472–473
power dissipation. 473–474
properties. 465-506

basic theory. 466-471
measurement. 474-476

spectrum. 491–492
surface. 468
susceptibility. 469

differential delay. 579
differential thermal analysis. 104–105.

285–286
diffusion. 175. 176–192

chemical, 225
coefficients ambipolar. 225

temperature dependence, 184
creep. 402-403
defect, 225
fluxes, 406-409
interdiffusion. 225
measurement. 178-179
self-. 224
tracer. 224. 226

dihedral angle. 305
and pore elimination. 325-327

dilatometrv. 105. 306
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dipolar polarization, 477, 486–491
dynamic response, 489
temperature dependence, 490–491

dipole moment, 469
dislocation, 137, 166, 273

creep, 411–412
from crack tip, 372

dispersion, 559
displacive transformations, 244, 245
dissipation factor, 473
dissociation energy, 32
dissociative chemisorption, 419
dolomite, 294
domain wall, 525, 526
double layer, 127–129
double torsion specimen, 416
drift velocity, 189
driving force, 131–133, 190, 192
driving force for creep, 403-406
DTA, see differential thermal analyser
ductile materials, 357
dynamic fatigue test, 418

e glass, 282
edge dislocation, 166, 167
effective electric charge, 140
effective electron mass, 231
effective ionic radii, 80-84
effective mass, 230-232
effective nuclear charge, 20
Einstein characteristic temperature, 117
Einstein solid, 116
elastic energy, 361
electric

conductivity, 176, 192-212
dipole moment definition, 469
mobility, 194
porcelains, 495
potential gradient diffusion, 190

electrochemical potential, 126-127
gradient diffusion, 191–192

electromagnetic (EM) spectrum, 554
electron affinity, 33
electron

configuration, cation, 93
hole, 139, 205

pair, 155
electronegativity scale, 24

electroneutrality, 145
electronic

conductivity, 193, 194, 200-212
defects, 154–155
entropy, 118
polarizability, 476, 478–484, 556
polarizability microscopic, 484
resonance, 567-568

EMF of galvanic cells, 222–224
energetics of point defects formation, 165
energy barrier, 176, 177
energy of migration, 177
enthalpy, 111-113

change, 142
difference, 89
of formation, 31
of transformation, 132

entropy, 113–118
difference, 89
of fusion, 89, 90

equilibrium constant, 122
equilibrium pressure and effect of surface

curvature, 312
erbium doped silica glasses, 579
Eshellby's method, 433
eucryptite, 74
eutectic

diagrams, 251–252
reaction, 252
temperature, 251, 252

evaporation-condensation, 313, 314
model, 318-319

exchange energy, 522
existence regime, 138
extinction coefficient, 557, 562, 573
extinction paradox, 575
extrinsic defect, 139, 151–154, 171
extrinsic grain growth kinetics, 332
extrinsic-intrinsic diffusion, 183–184
extrinsic semiconductors, 202, 204–207

F atomic orbital, 36
face-centered cubic, 52, 59
failure opening mode (mode I), 371
failure sliding mode (mode II), 371
failure tearing mode (mode III), 371
Fajans' rules, 92
Faraday constant, 126
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fast fracture, 356-399
fast ion conductors, 197. 200
fatigue, 400

ceramics, 422-425
measurement, 422-424

FCC, see face-centered cubic
Fe2O3

creep. 413
microstructure, 310

Fe3O4 (magnetite), 507, 531
feldspar, 294
Fe-O

chemical stability domains. 125
phase diagram, 162, 163

Fermi
distribution function, 201
energy function, 200

ferrimagnetism. 523–525
ferroelectric, 477, 507. 508

ceramic, 537–547
domain, 543–545

wall thickness, 544
structure. 539-542

ferromagnetic material, 511, 513
ferromagnetism, 521-523
fiber-optics. 553, 576-580
FIC. see fast ion conductors
Pick's first law. 177. 193. 218. 220, 225. 228.

229-230
Pick's second law, 178
first ionization energy, 21–22
flaw sensitivity, 358-360
fluorite, 30

and antifluorite, 62-63
structure, 61

formation of glasses, 266-280
forming glass-ceramics, 294
formula unit, 310
forsterite thermal conductivity. 458
fracture. 132

atomistic aspects, 370-373
energy criteria, 360-369
mechanism maps, 430-432
stress. 366-367
toughness. 358–373

free electron. 139
kinetic energy, 47–48

free energy. 111–122

defective crystal. 142-145
of formation of oxide. 132
perfect crystal, 142

free surface energies of solids. 103. 168. 273
Frenkel defect. 138. 146. 147–148. 165. 170.

235
pair. 155,237

Frenkel equation. 320
Fresnel's formula, 560
friction factor. 478
fused silica. 97. 282

GaAs spectral transmission. 566
galvanic cell. EMF. 222-224
garnet. 74

magnetic moment. 530. 533-535
GeO2 (germania). 59. 94. 280. 281
Gibbs free energy. 111, 142
Gibbs phase rule. 262
Gibbs-Duhem relation. 129–131. 218
Gibbs-Thompson equation. 310. 346
glass. 97. 265-301

creaming. 294
dielectric properties. 496
formation. 266-280. 294

ability. 280
criteria. 280
kinetics. 277-280
liquids. 94

growth. 294
mixing and melting. 294
nucleation. 266–274
Poisson's ratio. 364–365
properties. 283, 294–296
refractive indices, 558
sintering micrograph. 321
spectral transmission. 566
structure. 280-283
thermal conductivity. 458
transition temperature. 283-286

temperature measurement. 285-286
Young's modulus. 364-365

glide plane. 167
grain boundary. 6. 137. 273

chemistry. 169
diffusion. 313. 325
diffusion model. 320
enerev. 132
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migration, 325
structure, 168 169

grain growth, 132, 328–331
^ abnormal, 330, 334

kinetics and coarsening, 327–334
grain shape equilibrium, 330
grain size, 377

effect on permittivity, 545
effect on strength, 377–379
MgO-doped alumina, 308
versus densification, 333

density trajectories, 306, 307
green density, 334
green microstructure, 334
Griffith criterion, 360–369
Griffith flaws, 449
growth in glass-ceramics, 294

H atomic orbital, 36
halide, 97

band gap, 41
defect formation and migration energies,

166
dielectric properties, 496
melting points, 90
Poisson's ratio, 364–365
refractive indices, 558
Young's modulus, 364-365

hard magnetic material, 528
Hasselman solid, 451
HCP, see hexagonal close-packed
heat capacity, 111

of glass, 284
heat of fusion, 89
heat of vaporization, 32
Heisenberg uncertainty principle, 14
Helmholtz free energy, 403
Henrian activity coefficient, 121
heterogeneous nucleation, 266, 273–274
heterophase boundary, 168
hexagonal, 4, 5
hexagonal close-packed, 52, 59, 62
hexagonal ferrite magnetic moment, 530,

535–536
HF molecule, 35–37
high oxygen partial pressure, 156–160
highest occupied molecular orbital, 40
high-strength steel cyclic fatigue, 424

high-temperature electronic conductivity,
207

HIP, see hot isostatic pressing
HOMO, see highest occupied molecular

orbital
homogeneous nucleation, 266-273
homophase boundary, 168
Hooke'slaw, 100
hoop stresses, 446
hot isostatic pressing, 343-345
hot pressing, 343-345
Hund's rules, 517
hybrid orbital, 37
hybridization, 37
hydrogen atom, 15–16
hydrogen atom, energy level, 17
hydrogen ion molecule, 34–35
hysteresis loop, 526–529, 542-543, 545

ideal dielectric, 471 472
ideal solution, 121 122, 132
idealized ion pair, 92
illmenite structure, 61, 62
impurity incorporation reaction, 152–153
impurity segregation at grain boundaries,

169
inclusions, 137, 332, 375-377
incongruently melting phases, 254-255
initial stage of sintering, 316, 317, 318–322
inorganic glasses, 365
insulator, perfect, 154
interdiffusion, 132, 221–222

diffusion, 225
interfaces, 273
intergranular fracture, 411
interior crack, 360
intermediate

compounds, 252 255
oxygen partial pressure, 156
sintering model, 322-323
stage of sintering, 316, 317
-temperature electronic conductivity,

206
interstitial diffusion, 176, 177, 226
interstitial impurity, 139, 140
interstitial site, 59
interstitial solid solutions, 247–249
interstitialcy mechanism, 176, 177
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intrinsic
absorption, 561
grain growth kinetics, 331–332
semiconductors, 154, 200-204

ion jump polarization, 477, 487
ionic

bond, 23, 25-33
charge, 89
conductivity, 193, 194, 195

effect of doping, 199
measurement, 196–197
versus temperature, 198

diffusivity, 182
displacement polarization, 476-477
polarization, 477, 484-486, 573
potential of cations, 92, 93
radii, 58, 80-84
species, 175

ionization energy, 32
IR absorption edge, 572
island silicates, 74
isothermal TTT diagram, 279

Johnson-Mehl-Avrami equation, 278
jump frequency, 180–181

kaolinite clay, 71, 72, 73
Kauzmann temperature, 290
KBr

absorption coefficient, 572
ionic radius, 58

KC1, 103
absorption coefficient, 572
creep, 413
ionic radius, 58

KIC, see stress intensity factor
kinetic barrier to nucleation, 269
kinetic energy, 361

of free electrons, 47-48
kinetics of glass formation, 277-280
Kroger-Vink diagram, 140, 155-161, 171,

207, 210, 235
Kronig-Penney model, 40

Lande splitting factor, 516
large polaron mechanism, 202, 203
LAS (lithium aluminosilicate), 97
latent heat of vaporization, 32

lattice
constant, 4
diffusion, 314,319-320, 321
diffusion model, 319–320
energy calculations, 28–31
parameters, 4, 75–76

lead silica, 282
lever rule, 249
LiAlSiiOfc (beta-spodumene) thermal

expansion coefficient, 453
LiAlSiO4 (beta-eucryptite) thermal

expansion coefficient. 453
LiF, 103

absorption coefficient, 572
creep, 413
ionic radius, 58

lifetime predictions. 425-432
during creep
during fatigue, 429
during SCG, 425–427

ligand field theory, 568
light scattering measurement, 576
line compounds, 261
linear absorption coefficient, 562
linear defects, 137, 166–168
linear variable differential transformer.

105
LiO2-SiO2 phase diagram. 295
liquid-phase sintering, 303. 304. 337-343

advantages, 337
capillary forces, 339-341
mechanisms, 341–343
particle rearrangement, 341
solution reprecipitation. 341–342
surface energy, 338-339

local electric field, 498-499
lodestone, see Fe3O4

long-range order. 3. 4
Lorentz-Lorentz relation, 471
loss angle, 473
loss tangent, 473
low oxygen partial pressure, 156
low-angle grain boundary, 168, 169
lowest unoccupied molecular orbital. 40
low-temperature electronic conductivity.

206
LUMO, see lowest unoccupied molecular

orbital
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LVDT, see linear variable differential
transformer

Madelung constant, 29, 30
magnetic

ceramics, 529–536
domains, 525–526
entropy, 118
field, 509, 510

intensity, 508, 510
interaction energy, 521
moment, binary oxide, 530

of cations, 518
garnet, 530, 533–535
hexagonal ferrite, 530, 535–536
spinel ferrite, 530–533

properties, 507–552
measurement, 511-513

quantum number, 18
susceptibility, 510

magnetite, 151
magnetization, 509, 510
magnetostriction, 529
majority defects, 159
martensitic transformations, 244
mass action expression, 122–123
mass balance, 145
mean field constant, 522
mean free path, 459
measuring diffusivities, 178-179
melting point, 88–94, 104–105, 132
metal bonding, 2
metal definition, 1
MgAl2O4 (spinel) thermal conductivity,

458
MgAl2O4 flexural strength, 378
MgO (magnesia), 3, 89, 103, 366

creep, 413
crystal equilibrium conditions, 130–131
doped alumina grain size, 308, 309

microstructure, 308
thermal conductivity, 458

Mg-TZP cyclic fatigue, 424
mica, 73–74, 103
microcracking determination, 455
micrograph, glass sintering, 321
micromechanisms of fatigue, 424-425
microstructure, 6, 303

MgO-doped alumina, 308
migration

energies, 166
of grain boundaries, 333

Miller indices, 102
minority defects, 159
misplaced atom, 139, 140, 149
mixed oxide, 96
mixing and melting glass-ceramics, 294
Mn-O phase diagram, 163
MO oxide, 127, 145, 155

defect concentration, 158
modulus of rupture, 373-374
molecular orbital theory, 34
Monkman-Grant equation, 429, 430
monoclinic, 4, 5
MOR, see modulus of rupture
multicomponent silicates, 281-283

Na ion migration enthalpy, 185–186
Na2OSiO2, 291
Na2Si2O5, 280
Na2SiO3, 280
NaAlSi3O8 (albite) thermal expansion

coefficient, 280, 453
Nabarro-Herring creep, 412, 413, 414
Nabarro-Herring expression, 407
NaCl, 30, 89, 103, 146, 280

absorption coefficient, 572
creep, 413
crystal defects, 141
defects, 160–161
edge dislocation, 167
ionic radius, 58
surface energy, 103–104

NaF absorption coefficient, 572
nanolaminate, 10
NBO, see nonbridging oxygen
nearly free electron approximation, 45-47
Neel temperature, 524
negative deviation from ideal solution, 121
Nernst-Einstein relationship, 190, 212,

218, 227, 228
Nernst-Planck expression, 222
net magnetic moment, 510
network formers, 94, 281, 282
network modifiers, 281, 282
neutron diffraction, 77
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nickel arsenide structure, 61
NiO, stability domain, 135
nitride. 97

band gap, 41
melting points, 90
Poisson's ratio, 364
Young's modulus, 364

NMES. see non-metallic elemental solids
nonbridging oxygen, 70
nonideal dielectric, 472-473
nonlinear polarization, 477
nonmetallic elemental solids, 2
nonstoichiometric

compounds, 161–164, 261
defect, 138–139. 149–151
oxides, 161
semiconductors, 202, 207-212

nonstoichiometry, measurement. 164–165
nonwetting system. 338
n-type semiconductor, 204, 205
nucleation, 266-274

rate. 271
measurements, 274

nucleus shielding, 482

octahedral interstitial site, 59, 60
octahedral ligand. 569
Ohm's law, 193, 228
olivine, 72, 74

structure, 61, 62
one-component system. 244-247
optical

communication. 576-580
materials IR range, 573

transmission ranges, 567
UV range, 567-568
visible range. 568-573

networks, 553
properties, 553-587

basic principles. 555-565
measurement. 563

orbital
angular moment, 514-515
electronic configuration. 21–22
magnetic moment, 510

quantum number. 548
notation. 19
shape. 18. 19

orientation anisotropy. 528
orthoclase. 74
orthorhombic. 4, 5
Ostwald ripening, 331. 332. 342
oxidation. 132

metals. 212–213
rates. 213–214

oxide
melting points. 90
Poisson's ratio, 364
refractive indices. 558
Young's modulus, 364

oxides with multiple substitution of ions.
153-154

oxygen partial pressure. 156–160
oxygen vacancies. 156

p orbital shape. 19
P2O5. 94
Palmqvist cracks. 369
parabolic rate constants. 213. 214
parallel plate capacitor. 466
paramagnetic material. 511, 512
paramagnetism. 519-521
partial pressure versus curvature. 311
partial solid solubility. 252-255
partially stabilized zirconia. 385
particle

rearrangement. 341
size. 336-337

Pauling radii. 58
Pauling's electronegativity scale, 24
Pauli's exclusion principle. 14. 34
PbO2 structure. 59
perfect crystal, free energy. 142
perfect solid strength. 99–101
periodic table, inside front cover
peritectic reaction. 255
permeability of a solid. 510
permeability of free space. 510
perovskite (CaTiO,). 54. 66

structure. 59. 61. 66. 539. 545
phase, definition of a. 242
phase diagram

determination. 262
information. 267
KNO2–NaNO:. 252
Li2O–B2O, 255
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LiO2–SiO2, 295
MgO–Al2O3, 253
MgO–CaO, 251
MgO-NiO, 250
Na2O-SiO2, 253
SiO2-Al2O3, 254
ZrO2–CaZrO3, 263

phase rule, 243
phase transformation induced residual

stresses, 455–456
phosphorus pentoxide P2O5, 280, 281
photoelectric effect, 568
physical properties, chemical forces, 88-

109
piezoelectric ceramic, 537–547

crystallography, 537–547
uses, 546–547

Pilling-Bedworth ratio, 215
planar defects, 137, 168-170
Planck's constant, 15
plastic deformation, 166
point defect, 137, 138-166

formation, energetics, 165-166
thermodynamics, 141–145

notation, 139 141
point group, 5
Poisson's ratio, 364-365
polar crystals, 537, 543
polarizability, 470, 482

of anions
polarization, 465, 468

charges, 468-471
microscopic, 469-471

effects, 92
mechanisms, 476-492

polarized ion pair, 92
polaron, definition, 202-203
poling, 547
polyelectronic atom, 20
polymer, bonding, 2
polymorphic transformations, 258
polymorphs, 244
pore, 137,273, 374-375, 376

elimination, 323-327
grain boundary unpinning, 334
shrinkage, 325, 326

positive deviation from ideal solution,
122

power law creep data, 413, 414
preservation of regular site ratio, 145
primary bond, 13
primary creep, 401, 402
principal quantum number, 18
proof testing, 393
PSZ

thermal conductivity, 458
thermal shock parameters, 452
see also partially stabilized zirconia

/j-type semiconductor, 205
Pyrex, 97, 282
pyroelectric crystals, 537

quantum number, 18
quartz, 72, 95, 98, 294

spectral transmission, 566

R curve behavior, 386-387, 422, 424
radial stresses, 447
radii of curvature, 346-347
radius ratio, 55-56, 57, 58
Raman scattering, 555
random walk theory, 179
rational scaling rate constant, 218
Rayleigh scattering, 555, 574, 579
reconstructive transformations, 244, 245
redox reaction, 151
reflectivity, 560
refraction, 556-560
refractive index, 559
relative

dielectric constant, 468
permeability, 510
susceptibility, 510

relaxation time, 489
remnant magnetization, 513, 528
remnant polarization, 543
rhombohedral, 4, 5
Rochelle salt, 507, 541
rock salt, 76

cleavage, 102
structure, 52, 53, 59, 60, 61

Russell-Saunders coupling, 517
rutile, 30

structure, 53, 54, 59, 61, 63, 64, 91

S/N curves, 422, 423
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sapphire, 373
spectral transmission, 566

saturation magnetization, 513, 527
scattering and opacity, 573-576
SCG, see subcritical crack growth
Schottky

defect, 138, 146, 170, 183, 185, 221, 235
equilibrium, 156, 184, 191
formation energy, 185

entropy, 185
vacancy pair, 165

Schrodinger's wave equation. 14, 34, 40
screw dislocation, 166

growth, 276
second ionization energy, 21 -22
secondary bond, 13
secondary creep, 401, 402
segregation, 132
self-diffusivity, 178, 224
semiconductor

bonding, 2
perfect, 154

SENB, see single-edge notched beam test
Shannon and Prewitt radii, 58
shape anisotropy, 528
sheet silicates, 71–74
short-range order. 3, 4
Si, 103, 328

atom ground state, 38, 39
dielectric properties, 496
spectral transmission, 566

Si3N4

cyclic fatigue, 424
fracture deformation map, 431

mechanism map, 431
structure, 69, 328, 410
tensile rupture data, 430
thermal conductivity, 458

shock parameters, 452
SiAlON

thermal conductivity, 458
thermal shock parameters, 452

SiC, 3, 328
thermal conductivity, 458

shock parameters, 452
silicate

melting points, 90
structure, 70-75

silicide, 97
melting points, 90
Poisson's ratio. 364
Young's modulus. 364

simple harmonic oscillators, 115
single-edge notched beam test. 367
Si-N-O stability diagram. 135
sintering, 132. 302-355

aids, 336
atmosphere, 335-336
atomic mechanisms, 313–315
definition, 303
green density, 334
green microstructure, 334–335
impurities, 336
kinetics, 306-309. 315-318
local driving force. 309-313
particle size, 336-337
size distribution, 336
solid-state. 303. 304-337
stages. 316-318
temperature, 334

SiO2 (quartz) thermal expansion
coefficient, 453

SiO, (silica), 71,94,95
absorption coefficient. 572
amorphous, 98
erbium-doped. 579
phase transformations. 246-247
structure. 59
thermal conductivity, 458
type structure, 61

small polaron mechanism. 202. 203
Snell's law, 576. 577
SnO2 structure, 59
soda-lime silicate glass, 97

absorption maxima, 570
crack velocities, 417, 418
crack velocities, in water. 417
thermal conductivity. 458

soft magnetic material, 528
softening point, 287
solid electrolytes, 197
solid state

diffusion. 179–187
sintering. 334–337

solid
covalently bonded. 37-38
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formation of, 28-33
free surface energies, 103
theoretical strength, 101

solid-state sintering, 303, 304-337,
342–343

solute, 152
solute drag, 332
solution reprecipitation, 341–342, 409
solvent, 152
space charge polarization, 477–478
special grain boundary, 168, 169
specific volume of glass, 284
spectrophotometer, 563
spin angular moment, 514
spin angular momentum, 516
spin magnetic moment, 510, 516
spin quantum number, 20
spinel (MgAl2O4), 54, 66, 154, 373
spinel ferrite magnetic moment, 530-533
spinel structure, 60, 66-67, 68

inverse, 61, 67
normal, 61, 67

spodumene, 294
spodune, 74
spontaneous microcracking, 453–456
SPT, see strength/probability/time

diagrams
stability criteria, 55
standard chemical potential, 120
standard crystal growth, 275
standard free energies of formation, binary

oxide, 124
static fatigue, 400, 418
static polarization, 488
steady-state creep, 401, 402
Stirling's approximation, 134
stoichiometric

compounds, 161–164, 261
defect, 138

reactions, 145–149
definition, 161
oxides, 161

Stokes-Einstein relationship, 270
stored charge, 467
strain energy, 361-362
strain point, 287
strength

of ceramics, 373-380

effect of temperature on, 379–380
and grain size, 377–379
of perfect solids, 99–101
/probability/time diagrams, 427–429

stress intensity factor, 363
measurement, 366–369

stress redistribution, 359
stress/life curves, 418
structure, 52-87

of glass, 280–283
prediction, 57–59

subcritical crack growth, 400, 415–422,
423, 425–427

measurement, 415–418
substitutional impurity, 140
substitutional solid solutions, 247
sulfide

Poisson's ratio, 364-365
refractive indices, 558
Young's modulus, 364–365

superconductor, 10
surface

compressive layers, 379
cracks, 358, 360
diffusion, 313, 314
diffusion model, 320
energy, 102–104, 105–106,132, 338-339,

362–366
flaws, 137, 377, 328
nucleation growth, 276

symmetry, 75

tangential stresses, 446, 447
ternary

eutectic, 256
oxide dielectric properties, 496
phase diagrams, 255-257

tertiary creep, 401, 402
tetragonal, 4, 5

zirconia polycrystals, 385
tetrahedral

coordination, 56-57
covalent bonding, 167
interstitial site, 59, 60
ligand, 569

tetrakaidecahedron model, 322, 323
theoretic strength of solids, 101
theoretical density, 332
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thermal
breakdown, 494
conductivity, 458-460

measurement, 459–460
mechanisms, 458

entropy, 115–118
expansion, 94–98

anisotropy, 453–455
coefficients, 96–97, 105
mismatch, 455
of glass, 284

properties, 442-464
residual stresses, 443-447
runaway, 494
shock, 447-452

resistance measurement, 448
tolerant solids, 451

stresses. 443-447
tempering of glass, 456-457

thermodynamics, 110–136
barrier to nucleation, 269
factor, 230
point defect formation, 141–145

thermogravimetric measurements, 164–165
ThO2

creep, 413
structure, 59

Ti3SiC2

microstructure, abnormal, 335
microstructure, normal, 335
thermal conductivity, 458
thermal shock parameters, 452

TiB2 thermal conductivity, 458
tight binding, 40
time-temperature-transformation curve,

277

TiO2 thermal expansion coefficient, 453
total angular moment, 514, 516
total entropy, 118
total magnetic moment, 516–517
toughening mechanisms, 380–387
tracer diffusion, 224

coefficient, 179
transference number, 195
transformation toughening. 382-386, 422
transition metal

cations, 568-571
ions, 151

oxide band gap, 41
transmission. 565-573
transmittance, 560-563
transport number. 195
triclinic, 4. 5
tridymite, 72
TTT. see time-temperature-

transformation curve
turbidity, 573
twin boundary, 137
TZP. see tetragonal zirconia polycrystals

UC creep, 413
undercooling, 132, 275
uniform stress. 359
unit cell, 4
UO2 creep. 413

vacancy. 139
concentrations versus curvature. 312
creation. 165
interstitial pair, 170
mechanism, 176. 177

valence band, 38
van der Waals bond. 13
V-F-T, see Vogel-Fulcher-Tammann

equation
Vickers hardness test. 368-369
viscometer, 291, 293
viscosity, 286–293

and composition. 290–293
measurement, 291–293
modifier effect. 292

viscous creep. 409-411
cavitation. 410–411

viscous flow. 313. 409
viscous sintering. 320–321
vitreous silica SiO2, 98, 280. 281. 282
Vogel-Fulcher-Tammann equation. 288
volume diffusion. 313. 324-325
vycor. 282

weak-link statistics. 391
Weibull distributions. 388-389
Weibull modulus. 388. 390. 391. 392. 393.

427

Weibull plot, 390. 428
wetting system, 338. 340
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whisker-reinforced ceramics, 382, 422, 424
window glass, 282
working point, 287
wurtzite, 30
wurtzite structure, 53, 56, 61, 62, 69

X-ray diffraction, 58, 77, 78, 265, 555

Young's modulus, 99–101, 132, 357,
364–365

atomic view, 100
yttria, 63, 65
yttria-doped zirconia, 210
yttria-stabilized zirconia (YSZ), 373
yttrium-iron garnet (YIG), 535

Z, see atomic number
zinc blende (ZnS), 30

structure, 53, 56, 59, 61, 62, 69
zirconia, 98

calcia-stabilized (CSZ), 197, 235, 238
partially stabilized, 385
phase transformations, 245-246
tetragonal polycrystals, 385
tetragonal to monoclinic transformation,

383
toughened ceramics, 386

ZnO
electrical conductivity, 207-208, 236
stoichiometric, 134

ZnS dielectric properties, 496
ZrO2

creep, 413
electrical conductivity, 210–211

ZrSiO4 thermal expansion coefficient, 453
ZTC, see zirconia-toughened ceramics




