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Preface to the second edition

In the ten years since this book was first published there have been many
new developments in the metallurgical field. Rapidly solidified metals and
glasses have come of age; new Al-Li alloys are now used in modern
aircraft; microalloyed (structural) and high purity (pipeline) steels have
become more sophisticated; radically new oxide-dispersed steels have ap-
peared; a number of new memory metals have been developed; the list
could go on. In spite of this, the underlying principles governing all of these
developments have obviously not changed over the years. This is really the
strength of the present text book. From the beginning we aimed to spell out
these principles in a nice, readable way, and one in which undergraduates
could appreciate and be capable of developing for themselves. The present
text is thus deliberately little changed from the original. We have, however,
hopefully corrected any errors, expanded the lists of further reading, and
perhaps, most importantly, included a complete set of solutions to exercises.
We hope that the revised edition continues to be enjoyed and appreciated
in the many Schools of Metallurgy, Materials Science and Engineering
Materials we know to be using our text throughout the world.

In completing this revised edition we are grateful to the many people,
students and professors alike, who have written to us over the last decade.
Particular thanks are due to Dr Wen-Bin Li (University of Luled) for using
a fine tooth-comb in bringing out both obvious and less obvious errors in
the original text. There remain, (inevitably), a few ‘points of contention’
concerning our description of certain phenomena, as raised by some of our
correspondents, but there is nothing unhealthy about that. We should finally
like to thank Dr John Ion (University of Lappeenranta, Finland) for his help
in compiling the Solutions to Exercises chapter.

David Porter and Kenneth Easterling
September 1991



Preface to the first edition

This book is written as an undergraduate course in phase transformations
for final year students specializing in metallurgy, materials science or
engineering materials. It should also be useful for research students in-
terested in revising their knowledge of the subject. The book is based on
lectures originally given by the authors at the University of Luled for
engineering students specializing in engineering materials. Surprisingly we
found no modern treatments of this important subject in a form suitable for
a course book, the most recent probably being P.G. Shewmon’s Trans-
formations in Metals (McGraw-Hill, 1969). There have, however, been some
notable developments in the subject over the last decade, particularly in
studies of interfaces between phases and interface migration, as well as the
kinetics of precipitate growth and the stability of precipitates. There have
also been a number of important new practical developments based on
phase transformations, including the introduction of TRIP steels (trans-
formation induced by plastic deformation), directionally aligned eutectic
composites, and sophisticated new structural steels with superior weldability
and forming properties, to mention just a few. In addition, continuous
casting and high speed, high energy fusion welding have emerged strongly in
recent years as important production applications of solidification. It was the
objective of this course to present a treatment of phase transformations in
which these and other new developments could be explained in terms of the
basic principles of thermodynamics and atomic mechanisms.

The book is effectively in two parts. Chapters 1-3 contain the background
material necessary for understanding phase transformations: thermo-
dynamics, kinetics, diffusion theory and the structure and properties of
interfaces. Chapters 4—6 deal with specific transformations: solidification,
diffusional transformations iu solids and diffusionless transformations. At
the end of the chapters on solidification, diffusion-controlled transforma-
tions and martensite, we give a few selected case studies of engineering
alloys to illustrate some of the principles discussed earlier. In this way, we
hope that the text will provide a useful link between theory and the practical
reality. It should be stated that we found it necessary to give this course in
conjunction with a number of practical laboratory exercises and worked
examples. Sets of problems are also included at the end of each chapter of
the book.

In developing this course and writing the text we have had continuous



Preface to the first edition Xiii

support and encouragement of our colleagues and students in the Depart-
ment of Engineering Materials. Particular thanks are due to Agneta Engfors

for her patience and skill in typing the manuscript as well as assisting with
the editing.

David Porter and Kenneth Easterling
February 1980



1
Thermodynamics and Phase Diagrams

This chapter deals with some of the basic thermodynamic concepts that are
required for a more fundamental appreciation of phase diagrams and phase
transformations. It is assumed that the student is already acquainted with
elementary thermodynamics and only a summary of the most important
results as regards phase transformations will be given here. Fuller treatment
can be found in the books listed in the bibliography at the end of this chapter.
The main use of thermodynamics in physical metallurgy is to allow the
prediction of whether an alloy is in equilibrium. In considering phase trans-
formations we are always concerned with changes towards equilibrium, and
thermodynamics is therefore a very powerful tool. It should be noted, how-
ever, that the rate at which equilibrium is reached cannot be determined by
thermodynamics alone, as will become apparent in later chapters.

1.1 Equilibrium

It is useful to begin this chapter on thermodynamics by defining a few of the
terms that will be frequently used. In the study of phase transformations we
will be dealing with the changes that can occur within a given system, €.g. an
alloy that can exist as a mixture of one or more phases. A phase can be
defined as a portion of the system whose properties and composition are
homogeneous and which is physically distinct from other parts of the system.
The components of a given system are the different elements or chemical
compounds which make up the system, and the composition of a phase or the
system can be described by giving the relative amounts of each component.

The study of phase transformations, as the name suggests, is concerned
with how one or more phases in an alloy (the system) change into a new phase
or mixture of phases. The reason why a transformation occurs at all is because
the initial state of the alloy is unstable relative to the final state. But how is
phase stability measured? The answer to this question is provided by thermo-
dynamics. For transformations that occur at constant temperature and pres-
sure the relative stability of a system is determined by its Gibbs free energy
(G).

The Gibbs free energy of a system is defined by the equation

G=H-TS (1.1)

where H is the enthalpy, T the absolute temperature, and S the entropy of the
system. Enthalpy is a measure of the heat content of the system and is given
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by
H=E+ PV (1.2)

where E is the internal energy of the system, P the pressure, and V the
volume. The internal energy arises from the total kinetic and potential ener-
gies of the atoms within the system. Kinetic energy can arise from atomic
vibration in solids or liquids and from translational and rotational energies for
the atoms and molecules within a liquid or gas; whereas potential energy
arises from the interactions, or bonds, between the atoms within the system.
If a transformation or reaction occurs the heat that is absorbed or evolved will
depend on the change in the internal energy of the system. However it will
also depend on changes in the volume of the system and the term PV takes
this into account, so that at constant pressure the heat absorbed or evolved is
given by the change in H. When dealing with condensed phases (solids and
liquids) the PV term is usually very small in comparison to E, that is H = E.
This approximation will be made frequently in the treatments given in this
book. The other function that appears in the expression for G is entropy (§)
which is a measure of the randomness of the system.

A system is said to be in equilibrium when it is in the most stable state, i.e.
shows no desire to change ad infinitum. An important consequence of the
laws of classical thermodynamics is that at constant temperature and pressure
a closed system (i.e. one of fixed mass and composition) will be in stable
equilibrium if it has the lowest possible value of the Gibbs free energy, or in
mathematical terms

dG =0 (1.3)

It can be seen from the definition of G, Equation 1.1, that the state with the
highest stability will be that with the best compromise between low enthalpy
and high entropy. Thus at low temperatures solid phases are most stable since
they have the strongest atomic binding and therefore the lowest internal
energy (enthalpy). At high temperatures however the — TS term dominates
and phases with more freedom of atom movement, liquids and gases, become
most stable. If pressure changes are considered it can be seen from
Equation 1.2 that phases with small volumes are favoured by high pressures.

The definition of equilibrium given by Equation 1.3 can be illustrated
graphically as follows. If it were possible to evaluate the free energy of a given
system for all conceivable configurations the stable equilibrium configuration
would be found to have the lowest free energy. This is illustrated in Fig. 1.1
where it is imagined that the various atomic configurations can be represented
by points along the abscissa. Configuration A would be the stable equilibrium
state. At this point small changes in the arrangement of atoms to a first
approximation produce no change in G, i.e. Equation 1.3 applies. However
there will always be other configurations, e.g. B, which lie at a local minimum
in free energy and therefore also satisfy Equation 1.3, but which do not have
the lowest possible value of G. Such configurations are called metastable
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Fig. 1.1 A schematic variation of Gibbs free energy with the arrangement of atoms.
Configuration ‘A’ has the lowest free energy and is therefore the arrangement when
the system is at stable equilibrium. Configuration ‘B’ is a metastable equilibrium.

equilibrium states to distinguish them from the stable equilibrium state. The
intermediate states for which dG # 0 are unstable and are only ever realized
momentarily in practice. If, as the result of thermal fluctuations, the atoms
become arranged in an intermediate state they will rapidly rearrange into one
of the free energy minima. If by a change of temperature or pressure, for
example, a system is moved from a stable to a metastable state it will, given
time, transform to the new stable equilibrium state.

Graphite and diamond at room temperature and pressure are examples of
stable and metastable equilibrium states. Given time, therefore, all diamond
under these conditions will transform to graphite.

Any transformation that results in a decrease in Gibbs free energy is
possible. Therefore a necessary criterion for any phase transformation is

AG =G, -G <0 (1.4)

where G; and G, are the free energies of the initial and final states respec-
tively. The transformation need not go directly to the stable equilibrium state
but can pass through a whole series of intermediate metastable states.

The answer to the question ‘“‘How fast does a phase transformation occur?”’
is not provided by classical thermodynamics. Sometimes metastable states can
be very short-lived; at other times they can exist almost indefinitely as in the
case of diamond at room temperature and pressure. The reason for these
differences is the presence of the free energy hump between the metastable
and stable states in Fig. 1.1. The study of transformation rates in physical
chemistry belongs to the realm of kinetics. In general, higher humps or energy
barriers lead to slower transformation rates. Kinetics obviously plays a central
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role in the study of phase transformations and many examples of kinetic
processes will be found throughout this book.

The different thermodynamic functions that have been mentioned in this
section can be divided into two types called intensive and extensive prop-
erties. The intensive properties are those which are independent of the size of
the system such as T and P, whereas the extensive properties are directly
proportional to the quantity of material in the system, e.g. V, E, H, S and G.
The usual way of measuring the size of the system is by the number of moles
of material it contains. The extensive properties are then molar quantities,
i.e. expressed in units per mole. The number of moles of a given component
in the system is given by the mass of the component in grams divided by its
atomic or molecular weight.

The number of atoms or molecules within 1 mol of material is given by
Avogadro’s number (N,) and is 6.023 x 10%.

1.2 Single Component Systems

Let us begin by dealing with the phase changes that can be induced in a single
component by changes in temperature at a fixed pressure, say 1 atm. A single
component system could be one containing a pure element or one type of
molecule that does not dissociate over the range of temperature of interest. In
order to predict the phases that are stable or mixtures that are in equilibrium

at different temperatures it is necessary to be able to calculate the variation of
G with T.

1.2.1 Gibbs Free Energy as a Function of Temperature

The specific heat of most substances is easily measured and readily available.
In general it varies with temperature as shown in Fig. 1.2a. The specific heat
is the quantity of heat (in joules) required to raise the temperature of the
substance by one degree Kelvin. At constant pressure this is denoted by C,
and is given by

oH
Cp = (ﬁ)}) (1.5)

Therefore the variation of H with T can be obtained from a knowledge of the
variation of C, with 7. In considering phase transformations or chemical
reactions it is only changes in thermodynamic functions that are of interest.
Consequently H can be measured relative to any reference level which is
usually done by defining H = 0 for a pure element in its most stable state at
298 K (25 °C). The variation of H with T can then be calculated by integrating
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Fig. 1.2 (a) Variation of C, with temperature, C, tends to a limit of ~3R. (b)
Variation of enthalpy (H) with absolute temperature for a pure metal. (c) Variation
of entropy (§) with absolute temperature.



6 Thermodynamics and phase diagrams

Equation 1.5, i.e.

T
H= f C,dT (1.6)
298

The variation is shown schematically in Fig. 1.2b. The slope of the H-T
curve is Cp.

The variation of entropy with temperature can also be derived from the
specific heat C,. From classical thermodynamics

G _(3s
T (aT),, (17

Taking entropy at zero degrees Kelvin as zero, Equation 1.7 can be inte-
grated to give

TC
S=J “2dr (1.8)
0

as shown in Fig. 1.2c.

Finally the variation of G with temperature shown in Fig. 1.3 is obtained
by combining Fig. 1.2b and c using Equation 1.1. When temperature and
pressure vary the change in Gibbs free energy can be obtained from the
following result of classical thermodynamics: for a system of fixed mass
and composition

dG = —SdT + VdP (1.9)

At constant pressure dP = 0 and

G
(57>p =-5 (1.10)

This means that G decreases with increasing T at a rate given by —S. The
relative positions of the free energy curves of solid and liquid phases are
illustrated in Fig. 1.4. At all temperatures the liquid has a higher enthalpy
(internal energy) than the solid. Therefore at low temperatures G~ > G°.
However, the liquid phase has a higher entropy than the solid phase and the
Gibbs free energy of the liquid therefore decreases more rapidly with increas-
ing temperature than that of the solid. For temperatures up to Ty, the solid
phase has the lowest free energy and is therefore the stable equilibrium
phase, whereas above T, the liquid phase is the equilibrium state of the
system. At T,, both phases have the same value of G and both solid and liquid
can exist in equilibrium. Tp, is therefore the equilibrium melting temperature
at the pressure concerned.

If a pure component is heated from absolute zero the heat supplied will
raise the enthalpy at a rate determined by C, (solid) along the line ab in
Fig. 1.4. Meanwhile the free energy will decrease along ae. At T, the heat
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Fig. 1.3 Variation of Gibbs free energy with temperature.

supplied to the system will not raise its temperature but will be used in
supplying the latent heat of melting (L) that is required to convert solid into
liquid (bc in Fig. 1.4). Note that at T, the specific heat appears to be infinite
since the addition of heat does not appear as an increase in temperature.
When all solid has transformed into liquid the enthalpy of the system will
follow the line cd while the Gibbs free energy decreases along ef. At still
higher temperatures than shown in Fig. 1.4 the free energy of the gas phase
(at atmospheric pressure) becomes lower than that of the liquid and the liquid
transforms to a gas. If the solid phase can exist in different crystal structures
(allotropes or polymorphs) free energy curves can be constructed for each of
these phases and the temperature at which they intersect will give the equilib-
rium temperature for the polymorphic transformation. For example at atmos-
pheric pressure iron can exist as either bcc ferrite below 910 °C or fcc
austenite above 910 °C, and at 910 °C both phases can exist in equilibrium.

1.2.2 Pressure Effects

The equilibrium temperatures discussed so far only apply at a specific pres-
sure (1 atm, say). At other pressures the equilibrium temperatures will differ.
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Fig. 1.4 Variation of enthalpy (H) and free energy (G) with temperature for the
solid and liquid phases of a pure metal. L is the latent heat of melting, Ty, the
equilibrium melting temperature.

For example Fig. 1.5 shows the effect of pressure on the equilibrium tempera-
tures for pure iron. Increasing pressure has the effect of depressing the o/y
equilibrium temperature and raising the equilibrium melting temperature. At
very high pressures hcp e-Fe becomes stable. The reason for these changes
derives from Equation 1.9. At constant temperature the free energy of a
phase increases with pressure such that

3G
(a_P)T =V (1.11)

If the two phases in equilibrium have different molar volumes their
respective free energies will not increase by the same amount at a given
temperature and equilibrium will, therefore, be disturbed by changes in
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Fig. 1.5 Effect of pressure on the equilibrium phase diagram for pure iron.

pressure. The only way to maintain.equilibrium at different pressures is by
varying the temperature.

If the two phases in equilibrium are a and B, application of Equation 1.9 to
1 mol of both gives

dG* = VydP — §dT

1.12
dGP = VBdP — SBdT ( )
If « and B are in equilibrium G* = GP therefore dG* = dGP and
B _ Qu
dP\ _ s -5 _as 1
dT )eq Ve —ve AV

This equation gives the change in temperature dT required to maintain
equilibrium between o and B if pressure is increased by dP. The equation can
be simplified as follows. From Equation 1.1

G* = H* - TS
GP = HP — TSP

Therefore, putting AG = GP — G* etc. gives
AG = AH — TAS

But since at equilibrium G® = G*, AG = 0, and
AH — TAS =0

Consequently Equation 1.13 becomes

dp AH
(dTeq> T T AV (1.14)

€q
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which is known as the Clausius—Clapeyron equation. Since close-packed
y-Fe has a smaller molar volume than a-Fe, AV = V) — Vi < 0 whereas
AH = HY — H® >0 (for the same reason that a liquid has a higher enthalpy
than a solid), so that (dP/dT) is negative, i.e. an increase in pressure lowers
the equilibrium transition temperature. On the other hand the 6/L equilib-
rium temperature is raised with increasing pressure due to the larger molar
volume of the liquid phase. It can be seen that the effect of increasing
pressure is to increase the area of the phase diagram over which the phase
with the smallest molar volume is stable (y-Fe in Fig. 1.5). It should also be
noted that e-Fe has the highest density of the three allotropes, consistent
with the slopes of the phase boundaries in the Fe phase diagram.

1.2.3 The Driving Force for Solidification

In dealing with phase transformations we are often concerned with the
difference in free energy between two phases at temperatures away from the
equilibrium temperature. For example, if a liquid metal is undercooled by AT
below Ty, before it solidifies, solidification will be accompanied by a decrease
in free energy AG (J mol™') as shown in Fig. 1.6. This free energy decrease
provides the driving force for solidification. The magnitude of this change can
be obtained as follows.
The free energies of the liquid and solid at a temperature 7 are given by

G- =H" - Ts"
G5 =HS - TS®
Therefore at a temperature T

AG = AH — TAS (1.15)

Fig. 1.6 Difference in free energy between liquid and solid close to the melting point.
The curvature of the G5 and G* lines has been ignored.
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where
AH = H* — HS and AS =S-S5

At the equilibrium melting temperature T, the free energies of solid and
liquid are equal, i.e. AG = 0. Consequently

AG=AH - T,AS =0
and therefore at T,

AH L
AS T. " T. (1.16)
This is known as the entropy of fusion. It is observed experimentally that
the entropy of fusion is a constant =R(8.3 J mol~! K™') for most metals
(Richard’s rule). This is not unreasonable as metals with high bond strengths
can be expected to have high values for both L and Ty,.

For small undercoolings (AT) the difference in the specific heats of the
liquid and solid (C5 — C}) can be ignored. AH and AS are therefore approx-
imately independent of temperature. Combining Equations 1.15 and 1.16
thus gives

AG =L - Ti
=~ T
i.e. for small AT
LAT
AG = T (1.17)

This is a very useful result which will frequently recur in subsequent chapters.

1.3 Binary Solutions

In single component systems all phases have the same composition, and
equilibrium simply involves pressure and temperature as variables. In alloys,
however, composition is also variable and to understand phase changes in
alloys requires an appreciation of how the Gibbs free energy of a given phase
depends on composition as well as temperature and pressure. Since the phase
transformations described in this book mainly occur at a fixed pressure of
1 atm most attention will be given to changes in composition and tempera-
ture. In order to introduce some of the basic concepts of the thermodynamics
of alloys a simple physical model for binary solid solutions will be described.

1.3.1 The Gibbs Free Energy of Binary Solutions

The Gibbs free energy of a binary solution of A and B atoms can be
calculated from the free energies of pure A and pure B in the following way.
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It is assumed that A and B have the same crystal structures in their pure states
and can be mixed in any proportions to make a solid solution with the same
crystal structure. Imagine that 1 mol of homogeneous solid solution is made
by mixing together X, mol of A and Xp mol of B. Since there is a total of
1 mol of solution

Xa+Xg=1 (1.18)

and X, and Xy are the mole fractions of A and B respectively in the alloy. In
order to calculate the free energy of the alloy, the mixing can be made in two
steps (see Fig. 1.7). These are:

1. bring together X, mol of pure A and Xy mol of pure¢ B;
2. allow the A and B atoms to mix together to make a homogeneous solid

solution.

After step 1 the free energy of the system is given by
Gi = XaAGa + XgGg Jmol™! (1.19)

where G, and Gg are the molar free energies of pure A and pure B at the
temperature and pressure of the above experiment. G; can be most conve-
niently represented on a molar free energy diagram (Fig. 1.8) in which molar
free energy is plotted as a function of Xp or X, . For all alloy compositions G,
lies on the straight line between G, and Gg.

The free energy of the system will not remain constant during the mixing of
the A and B atoms and after step 2 the free energy of the solid solution G, can

Before mixing After mixing
( YY) )
° ’3) MIX
_>
(—J S x)
X, molA X mol B 1mol solid
solution
FE.X, Gy, FE.XgGg
1\ J N J
Y Y
Total free energy= Total free energy =
G1 = XnGa* Xg0p G2 =G1* AGpiy

Fig. 1.7 Free energy of mixing.
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Fig. 1.8 Variation of G, (the free energy before mixing) with alloy composition (X 4
or Xg).

be expressed as

G, = G; + AGix (1.20)
where AG,;, is the change in Gibbs free energy caused by the mixing.
Since

G, =H -T§
and

G,=H, - TS,
putting

AH., = H, — H,
and
ASmix = $2 = 8
gives
AGpix = AHpix — TASix (1.21)

AH,,;, is the heat absorbed or evolved during step 2, i.e. it is the heat of
solution, and ignoring volume changes during the process, it represents
only the difference in internal energy (E) before and after mixing. AS; is the
difference in entropy between the mixed and unmixed states.

1.3.2 Ideal Solutions

The simplest type of mixing to treat first is when AH,,;, = 0, in which case the
resultant solution is said to be ideal and the free energy change on mixing is
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only due to the change in entropy:
AGmix = _TASmix (122)

In statistical thermodynamics, entropy is quantitatively related to random-
ness by the Boltzmann equation, i.e.

S=klno (1.23)

where k is Boltzmann’s constant and w is a measure of randomness. There are
two contributions to the entropy of a solid solution—a thermal contribution
St and a configurational contribution Scopgg -

In the case of thermal entropy, w is the number of ways in which the
thermal energy of the solid can be divided among the atoms, that is, the total
number of ways in which vibrations can be set up in the solid. In solutions,
additional randomness exists due to the different ways in which the atoms can
be arranged. This gives extra entropy Sconse for which w is the number of
distinguishable ways of arranging the atoms in the solution.

If there is no volume change or heat change during mixing then the only
contribution to AS,,;, is the change in configurational entropy. Before mixing,
the A and B atoms are held separately in the system and there is only one
distinguishable way in which the atoms can be arranged. Consequently
S; = kIn1 = 0 and therefore AS,ix = S>.

Assuming that A and B mix to form a substitutional solid solution and that
all configurations of A and B atoms are equally probable, the number of
distinguishable ways of arranging the atoms on the atom sites is

_ (Na + Ng)!
@eonfig = TN INg!
where N, is the number of A atoms and Ng the number of B atoms.

Since we are dealing with 1 mol of solution, i.e. N, atoms (Avogadro’s
number),

Na = XaAN,

(1.24)

and
Ng = XgN,

By substituting into Equations 1.23 and 1.24, using Stirling’s approxima-
tion (In N! = Nln — N) and the relationship N,k = R (the universal gas
constant) gives

ASmix = _R(XA In XA + XB In XB) (125)

Note that, since X, and Xy are less than unity, AS,;, is positive, i.e. there is
an increase in entropy on mixing, as expected. The free energy of mixing,
AG ix, is obtained from Equation 1.22 as

AGmix = RT(XA In XA + XB In XB) (126)
Figure 1.9 shows AGi as a function of composition and temperature.

The actual free energy of the solution G will also depend on G, and Gg.
From Equations 1.19, 1.20 and 1.26
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Fig. 1.9 Free energy of mixing for an ideal solution.
G = G, = XAGA + XgGg + RT(X5 In X5 + X In Xp) (1.27)

This is shown schematically in Fig. 1.10. Note that, as the temperature
increases, G4 and Gg decrease and the free energy curves assume a greater
curvature. The decrease in G4 and Gy is due to the thermal entropy of both
components and is given by Equation 1.10.

It should be noted that all of the free energy-composition diagrams in this
book are essentially schematic; if properly plotted the free energy curves
must end asymptotically at the vertical axes of the pure components,
i.e. tangential to the vertical axes of the diagrams. This can be shown by
differentiating Equation 1.26 or 1.27.

Fig. 1.10 The molar free energy (free energy per mole of solution) for an ideal solid
solution. A combination of Figs. 1.8 and 1.9.
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1.3.3 Chemical Potential

In alloys it is of interest to know how the free energy of a given phase will
change when atoms are added or removed. If a small quantity of A, dn, mol,
is added to a large amount of a phase at constant temperature and pressure,
the size of the system will increase by dn, and therefore the total free energy
of the system will also increase by a small amount dG’. If dn, is small enough
dG’ will be proportional to the amount of A added. Thus we can write

dG’' = padn, (T, P, ng constant) (1.28)

The proportionality constant . is called the partial molar free energy of A or
alternatively the chemical potential of A in the phase. n, depends on the
composition of the phase, and therefore dn, must be so small that the
composition is not significantly altered. If Equation 1.28 is rewritten it can be
seen that a definition of the chemical potential of A is

G’
Pa = (—) (1.29)
CIONE SIS

The symbol G’ has been used for the Gibbs free energy to emphasize the fact
that it refers to the whole system. The usual symbol G will be used to denote
the molar free energy and is therefore independent of the size of the system.

Equations similar to 1.28 and 1.29 can be written for the other components
in the solution. For a binary solution at constant temperature and pressure
the separate contributions can be summed:

dG' = }LAdnA + }LBdnB (130)

This equation can be extended by adding further terms for solutions contain-
ing more than two components. If T and P changes are also allowed
Equation 1.9 must be added giving the general equation

dG' = —SdT + VAP + padna + ppdng + pedng + - - -

If 1 mol of the original phase contained X, mol A and Xz mol B, the size of
the system can be increased without altering its composition if A and B are
added in the correct proportions, i.e. such that dn,:dng = X,:Xg. For
example if the phase contains twice as many A as B atoms
(Xa = 2/3, Xg = 1/3) the composition can be maintained constant by
adding two A atoms for every one B atom (dna :dng = 2). In this way the
size of the system can be increased by 1 mol without changing p., and pg. To
do this X, mol A and Xy mol B must be added and the free energy of the
system will increase by the molar free energy G. Therefore from
Equation 1.30

G = paXa + ppXg Jmol™! (1.31)

When G is known as a function of X, and Xg, as in Fig. 1.10 for example,
kA and pg can be obtained by extrapolating the tangent to the G curve to the
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Fig. 1.11 The relationship between the free energy curve for a solution and the
chemical potentials of the components.

sides of the molar free energy diagram as shown in Fig. 1.11. This can be
obtained from Equations 1.30 and 1.31, remembering that X, + Xg = 1, i.e.
dX, = —dXg, and this is left as an exercise for the reader. It is clear from
Fig. 1.11 that ps and pg vary systematically with the composition of the
phase.

Comparison of Equations 1.27 and 1.31 gives wa and pg for an ideal
solution as

KA = GA + RTlnXA

(1.32)
KB = GB + RT In XB

which is a much simpler way of presenting Equation 1.27. These relationships
are shown in Fig. 1.12. The distances ac and bd are simply —RT In X, and
_RT ln XB .

Fig. 1.12 The relationship between the free energy curve and chemical potentials for
an ideal solution.
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1.3.4 Regular Solutions

Returning to the model of a solid solution, so far it has been assumed that
AH,,ix = 0; however, this type of behaviour is exceptional in practice and
usually mixing is endothermic (heat absorbed) or exothermic (heat evolved).
The simple model used for an ideal solution can, however, be extended to
include the AH,,;; term by using the so-called quasi-chemical approach.

In the quasi-chemical model it is assumed that the heat of mixing, AH,,;, is
only due to the bond energies between adjacent atoms. For this assumption to
be valid it is necessary that the volumes of pure A and B are equal and do not
change during mixing so that the interatomic distances and bond energies are
independent of composition.

The structure of a binary solid solution is shown schematically in Fig. 1.13.
Three types of interatomic bonds are present:

1. A—A bonds each with an energy €4,
2. B—B bonds each with an energy egg,
3. A—B bonds each with an energy e p.

By considering zero energy to be the state where the atoms are separated to
infinity e5 A, epp and ep are negative quantities, and become increasingly
more negative as the bonds become stronger. The internal energy of the
solution E will depend on the number of bonds of each type P54, Pgg and
P,p such that

E = Paptan + Pppepp + Paptan

Before mixing pure A and B contain only A—A and B—B bonds respec-
tively and by considering the relationships between P 4 , Pgg and Pg in the
solution it can be shown' that the change in internal energy on mixing is given

Fig. 1.13 The different types of interatomic bond in a solid solution.
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by

AH,x = Pape (1.33)
where

e = eap — 3(€an T €BB) (1.34)

that is, ¢ is the difference between the A—B bond energy and the average of
the A—A and B—B bond energies.

If ¢e=0, AH,;, =0 and the solution is ideal, as considered in
Section 1.3.2. In this case the atoms are completely randomly arranged and
the entropy of mixing is given by Equation 1.25. In such a solution it can also
be shown' that

Pag = N,zXaXg bonds mol™? (1.35)

where N, is Avogadro’s number, and z is the number of bonds per atom.

If ¢ < 0 the atoms in the solution will prefer to be surrounded by atoms of
the opposite type and this will increase P,p, whereas, if ¢ > 0, P, will tend
to be less than in a random solution. However, provided ¢ is not too different
from zero, Equation 1.35 is still a good approximation in which case

AHmix = QXAXB (136)
where
Q = N,ze (1.37)

Real solutions that closely obey Equation 1.36 are known as regular solu-
tions. The variation of AH,,;, with composition is parabolic and is shown in
Fig. 1.14 for Q > 0. Note that the tangents at X, = 0 and 1 are related to Q
as shown.

S A5
A Hmix \\ /
per mol AN //
\\ /
N 7
2 > §
/ AN
/ AN
/ N
// AN
\
7 N
/
A Xg — o B

Fig. 1.14 The variation of AH ,;; with composition for a regular solution.
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The free energy change on mixing a regular solution is given by
Equations 1.21, 1.25 and 1.36 as

AG, = OXaXg + RT(Xa In Xa + Xg In Xg) (1.38)
e —— \ J
AI'Imix _TASmix

This is shown in Fig. 1.15 for different values of () and temperature. For
exothermic solutions AH;;;, < 0 and mixing results in a free energy decrease
at all temperatures (Fig. 1.15a and b). When AH;, > 0, however, the situa-
tion is more complicated. At high temperatures TAS,,;, is greater than AH ;,
for all compositions and the free energy curve has a positive curvature at
all points (Fig. 1.15c). At low temperatures, on the other hand, TAS,;, is
smaller and AG,;, develops a negative curvature in the middle (Fig. 1.15d).

Differentiating Equation 1.25 shows that, as X, or Xg — 0, the —TAS ;.
curve becomes vertical whereas the slope of the AH;, curve tends to a finite

Fig. 1.15 The effect of AH,;x and T on AG pix.
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value ) (Fig. 1.14). This means that, except at absolute zero, AG;, always
decreases on addition of a small amount of solute.

The actual free energy of the alloy depends on the values chosen for G
and Gg and is given by Equations 1.19, 1.20 and 1.38 as

G = XAGA + XBGB + QXAXB + RT(XA In XA + XB In XB) (139)

This is shown in Fig. 1.16 along with the chemical potentials of A and B in the
solution. Using the relationship X,Xg = X3Xg + X3X4 and comparing
Equations 1.31 and 1.39 shows that for a regular solution

and (1.40)
kB = GB + Q(l - XB)2 + RT In XB

1.3.5 Activity

Expression 1.32 for the chemical potential of an ideal alloy was simple and it
is convenient to retain a similar expression for any solution. This can be done
by defining the activity of a component, a, such that the distances ac and bd in
Fig. 1.16 are —RT In a, and —RT In ag. In this case

BaA = GA + RT In aa
and (1.41)
KB = GB + RT In ag

Fig. 1.16 The relationship between molar free energy and activity.
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In general a, and ag will be different from X, and Xy and the relationship
between them will vary with the composition of the solution. For a regular
solution, comparison of Equations 1.40 and 1.41 gives

aa)_ 8 . L
ln(XA) == (1= X5)

and (1.42)

a\_Q .y
ln(XB) RT(1 Xp)

Assuming pure A and pure B have the same crystal structure, the rela-
tionship between a and X for any solution can be represented graphically
as illustrated in Fig. 1.17. Line 1 represents an ideal solution for which
an = X, and ag = X. If AH;,, < 0 the activity of the components in
solution will be less in an ideal solution (line 2) and vice versa when AH;,
> 0 (line 3).

The ratio (a5/X ) is usually referred to as vy, , the activity coefficient of A,
that is

YA = an/Xa (1-43)

For a dilute solution of B in A, Equation 1.42 can be simplified by letting
Xg — 0 in which case

as
Yp = —— = constant (Henry’s law) (1.44)
Xp
and
aa s
Ya = — =1 (Raoult’s law) (1.45)
Xa

Fig. 1.17 The variation of activity with composition (a) ag (b) a». Line 1: ideal
solution (Raoult’s law). Line 2: AH;, < 0. Line 3: AH,;, > 0.
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Equation 1.44 is known as Henry’s law and 1.45 as Raoult’s law; they apply to
all solutions when sufficiently dilute.

Since activity is simply related to chemical potential via Equation 1.41 the
activity of a component is just another means of describing the state of the
component in a solution. No extra information is supplied and its use is simply
a matter of convenience as it often leads to simpler mathematics.

Activity and chemical potential are simply a measure of the tendency of an
atom to leave a solution. If the activity or chemical potential is low the atoms
are reluctant to leave the solution which means, for example, that the vapour
pressure of the component in equilibrium with the solution will be relatively
low. It will also be apparent later that the activity or chemical potential of a
component is important when several condensed phases are in equilibrium.

1.3.6 Real Solutions

While the previous model provides a useful description of the effects of
configurational entropy and interatomic bonding on the free energy of binary
solutions its practical use is rather limited. For many systems the model is an
oversimplification of reality and does not predict the correct dependence of
AG,ix on composition and temperature.

As already indicated, in alloys where the enthalpy of mixing is not zero
(e and Q # 0) the assumption that a random arrangement of atoms is the
equilibrium, or most stable arrangement is not true, and the calculated value
for AG,;x Will not give the minimum free energy. The actual arrangement of
atoms will be a compromise that gives the lowest internal energy consistent
with sufficient entropy, or randomness, to achieve the minimum free energy.
In systems with € < O the internal energy of the system is reduced by increas-
ing the number of A—B bonds, i.e. by ordering the atoms as shown in
Fig. 1.18a. If € > O the internal energy can be reduced by increasing the
number of A—A and B—B bonds, i.e. by the clustering of the atoms into
A-rich and B-rich groups, Fig. 1.18b. However, the degree of ordering or

Fig. 1.18 Schematic representation of solid solutions: (a) ordered substitutional,
(b) clustering, (c) random interstitial.
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clustering will decrease as temperature increases due to the increasing impor-
tance of entropy.

In systems where there is a size difference between the atoms the quasi-
chemical model will underestimate the change in internal energy on mixing
since no account is taken of the elastic strain fields which introduce a strain
energy term into AH;, . When the size difference is large this effect can
dominate over the chemical term.

When the size difference between the atoms is very large then interstitial
solid solutions are energetically most favourable, Fig. 1.18c. New mathemati-
cal models are needed to describe these solutions.

In systems where there is strong chemical bonding between the atoms there
is a tendency for the formation of intermetallic phases. These are distinct
from solutions based on the pure components since they have a different
crystal structure and may also be highly ordered. Intermediate phases and
ordered phases are discussed further in the next two sections.

1.3.7 Ordered Phases

If the atoms in a substitutional solid solution are completely randomly
arranged each atom position is equivalent and the probability that any given
site in the lattice will contain an A atom will be equal to the fraction of A
atoms in the solution X4 , similarly Xg for the B atoms. In such solutions Pag,
the number of A—B bonds, is given by Equation 1.35. If 2 < 0 and the
number of A—B bonds is greater than this, the solution is said to contain
short-range order (SRO). The degree of ordering can be quantified by de-
fining a SRO parameter s such that

_ PAB - PAB(random)
"~ Pap(max) — Pag(random)

N

where P,g(max) and Pg(random) refer to the maximum number of bonds
possible and the number of bonds for a random solution, respectively.
Figure 1.19 illustrates the difference between random and short-range
ordered solutions.

In solutions with compositions that are close to a simple ratio of A : B atoms
another type of order can be found as shown schematically in Fig. 1.18a. This
is known as long-range order. Now the atom sites are no longer equivalent
but can be labelled as A-sites and B-sites. Such a solution can be considered
to be a different (ordered) phase separate from the random or nearly random
solution.

Consider Cu-Au alloys as a specific example. Cu and Au are both fcc and
totally miscible. At high temperatures Cu or Au atoms can occupy any site
and the lattice can be considered as fcc with a ‘random’ atom at each lattice
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Fig. 1.19 (a) Random A—B solution with a total of 100 atoms and X, = X5 = 0.5,
Pag ~ 100, S =0. (b)Same alloy with short-range order P,p = 132,
P AB(maxy ~ 200, S = (132 — 100)/(200 — 100) = 0.32.

point as shown in Fig. 1.20a. At low temperatures, however, solutions with
Xcuy = Xay = 0.5,1i.e. a50/50 Cu/Au mixture, form an ordered structure in
which the Cu and Au atoms are arranged in alternate layers, Fig. 1.20b. Each
atom position is no longer equivalent and the lattice is described as a CuAu
superlattice. In alloys with the composition Cuz;Au another superlattice is
found, Fig. 1.20c.

The entropy of mixing of structures with long-range order is extremely
small and with increasing temperature the degree of order decreases until
above some critical temperature there is no long-range order at all. This
temperature is a maximum when the composition is the ideal required for the
superlattice. However, long-range order can still be obtained when the com-
position deviates from the ideal if some of the atom sites are left vacant or if
some atoms sit on wrong sites. In such cases it can be easier to disrupt the
order with increasing temperature and the critical temperature is lower, see
Fig. 1.21.

The most common ordered lattices in other systems are summarized in
Fig. 1.22 along with their Structurbericht notation and examples of alloys in
which they are found. Finally, note that the critical temperature for loss of
long-range order increases with increasing (2, or AH,;,, and in many systems
the ordered phase is stable up to the melting point.

.Cu OAu Cu or Au

Fig. 1.20 Ordered substitutional structures in the Cu—Au system: (a) high-tempera-
ture disordered structure, (b) CuAu superlattice, (c) CuzAu superlattice.



26 Thermodynamics and phase diagrams

Fig. 1.21 Part of the Cu—Au phase diagram showing the regions where the Cu;Au
and CuAu superlattices are stable.

Fig. 1.22  The five common ordered lattices, examples of which are: (a) L2,: CuZn,
FeCo, NiAl, FeAl, AgMg; (b) L1,:Cu3Au, Au;Cu, NizMn, Ni;Fe, Ni;Al, Pt;Fe;
(c) L15: CuAu, CoPt, FePt; (d) DO;: Fe;Al, Fe;Si, Fe;Be, CusAl, (e) D0,9:Mg5Cd,
Cd;Mg, Ti;Al, NisSn. (After ‘R.E. Smallman, Modern Physical Metallurgy, 3rd
edition, Butterworths, London, 1970.)

1.3.8 Intermediate Phases

Often the configuration of atoms that has the minimum free energy after
mixing does not have the same crystal structure as either of the pure compo-
nents. In such cases the new structure is known as an intermediate phase.
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Intermediate phases are often based on an ideal atom ratio that results in a
minimum Gibbs free energy. For compositions that deviate from the ideal,
the free energy is higher giving a characteristic ‘U’ shape to the G curve, as in
Fig. 1.23. The range of compositions over which the free energy curve has a
meaningful existence depends on the structure of the phase and the type of
interatomic bonding—metallic, covalent or ionic. When small composition
deviations cause a rapid rise in G the phase is referred to as an intermetallic
compound and is usually stoichiometric, i.e. has a formula A,,B, where m
and n are integers, Fig. 1.23a. In other structures fluctuations in composition
can be tolerated by some atoms occupying ‘wrong’ positions or by atom sites
being left vacant, and in these cases the curvature of the G curve is much less,
Fig. 1.23b.

Some intermediate phases can undergo order-disorder transformations in
which an almost random arrangement of the atoms is stable at high tempera-
tures and an ordered structure is stable below some critical temperature. Such
a transformation occurs in the  phase in the Cu-Zn system for example (see
Section 5.10).

The structure of intermediate phases is determined by three main factors:
relative atomic size, valency and electronegativity. When the component
atoms differ in size by a factor of about 1.1-1.6 it is possible for the atoms to
fill space most efficiently if the atoms order themselves into one of the
so-called Laves phases based on MgCu,, MgZn, and MgNi,, Fig 1.24.
Another example where atomic size determines the structure is in the forma-
tion of the interstitial compounds MX, M,X, MX, and McX where M can be
Zr, Ti, V, Cr, etc. and X can be H, B, C and N. In this case the M atoms form
a cubic or hexagonal close-packed arrangement and the X atoms are small
enough to fit into the interstices between them.

Fig. 1.23 Free energy curves for intermediate phases: (a) for an intermetallic com-
pound with a very narrow stability range, (b) for an intermediate phase with a wide
stability range.
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Fig. 1.24 The structure of MgCu, (A Laves phase). (From J.H. Wernick, chapter 5
in Physical Metallurgy, 2nd edn., R.W. Cahn (Ed.) North Holland, 1974.)

The relative valency of the atoms becomes important in the so-called
electron phases, e.g. o and B brasses. The free energy of these phases depends
on the number of valency electrons per unit cell, and this varies with composi-
tion due to the valency difference.

The electronegativity of an atom is a measure of how strongly it attracts
electrons and in systems where the two components have very different
electronegativities ionic bonds can be formed producing normal valency
compounds, e.g. Mg?* and Sn*~ are ionically bonded in Mg,Sn.?

1.4 Equilibrium in Heterogeneous Systems

It is usually the case that A and B do not have the same crystal structure in
their pure states at a given temperature. In such cases two free energy curves
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must be drawn, one for each structure. The stable forms of pure A and B at a
given temperature (and pressure) can be denoted as «a and B respectively. For
the sake of illustration let a be fcc and 8 bee. The molar free energies of fcc A
and bec B are shown in Fig. 1.25a as points a and b. The first step in drawing
the free energy curve of the fcc a phase is, therefore, to convert the stable bcc
arrangement of B atoms into an unstable fcc arrangement. This requires an
increase in free energy, bc. The free energy curve for the o phase can now be
constructed as before by mixing fcc A and fcc B as shown in the figure.
—AG,x for a of composition X is given by the distance de as usual.

A similar procedure produces the molar free energy curve for the 8 phase,
Fig. 1.25b. The distance af is now the difference in free energy between bec A
and fcc A.

It is clear from Fig. 1.25b that A-rich alloys will have the lowest free energy
as a homogeneous o phase and B-rich alloys as B phase. For alloys with

Fig. 1.25 (a) The molar free energy curve for the o phase. (b) Molar free energy
curves for a and B phases.
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compositions near the cross-over in the G curves the situation is not so
straightforward. In this case it can be shown that the total free energy can be
minimized by the atoms separating into two phases.

It is first necessary to consider a general property of molar free energy
diagrams when phase mixtures are present. Suppose an alloy consists of two
phases a and B each of which has a molar free energy given by G* and G,
Fig. 1.26. If the overall composition of the phase mixture is Xg the lever rule
gives the relative number of moles of a and 8 that must be present, and the
molar free energy of the phase mixture G is given by the point on the straight
line between a and B as shown in the figure. This result can be proven most
readily using the geometry of Fig. 1.26. The lengths ad and cf respectively
represent the molar free energies of the o and 8 phases present in the alloy.
Point g is obtained by the intersection of be and dc so that bcg and acd, as well
as deg and dfc, form similar triangles. Therefore bg/ad = bc/ac and
ge/cf = ab/ac. According to the lever rule 1 mol of alloy will contain bc/ac
mol of a and ab/ac mol of B. It follows that bg and ge represent the separate
contributions from the o and B phases to the total free energy of 1 mol of
alloy. Therefore the length ‘be’ represents the molar free energy of the phase
mixture.

Consider now alloy X° in Fig. 1.27a. If the atoms are arranged as a
homogeneous phase, the free energy will be lowest as a, i.e. G§ per mole.
However, from the above it is clear that the system can lower its free energy if
the atoms separate into two phases with compositions «; and B, for example.
The free energy of the system will then be reduced to G;. Further reductions
in free energy can be achieved if the A and B atoms interchange between the
a and B phases until the compositions a. and . are reached, Fig. 1.27b. The
free energy of the system G, is now a minimum and there is no desire for
further change. Consequently the system is in equilibrium and «, and B, are
the equilibrium compositions of the a and B phases.

This result is quite general and applies to any alloy with an overall composi-
tion between o, and B.: only the relative amounts of the two phases change,

Fig. 1.26 The molar free energy of a two-phase mixture (a + B).
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as given by the lever rule. When the alloy composition lies outside this range,
however, the minimum free energy lies on the G* or G® curves and the
equilibrium state of the alloy is a homogeneous single phase.

From Fig. 1.27 it can be seen that equilibrium between two phases requires
that the tangents to each G curve at the equilibrium compositions lie on a
common line. In other words each component must have the same chemical
potential in the two phases, i.e. for heterogeneous equilibrium:

pa = i, w3 = e (1.46)

The condition for equilibrium in a heterogeneous system containing

Fig. 1.27 (a) Alloy X° has a free energy G, as a mixture of a; + B,. (b) At
-equilibrium, alloy X0 has a minimum free energy G, when it is a mixture of a, + ..
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two phases can also be expressed using the activity concept defined for
homogeneous systems in Fig. 1.16. In heterogeneous systems containing
more than one phase the pure components can, at least theoretically, exist
in different crystal structures. The most stable state, with the lowest free
energy, is usually defined as the state in which the pure component has unit
activity. In the present example this would correspond to defining the
activity of A in pure a — A as unity, i.e. when X, = 1, ax = 1. Similarly
when Xg = 1, af = 1. This definition of activity is shown graphically in
Fig. 1.28a; Fig. 1.28b and c show how the activities of B and A vary with
the composition of the a and B phases. Between A and a., and B. and B,
where single phases are stable, the activities (or chemical potentials) vary
and for simplicity ideal solutions have been assumed in which case there is a
straight line relationship between a and X. Between o, and B. the phase
compositions in equilibrium do not change and the activities are equal and
given by points q and r. In other words, when two phases exist in equilib-
rium, the activities of the components in the system must be equal in the
two phases, i.e.

ay =af, af=af (1.47)
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Fig. 1.28 The variation of a5 and ag with composition for a binary system containing
two ideal solutions, a and 8.
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1.5 Binary Phase Diagrams

In the previous section it has been shown how the equilibrium state of an alloy
can be obtained from the free energy curves at a given temperature. The next
step is to see how equilibrium is affected by temperature.

1.5.1 A Simple Phase Diagram

The simplest case to start with is when A and B are completely miscible in
both the solid and liquid states and both are ideal solutions. The free energy
of pure A and pure B will vary with temperature as shown schematically in
Fig. 1.4. The equilibrium melting temperatures of the pure components occur
when G% = GY, i.e. at T,(A) and T,,(B). The free energy of both phases
decreases as temperature increases. These variations are important for A-B
alloys also since they determine the relative positions of G% , Gk, G§ and G§
on the molar free energy diagrams of the alloy at different temperatures,
Fig. 1.29.

At a high temperature T; > T,(A) > T,(B) the liquid will be the stable
phase for pure A and pure B, and for the simple case we are considering the
liquid also has a lower free energy than the solid at all the intermediate
compositions as shown in Fig. 1.29a.

Decreasing the temperature will have two effects: firstly Gk and Gg will
increase more rapidly than G% and G§, secondly the curvature of the G
curves will be reduced due to the smaller contribution of —TAS,;, to the free
energy.

At T,,(A), Fig. 1.29b, G5 = G%, and this corresponds to point a on the
A-B phase diagram, Fig. 1.29f. At a lower temperature T, the free energy
curves cross, Fig. 1.29c, and the common tangent construction indicates
that alloys between A and b are solid at equilibrium, between ¢ and B they
are liquid, and between b and c equilibrium consists of a two-phase mixture
(S + L) with compositions b and c. These points are plotted on the equilib-
rium phase diagram at 7.

Between T, and T,,(B) G" continues to rise faster than G so that points b
and c in Fig. 1.29¢ will both move to the right tracing out the solidus and
liquidus lines in the phase diagram. Eventually at 7,,,(B) b and ¢ will meet at a
single point, d in Fig. 1.29f. Below T,,(B) the free energy of the solid phase is
everywhere below that of the liquid and all alloys are stable as a single phase
solid.

1.5.2 Systems with a Miscibility Gap

Figure 1.30 shows the free energy curves for a system in which the liquid
phase is approximately ideal, but for the solid phase AH;x > 0, i.e. the A
and B atoms ‘dislike’ each other. Therefore at low temperatures (73) the free
energy curve for the solid assumes a negative curvature in the middle,
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Fig. 1.30 The derivation of a phase diagram where AH3; > AHL;, = 0. Free
energy v. composition curves for (a) Ty, (b) T, and (c) T5.

Fig. 1.30c, and the solid solution is most stable as a mixture of two phases o'
and a” with compositions e and f. At higher temperatures, when — TASyx
becomes larger, e and f approach each other and eventually disappear as
shown in the phase diagram, Fig. 1.30d. The o’ + a” region is known as a
miscibility gap.

The effect of a positive AH i, in the solid is already apparent at higher
temperatures where it gives rise to a minimum melting point mixture. The
reason why all alloys should melt at temperatures below the melting points of
both components can be qualitatively understood since the atoms in the alloy
‘repel’ each other making the disruption of the solid into a liquid phase
possible at lower temperatures than in either pure A or pure B.

1.5.3 Ordered Alloys

The opposite type of effect arises when AHp,;, < 0. In these systems melting
will be more difficult in the alloys and a maximum melting point mixture may
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Fig. 1.31 (a) Phase diagram when AHS, < 0; (b) as (a) but even more negative
AHS,.. (After R.A. Swalin, Thermodynamics of Solids, John Wiley, New York,
1972).

appear. This type of alloy also has a tendency to order at low temperatures as
shown in Fig. 1.31a. If the attraction between unlike atoms is very strong the
ordered phase may extend as far as the liquid, Fig. 1.31b.

1.5.4 Simple Eutectic Systems

If AHS,,, is much larger than zero the miscibility gap in Fig. 1.30d can extend
into the liquid phase. In this case a simple eutectic phase diagram results as
shown in Fig. 1.32. A similar phase diagram can result when A and B have
different crystal structures as illustrated in Fig. 1.33

1.5.5 Phase Diagrams Containing Intermediate Phases

When stable intermediate phases can form, extra free energy curves appear in
the phase diagram. An example is shown in Fig. 1.34, which also illustrates
how a peritectic transformation is related to the free energy curves.

An interesting result of the common tangent construction is that the stable
composition range of the phase in the phase diagram need not include the
composition with the minimum free energy, but is determined by the relative
free energies of adjacent phases, Fig. 1.35. This can explain why the composi-
tion of the equilibrium phase appears to deviate from that which would be
predicted from the crystal structure. For example the 6 phase in the Cu-Al
system is usually denoted as CuAl, although the composition X¢, = 1/3,
X = 2/3 is not covered by the 0 field on the phase diagram.

1.5.6 The Gibbs Phase Rule

The condition for equilibrium in a binary system containing two phases is
given by Equation 1.46 or 1.47. A more general requirement for systems
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Fig. 1.35 Free energy diagram to illustrate that the range of compositions over which
a phase is stable depends on the free energies of the other phases in equilibrium.

containing several components and phases is that the chemical potential of
each component must be identical in every phase, i.e.
A =paA=pl=...
pE=pg=pg=... (1.48)
pE=pe=pg=...
The proof of this relationship is left as an exercise for the reader (see
Exercise 1.10). A consequence of this general condition is the Gibbs phase

rule. This state' that if a system containing C components and P phases is in
equilibrium the number of degrees of freedom F is given by

P+F=C+2 (1.49)

A degree of freedom is an intensive variable such as T, P, X, , X . . . that
can be varied independently while still maintaining equilibrium. If pressure is
maintained constant one degree of freedom is lost and the phase rule becomes

P+F=C+1 (1.50)
At present we are considering binary alloys so that C = 2 therefore
P+F=3

This means that a binary system containing one phase has two degrees of
freedom, i.e. T and Xp can be varied independently. In a two-phase region of
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a phase diagram P = 2 and therefore F = 1 which means that if the tempera-
ture is chosen independently the compositions of the phases are fixed. When
three phases are in equilibrium, such as at a eutectic or peritectic tempera-
ture, there are no degrees of freedom and the compositions of the phases and
the temperature of the system are all fixed.

1.5.7 The Effect of Temperature on Solid Solubility

The equations for free energy and chemical potential can be used to derive
the effect of temperature on the limits of solid solubility in a terminal solid
solution. Consider for simplicity the phase diagram shown in Fig. 1.36a where
B is soluble in A, but A is virtually insoluble in B. The corresponding free
energy curves for temperature T are shown schematically in Fig. 1.36b. Since
A is almost insoluble in B the G® curve rises rapidly as shown. Therefore the
maximum concentration of B soluble in A (X§) is given by the condition

ng = pp = GB
For a regular solid solution Equation 1.40 gives
ng = Gs + Q1 — Xg)* + RTIn Xp

But from Fig. 1.36b, G§ — p§ = AGg, the difference in free energy between
pure B in the stable B-form and the unstable a-form. Therefore for Xg = X§

—-RTIn X§ — Q(1 — X3)? = AGg (1.51)
If the solubility is low X§ < 1 and this gives
AGg +
X = —oes .
g = exp { RT } (1.52)
Putting

AGB = AHB - TASB

gives
-0
B = — 1.53
B = A exp RT (1.53)

where A is a constant equal to exp (ASg/R) and
Q =AHg + Q (1.54)

AHg is the difference in enthalpy between the B-form of B and the a-form in
J mol™!. Q is the change in energy when 1 mol of B with the a-structure
dissolves in A to make a dilute solution. Therefore Q is just the enthalpy
change, or heat absorbed, when 1 mol of B with the B-structure dissolves in A
to make a dilute solution.
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ASg is the difference in entropy between B-B and a-B and is approximately
independent of temperature. Therefore the solubility of B in « increases
exponentially with temperature at a rate determined by Q. It is interesting to
note that, except at absolute zero, X§ can never be equal to zero, that is, no
two components are ever completely insoluble in each other.

1.5.8 Equilibrium Vacancy Concentration

So far it has been assumed that in a metal lattice every atom site is occupied.
However, let us now consider the possibility that some sites remain without
atoms, that is, there are vacancies in the lattice. The removal of atoms from
their sites not only increases the internal energy of the metal, due to the
broken bonds around the vacancy, but also increases the randomness or
configurational entropy of the system. The free energy of the alloy will
depend on the concentration of vacancies and the equilibrium concentration
X¢ will be that which gives the minimum free energy.

If, for simplicity, we consider vacancies in a pure metal the problem of
calculating X¢ is almost identical to the calculation of AG,,;, for A and B
atoms when AH_; is positive. Because the equilibrium concentration of
vacancies is small the problem is simplified because vacancy—vacancy interac-
tions can be ignored and the increase in enthalpy of the solid (AH) is directly
proportional to the number of vacancies added, i.e.

AH = AH /X,

where X, is the mole fraction of vacancies and AH, is the increase in enthalpy
per mole of vacancies added. (Each vacancy causes an increase of AH,/N,
where N, is Avogadro’s number.)

There are two contributions to the entropy change AS on adding vacancies.
There is a small change in the thermal entropy of AS, per mole of vacancies
added due to changes in the vibrational frequencies of the atoms around a
vacancy. The largest contribution, however, is due to the increase in con-
figurational entropy given by Equation 1.25. The total entropy change is thus

AS = X,AS, - R(X,In X, + 1 - X,)In (1 - X,))
The molar free energy of the crystal containing X, mol of vacancies is
therefore given by
G = G5 + AG = G, + AH X, — TAS, X,
+ RT(X,In X, + (1 - X,)In (1 - X,)) (1.55)
This is shown schematically in Fig. 1.37. Given time the number of vacancies
will adjust so as to reduce G to a minimum. The equilibrium concentration of
vacancies X¢ is therefore given by the condition
dG

[ = 0
dX'v X, =X¢
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Fig. 1.37 Equilibrium vacancy concentration.

Differentiating Equation 1.55 and making the approximation X, < 1 gives
AH, — TAS, + RTIn X5 =0
Therefore the expression for X5 is

AS, —AH,

XS = exp R EXP RT (1.56)
or, putting AG, = AH, — TAS, gives
XS = exp ~AG (1.57)
RT

The first term on the right-hand side of Equation 1.56 is a constant ~3,
independent of T, whereas the second term increases rapidly with increasing
T. In practice AH, is of the order of 1 eV per atom and X7 reaches a value of
about 10™*-107 at the melting point of the solid.

1.6 The Influence of Interfaces on Equilibrium

The free energy curves that have been drawn so far have been based on
the molar free energies of infinitely large amounts of material of a perfect
single crystal. Surfaces, grain boundaries and interphase interfaces have been
ignored. In real situations these and other crystal defects such as dislocations
do exist and raise the free energies of the phases. Therefore the minimum free
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energy of an alloy, i.e. the equilibrium state, is not reached until virtually
all interfaces and dislocations have been annealed out. In practice such a
state is unattainable within reasonable periods of time.

Interphase interfaces can become extremely important in the early stages of
phase transformations when one phase, B, say, can be present as very fine
particles in the other phase, o, as shown in Fig. 1.38a. If the a phase is acted
on by a pressure of 1 atm the B phase is subjected to an extra pressure AP due
to the curvature of the o/ interface, just as a soap bubble exerts an extra
pressure AP on its contents. If -y is the o/ interfacial energy and the particles
are spherical with a radius r, AP is given approximately by

_
p

AP

Fig. 1.38 The effect of interfacial energy on the solubility of small particles.
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By definition, the Gibbs free energy contains a ‘PV’ term and an increase of
pressure P therefore causes an increase in free energy G. From Equation 1.9
at constant temperature

AG=AP-V

Therefore the B curve on the molar free energy—composition diagram in
Fig. 1.38b will be raised by an amount

AG, = % (1.58)
where V, is the molar volume of the 8 phase. This free energy increase due to
interfacial energy is known as a capillarity effect or the Gibbs—Thomson
effect.

The concept of a pressure difference is very useful for spherical liquid
particles, but it is less convenient in solids. This is because, as will be
discussed in Chapter 3, finely dispersed solid phases are often non-spherical.
For illustration, therefore, consider an alternative derivation of Equa-
tion 1.58 which can be more easily modified to deal with non-spherical cases’.

Consider a system containing two 8 particles one with a spherical interface
of radius r and the other with a planar interface (» = ©) embedded in an «
matrix as shown in Fig. 1.39. If the molar free energy difference between the
two particles is AG,, the transfer of a small quantity (dn mol) of 8 from the
large to the small particle will increase the free energy of the system by a small
amount (dG) given by

dG = AG,dn

If the surface area of the large particle remains unchanged the increase in free
energy will be due to the increase in the interfacial area of the spherical

Fig. 1.39 Transfer of dn mol of B from large to a small particle.
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particle (dA). Therefore assuming vy is constant
dG = ydA

Equating these two expressions gives

dA
AG, = Y3, (1.59)

Since n = 4nr*/3V,, and A = 4n/? it can easily be shown that

a4 _dajdr v,
dn  dn/dr  r

from which Equation 1.58 can be obtained.

An important practical consequence of the Gibbs—Thomson effect is that
the solubility of B in « is sensitive to the size of the B particles. From the
common tangent construction in Fig. 1.38b it can be seen that the concentra-
tion of solute B in a in equilibrium with B across a curved interface (X,) is
greater than X, the equilibrium concentration for a planar interface. Assum-
ing for simplicity that the a phase is a regular solution and that the 8 phase is
almost pure B, i.e. X§ ~ 1, Equation 1.52 gives

_AGg + Q}

X = exp{ RT

Similarly X, can be obtained by using (AGg — 2yV,,/r) in place of AGg
{ AGg + Q - 2yvm/r}
X, =expi—

RT
Therefore
2vV,
= = 1.60
Xl’ X°° exp RTr ( )
and for small values of the exponent
2vV,
= Xo|1+—== 1.61
x = {1+ 230) (161

Taking the following typical values: y =200mJm™2, V_, =105 m?,
R =2831Jmol ! K™}, T = 500K gives
X, 1

+
X r(nm)
e.g. for r = 10 nm X;/X. ~ 1.1. It can be seen therefore that quite large
solubility differences can arise for particles in the range r = 1-100 nm.
However, for particles visible in the light microscope (r > 1 wm) capillarity
effects are very small.
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1.7 Ternary Equilibrium

Since most commercial alloys are based on at least three components, an
understanding of ternary phase diagrams is of great practical importance. The
ideas that have been developed for binary systems can be extended to systems
with three or more components*.

The -composition of a ternary alloy can be indicated on an equilateral
triangle (the Gibbs triangle) whose corners represent 100% A, B or C as
shown in Fig. 1.40. The triangle is usually divided by equidistant lines parallel
to the sides marking 10% intervals in atomic or weight per cent. All points on
lines parallel to BC contain the same percentage of A, the lines parallel to AC
represent constant B concentration, and lines parallel to AB constant C
concentrations. Alloys on PQ for example contain 60% A, on RS 30% B,
and TU 10% C. Clearly the total percentage must sum to 100%, or expressed
as mole fractions

The Gibbs free energy of any phase can now be represented by a vertical
distance from the point in the Gibbs triangle. If this is done for all possible
compositions the points trace out the free energy surfaces for all the possible
phases, as shown in Fig. 1.41a. The chemical potentials of A, B and Cin any
phase are then given by the points where the tangential plane to the free
energy surfaces intersects the A, B and C axes. Figure 1.41a is drawn for a

Fig. 1.40 The Gibbs triangle.
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system in which the three binary systems AB, BC and CA are simple eutec-
tics. Free energy surfaces exist for three solid phases o, 8 and -y and the liquid
phase, L. At this temperature the liquid phase is most stable for all alloy
compositions. At lower temperatures the G- surface moves upwards and
eventually intersects the G surface as shown in Fig. 1.41b. Alloys with
compositions in the vicinity of the intersection of the two curves consist of
a + L at equilibrium. In order for the chemical potentials to be equal in both

Fig. 1.41 (a) Free energies of a liquid and three solid phases of a ternary system.
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Fig. 1.41 (Cont.) (b) A tangential plane construction to the free energy surfaces
defines equilibrium between s and [ in the ternary system. (c) Isothermal section
through a ternary phase diagram obtained in this way with a two-phase region (L+S)
and various tie-lines. The amounts of / and s at point x are determined by the lever
rule. (After P. Haasen, Physical Metallurgy, Cambridge University Press, Cambridge,
1978.)

phases the compositions of the two phases in equilibrium must be given by
points connected by a common tangential plane, for example s and [ in
Fig. 1.41b. These points can be marked on an isothermal section of the
equilibrium phase diagram as shown in Fig. 1.41c. The lines joining the
compositions in equilibrium are known as tie-lines. By rolling the tangential
plane over the two free energy surfaces a whole series of tie-lines will be
generated, such as pr and qt, and the region covered by these tie-lines pqtr is
a two-phase region on the phase diagram. An alloy with composition x in
Fig. 1.41c will therefore minimize its free energy by separating into solid «
with composition s and liquid with composition /. The relative amounts of «
and L are simply given by the lever rule. Alloys with compositions within Apq
will be a homogeneous a phase at this temperature, whereas alloys within
BCrt will be liquid.

On further cooling the free energy surface for the liquid will rise through
the other free energy surfaces producing the sequence of isothermal sections
shown in Fig. 1.42. In Fig. 1.42f, for example, the liquid is stable near the
centre of the diagram whereas at the corners the a, B and v solid phases are
stable. In between are several two-phase regions containing bundles of tie-
lines. In addition there are three-phase regions known as tie-triangles. The
L + o + B triangle for example arises because the common tangential plane
simultaneously touches the G*, G® and G" surfaces. Therefore any alloy with
a composition within the L + o + B triangle at this temperature will be in
equilibrium as a three-phase mixture with compositions given by the corners
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Fig. 1.42 TIsothermal sections through Fig. 1.44. (After A. Prince, Alloy Phase
Equilibria, Elsevier, Amsterdam, 1966.)

of the triangle. If the temperature is lowered still further the L region shrinks
to a point at which four phases are in equilibrium L + o + B + . This is
known as the ternary eutectic point and the temperature at which it occurs is
the ternary eutectic temperature, Fig. 1.42g. Below this temperature the
liquid is no longer stable and an isothermal section contains three two-phase
regions and one three-phase tie triangle « + 8 + v as shown in Fig. 1.42h. If
isothermal sections are constructed for all temperatures they can be combined
into a three-dimensional ternary phase diagram as shown in Fig. 1.44.

In order to follow the course of solidification of a ternary alloy, assuming
equilibrium is maintained at all temperatures, it is useful to plot the liquidus
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C B

€2
Fig. 1.43 A projection of the liquidus surfaces of Fig. 1.44 onto the Gibbs triangle.

surface contours as shown in Fig. 1.43. During equilibrium freezing of alloy X
the liquid composition moves approximately along the line Xe (drawn
through A and X) as primary o phase is solidified; then along the eutectic
valley eE as both a and B solidify simultaneously. Finally at E, the ternary
eutectic point, the liquid transforms simultaneously into o + B + <. This
sequence of events is also illustrated in the perspective drawing in Fig. 1.44.

The phases that form during solidification can also be represented on a
vertical section through the ternary phase diagram. Figure 1.45 shows such a
section taken through X parallel to AB in Fig. 1.44. It can be seen that on
cooling from the liquid phase the alloy first passes into the L + a region, then
into L + a + B, and finally all liquid disappears and the & + B + v region is
entered, in agreement with the above.

An important limitation of vertical sections is that in general the section
will not coincide with the tie-lines in the two-phase regions and so the diagram
only shows the phases that exist in equilibrium at different temperatures and
not their compositions. Therefore they can not be used like binary phase
diagrams, despite the superficial resemblance.

1.8 Additional Thermodynamic Relationships for Binary Solutions

It is often of interest to be able to calculate the change in chemical potential
(dp) that results from a change in alloy composition (dX). Considering
Fig. 1.46 and comparing triangles it can be seen that

dpa — dps _ d(pks = pa)

Xo  Xn 1 (1.63)
and that the slope of the free energy—composition curve is given by
dG -
=FB "~ PaA (1.64)

dXps 1
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Fig. 1.44 The equilibrium solification of alloy X. (After A. Prince, Alloy Phase
Equilibria, Elsevier, Amsterdam, 1966.)

Fig. 1.45 A vertical section between points 1, 2 and X in Fig. 1.44. (After A. Prince,
Alloy Phase Equilibria, Elsevier, Amsterdam, 1966.)
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Fig. 1.46 Evaluation of the change in chemical potential due to a change in composi-
tion. (After M. Hillert, in Lectures on the Theory of Phase Transformations, H.1.
Aaronson (Ed.), ©The American Society for Metals and The Metallurgical Society of
AIME, New York, 1969.)

Substituting this expression into Equation 1.63 and multiplying throughout
by X5 Xp leads to the following equalities:

d’G
ax?
which are the required equations relating dp,, dug and dXg. The first
equality in this equation is known as the Gibbs-Duhem relationship for
a binary solution. Note that the B subscript has been dropped from d°G/dX>

as d’G/dX3% = d°G/dX%4. For a regular solution differentiation of
Equation 1.39 gives

—XAd“'A = Xde‘B = XAXB dXB (1.65)

d*G RT

e XX, -2Q (1.66)
For an ideal solution 2 = 0 and

d*G  RT

ax: XXy (1.67)

Equation 1.65 can be written in a slightly different form by making use of
activity coefficients. Combining Equations 1.41 and 1.43 gives

Mg = Gp + RT InypXp (1.68)
Therefore

dpg RT{l +)éd£} B RT{ N dln'yg}

B ve dXg| Xg|  dln Xg

ax, X_B (1.69)
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A similar relationship can be derived for dp,/dXg. Equation 1.65 therefore
becomes

dlIn vy, dIn vy

- = = + = 1+-——:d
XAd}.LA Xde‘B RT{l d ln XA}dXB RT{ d ln XB XB
(1.70)

Comparing Equations 1.65 and 1.70 gives
d*G dlny, dlnvyg

XaXg—— = RT{1 + ———— = RT{1 + ——— 1.71
ATBdx? { dln X, dIn Xg (1.71)

1.9 The Kinetics of Phase Transformations

The thermodynamic functions that have been described in this chapter apply
to systems that are in stable or metastable equilibrium. Thermodynamics can
therefore be used to calculate the driving force for a transformation,
Equation 1.4, but it cannot say how fast a transformation will proceed. The
study of how fast processes occur belongs to the science of kinetics.

Let us redraw Fig. 1.1 for the free energy of a single atom as it takes part in
a phase transformation from an initially metastable state into a state of lower
free energy, Fig. 1.47. If G; and G, are the free energies of the initial and

Fig. 1.47 Transformations from initial to final state through an activated state of
higher free energy.
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final states, the driving force for the transformation will be AG = G, — G;.
However, before the free energy of the atom can decrease from G, to G, the
atom must pass through a so-called transition or activated state with a free
energy AG® above G,. The energies shown in Fig. 1.47 are average energies
associated with large numbers of atoms. As a result of the random thermal
motion of the atoms the energy of any particular atom will vary with time and
occasionally it may be sufficient for the atom to reach the activated state. This
process is known as thermal activation.

According to kinetic theory, the probability of an atom reaching the acti-
vated state is given by exp (—AG?/kT) where k is Boltzmann’s constant
(R/N,) and AG® is known as the activation free energy barrier. The rate at
which a transformation occurs will depend on the frequency with which atoms
reach the activated state. Therefore we can write

rate « ex _AG
a exp | ~ %7
Putting AG® = AH* — TAS? and changing from atomic to molar quantities

enables this equation to be written as

AH?
rate « exp (—ﬁ;) (1.72)

This equation was first derived empirically from the observed temperature
dependence of the rate of chemical reactions and is known as the Arrhenius
rate equation. It is also found to apply to a wide range of processes and
transformations in metals and alloys, the simplest of these is the process of
diffusion which is discussed in Chapter 2.
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Exercises

1.1 The specific heat of solid copper above 300 K is given by
C,=22.64+628x10T Jmol 'K™!

By how much does the entropy of copper increase on heating from 300
to 1358 K?

1.2 With the aid of Equation 1.11 and Fig. 1.5, draw schematic free energy-
pressure curves for pure Fe at 1600, 800, 500 and 300 °C.

1.3 Estimate the change in the equilibrium melting point of copper caused
by a change of pressure of 10 kbar. The molar volume of copper is
8.0 x 107° m* for the liquid, and 7.6 x 107° for the solid phase. The
latent heat of fusion of copper is 13.05 kJ mol~'. The melting point is
1085 °C.

1.4 For a single component system, why do the allotropes stable at high
temperatures have higher enthalpies than allotropes stable at low
temperatures, ¢.g. H(y-Fe) > H(a-Fe)?

1.5 Determine, by drawing, the number of distinguishable ways of arrang-
ing two black balls and two white balls in a square array. Check your
answer with Equation 1.24.
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1.6

1.7

1.8

1.9

1.10

1.11

1.12

1.13

1.14

Thermodynamics and phase diagrams

By using Equations 1.30 and 1.31, show that the chemical potentials

of A and B can be obtained by extrapolating the tangent to the G-X

curve to X, = 0 and Xz = 0.

Derive Equation 1.40 from 1.31 and 1.39.

15 g of gold and 25 g of silver are mixed to form a single-phase ideal

solid solution.

(a) How many moles of solution are there?

(b) What are the mole fractions of gold and silver?

(c) What is the molar entropy of mixing?

(d) What is the rotal entropy of mixing?

(e) What is the molar free energy change at 500 °C?

(f) What are the chemical potentials of Au and Ag at 500 °C taking
the free energies of pure Au and Ag as zero?

(g) By how much will the free energy of the solution change at 500 °C if
one Au atom is added? Express your answer in eV/atom.

In the Fe—C system Fe;C is only a metastable phase, whilst graphite is

the most stable carbon-rich phase. By drawing schematic free energy—

composition diagrams show how the Fe—graphite phase diagram com-

pares to the Fe—Fe;C phase diagram from 0 to 2 wt% Fe. Check your

answer with the published phase diagram in the Metals Handbook for

example.
Consider a multicomponent system A, B, C ... containing several
phases a, B, v . . . at equilibrium. If a small quantity of A (dn,mol) is

taken from the o phase and added to the B phase at constant T and P
what are the changes in the free energies of the a and B phases, dG*
and dGP? Since the overall mass and composition of the system is un-
changed by the above process the total free energy change
dG = dG* + dGP = 0. Show, therefore, that u% = pf . Repeating for
other pairs of phases and other components gives the general equilib-
rium conditions, Equation 1.48.

For aluminium AH, = 0.8 eV atom™! and AS,/R = 2. Calculate the
equilibrium vacancy concentration at 660 °C (T,,) and 25 °C.

The solid solubility of silicon in aluminium is 1.25 atomic % at 550 °C
and 0.46 atomic % at 450 °C. What solubility would you expect at
200 °C? Check your answer by reference to the published phase dia-
gram.

The metals A and B form an ideal liquid solution but are almost
immiscible in the solid state. The entropy of fusion of both A and B is
8.4Jmol 'K™! and the melting temperatures are 1500 and 1300 K
respectively. Assuming that the specific heats of the solid and liquid are
identical calculate the eutectic composition and temperature in the A-B
phase diagram.

Write down an equation that shows by how much the molar free energy
of solid Cu is increased when it is present as a small sphere of radius 7 in
liquid Cu. By how much must liquid Cu be cooled below T, before a
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solid particle of Cu can grow if the particle diameter is (i) 2 um,
(ii) 2 nm (20 A)? (Cu: T,, = 1085 °C = 1358 K. Atomic weight 63.5.
Density 8900 kg m~>. Solid/liquid interfacial energy y = 0.144 J m~2.
Latent heat of melting L = 13 300 J mol~%.)

Suppose a ternary alloy containing 40 atomic % A, 20 atomic % B, 40
atomic % C solidifies through a ternary eutectic reaction to a mixture of
a, B and vy with the following compositions: 80 atomic % A, 5
atomic % B, 15 atomic % C; 70 atomic % B, 10 atomic % A, 20
atomic % C; and 20 atomic % B, 10 atomic % A, 70 atomic % C.
What will be the mole fractions of «, B and vy in the microstructure?

1.16 Show that a general expression for the chemical potential of a compo-

nent in solution is given by
haA = G(‘,)\ + SA(TO - T) + RT In 'YAXA + (P - Po)Vm

where G is the free energy of pure A at temperature T, and pressure
Py, Sa is the entropy of A, R is the gas constant, y, the activity
coefficient for A, X, the mole fraction in solution, V_, is the molar
volume which is assumed to be constant. Under what conditions is the
above equation valid?
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Diffusion

The previous chapter was mainly concerned with stable or equilibrium
arrangements of atoms in an alloy. The study of phase transformations
concerns those mechanisms by which a system attempts to reach this state and
how long it takes. One of the most fundamental processes that controls the
rate at which many transformations occur is the diffusion of atoms.

The reason why diffusion occurs is always so as to produce a decrease in
Gibbs free energy. As a simple illustration of this consider Fig. 2.1. Two
blocks of the same A-B solid solution, but with different compositions, are
welded together and held at a temperature high enough for long-range
diffusion to occur. If the molar free energy diagram of the alloy is as shown in
Fig. 2.1b, the molar free energy of each part of the alloy will be given by G,
and G,, and initially the total free energy of the welded block will be Gj.
However, if diffusion occurs as indicated in Fig. 2.1a so as to eliminate the
concentration differences, the free energy will decrease towards G,, the free
energy of a homogeneous alloy. Thus, in this case, a decrease in free energy is
produced by A and B atoms diffusing away from the regions of high concen-
tration to that of low concentration, i.e. down the concentration gradients.
However, this need not always be the case as was indicated in Section 1.4. In
alloy systems that contain a miscibility gap the free energy curves can have a
negative curvature at low temperatures. If the free energy curve and composi-
tion for the A-B alloy shown in Fig. 2.1a were as drawn in Fig. 2.1d the A
and B atoms would diffuse rowards the regions of high concentration, i.e. up
the concentration gradients, as shown in Fig. 2.1c. However, this is still the
most natural process as it reduces the free energy from G; towards G, again.

As can be seen in Fig. 2.1e and f the A and B atoms are diffusing from
regions where the chemical potential is high to regions where it is low, i.e.
down the chemical potential gradient in both cases. In practice the first case
mentioned above is far more common than the second case, and it is usually
assumed that diffusion occurs down concentration gradients. However, it can
be seen that this is only true under special circumstances and for this reason it
is strictly speaking better to express the driving force for diffusion in terms of
a chemical potential gradient. Diffusion ceases when the chemical potentials
of all atoms are everywhere the same and the system is in equilibrium.
However, since case 1 above is mainly encountered in practice and because
concentration differences are much easier to measure than chemical potential
differences, it is nevertheless more convenient to relate diffusion to concen-
tration gradients. The remainder of this chapter will thus be mainly concerned
with this approach to diffusion.
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Fig. 2.1 Free energy and chemical potential changes during diffusion. (a) and (b)
‘down-hill’ diffusion, (c) and (d) ‘up-hill’ diffusion. (e) w4 > w4 therefore A atoms
move from (2) to (1), ph > p3 therefore B atoms move from (1) to (2). (f) ph > pi
therefore A atoms move from (1) to (2), ug > w} therefore B atoms move from (2)
to (1).

2.1 Atomic Mechanisms of Diffusion

There are two common mechanisms by which atoms can diffuse through a
solid and the operative mechanism depends on the type of site occupied in the
lattice. Substitutional atoms usually diffuse by a vacancy mechanism whereas
the smaller interstitial atoms migrate by forcing their way between the larger
atoms, i.e. interstitially.

Normally a substitutional atom in a crystal oscillates about a given site and
is surrounded by neighbouring atoms on similar sites. The mean vibrational
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energy possessed by each atom is given by 3 kT, and therefore increases in
proportion to the absolute temperature. Since the mean frequency of vibration
is approximately constant the vibrational energy is increased by increas-
ing the amplitude of the oscillations. Normally the movement of a substitu-
tional atom is limited by its neighbours and the atom cannot move to another
site. However, if an adjacent site is vacant it can happen that a particularly
violent oscillation results in the atom jumping over on to the vacancy. This is
illustrated in Fig. 2.2. Note that in order for the jump to occur the shaded
atoms in Fig. 2.2b must move apart to create enough space for the migrating
atom to pass between. Therefore the probability that any atom will be able to
jump into a vacant site depends on the probability that it can aquire sufficient
vibrational energy. The rate at which any given atom is able to migrate
through the solid will clearly be determined by the frequency with which it
encounters a vacancy and this in turn depends on the concentration of
vacancies in the solid. It will be shown that both the probability of jumping
and the concentration of vacancies are extremely sensitive to temperature.

Fig. 2.2 Movement of an atom into an adjacent vacancy in an fcc lattice. (a) A
close-packed plane. (b) A unit cell showing the four atoms (shaded) which must move
before the jump can occur. (After P.G. Shewmon, Diffusion in Solids, McGraw-Hill,
New York, 1963.)

When a solute atom is appreciably smaller in diameter than the sol-
vent, it occupies one of the interstitial sites between the solvent atoms.
In fcc materials the interstitial sites are midway along the cube edges
or, equivalently, in the middle of the unit cell, Fig. 2.3a. These are known as
octahedral sites since the six atoms around the site form an octahedron. In the
bec lattice the interstitial atoms also often occupy the octahedral sites which
are now located at edge-centring or face-centring positions as shown in
Fig. 2.3b.

Usually the concentration of interstitial atoms is so low that only a small
fraction of the available sites is occupied. This means that each interstitial
atom is always surrounded by vacant sites and can jump to another position as
often as its thermal energy permits it to overcome the strain energy barrier to
migration, Fig. 2.4.
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Fig. 2.3 (a) Octahedral interstices (0) in an fcc crystal. (b) Octahedral interstices in a
bee crystal. (After P. Haasen, Physical Metallurgy, Cambridge University Press,
Cambridge, 1978.)

Fig. 2.4 A {100} plane in an fcc lattice showing the path of an interstitial atom
diffusing by the interstitial mechanism.

2.2 Interstitial Diffusion
2.2.1 Interstitial Diffusion as a Random Jump Process

Let us consider first a simple model of a dilute interstitial solid solution where
the parent atoms are arranged on a simple cubic lattice and the solute
B atoms fit perfectly into the interstices without causing any distortion of the
parent lattice. We assume that the solution is so dilute that every interstitial
atom is surrounded by six vacant interstitial sites. If the concentration of B
varies in one dimension (x) through the solution (see Fig. 2.5) the B atoms
can diffuse throughout the material until their concentration is the same
everywhere. The problem to be considered then, concerns how this diffusion
is related to the random jump characteristics of the interstitial atoms.
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Fig. 2.5 Interstitial diffusion by random jumps in a concentration gradient.

To answer this question consider the exchange of atoms between two
adjacent atomic planes such as (1) and (2) in Fig. 2.5a. Assume that on
average an interstitial atom jumps I'y times per second (I' = Greek capital
gamma) and that each jump is in a random direction, i.e. there is an equal
probability of the atom ]umplng to every one of the six adjacent sites. If plane
(1) contains n, B-atoms per m? the number of atoms that will j jump from plane
(1) to (2) in 1 s (/) will be given by:

1
Js = EI‘Bnl atoms m~2 s~} (2.1)

During the same time the number of atoms that jump from plane (2) to (1),
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assuming I'g is independent of concentration, is given by:

. 1 P
Jg = EFan atoms m™“ s

Since n; > n, there will be a net flux of atoms from left to right given by:
- - 1
Jg=Jg —Jg = EFB(nl = ny) (2.2)

where n; and n, are related to the concentration of B in the lattice. If the
separation of planes (1) and (2) is a the concentration of B at the position of
plane (1) Cg(l) = n;/a atoms m~>. Likewise Cg(2) = ny/a. Therefore
(ny = ny) = a(Cg(l) — Cg(2)) and from Fig. 2.5b it can be seen that
Cg(1) = Cg(2) = —a(aCg/dx). Substituting these equations into Equation
2.2 gives:

1 dCg
Jg = —|=T'ga?|— atoms m~?s~!
B <6 B ) ax
The partial derivative dCg/dx has been used to indicate that the concentration
gradient can change with time. Thus in the presence of a concentration
gradient the random jumping of individual atoms produces a net flow of atoms
down the concentration gradient.

Substituting
Dg = %FBaz (2.3)
yields:
Jg = —DBE‘2 (2.4)

This equation is identical to that proposed by Fick in 1855 and is usually
known as Fick’s first law of diffusion. Dy is known as the intrinsic diffusivity
or the diffusion coefficient of B, and has units [m? s~!]. The units for J are
[quantity m~2 s~!] and for C/dx [quantity m~*], where the unit of quantity
can be in terms of atoms, moles, kg, etc. as long it is the same for J and C.

When the jumping of B atoms is truly random with a frequency independ-
ent of concentration, Dy is given by Equation 2.3 and is also a constant
independent of concentration. Although this equation for Dg was derived for
interstitial diffusion in a simple cubic lattice it is equally applicable to any
randomly diffusing atom in any cubic lattice provided the correct substitution
for the jump distance a is made. In non-cubic lattices the probability of jumps
in different crystallographic directions is not equal and D varies with direc-
tion. Atoms in hexagonal lattices, for example, diffuse at different rates
parallel and perpendicular to the basal plane.
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The condition that the atomic jumps occur completely randomly and inde-
pendently of concentration is usually not fulfilled in real alloys. Nevertheless
it is found from experiment that Fick’s first law is still applicable, though only
if the diffusion coefficient D is made to vary with composition. For example
the diffusion coefficient for carbon in fcc-Fe at 1000 °C is 2.5 x 107 m? 57!
at 0.15 wt% C, but it rises to 7.7 X 107 m? s™! in solutions containing
1.4 wt% C. The reason for the increase of D with concentration is that the C
atoms strain the Fe lattice thereby making diffusion easier as the amount of
strain increases.

As an example of the use of Equation 2.3 the following data can be used to
estimate the jump frequency of a carbon atom in y-Fe at 1000 °C. The lattice
parameter of +y-Fe is ~037nm thus the jump distance
o =0.37/{2 =026 nm (2.6 A). Assuming D = 2.5 x 107" m?s™!, leads
to the result that ' = 2 x 10° jumps s~'. If the vibration frequency of the
carbon atoms is ~10'3, then only about one attempt in 10* results in a jump
from one site to another.

It is also interesting to consider the diffusion process from the point of view
of a single diffusing atom. If the direction of each new jump is independent of
the direction of the previous jump the process is known as a random walk.
For a random walk in three dimensions it can be shown’ that after n steps of
length o the ‘average’ atom will be displaced by a net distance a/n from its
original position. (This is more precisely the root mean square displacement
after n steps.) Therefore after a time ¢ the average atom will have advanced a
radial distance r from the origin, where

r = a(7) (2.5)
Substituting Equation 2.3 for I" gives
r=2.4)(Dr) (2.6)

It will be seen that the distance /(Dy) is a very important quantity in diffusion
problems.

For the example of carbon diffusing in y-Fe above, in 1 s each carbon atom
will move a total distance of ~0.5 m but will only reach a net displacement of
~10 wm. It is obvious that very few of the atom jumps provide a useful
contribution to the total diffusion distance.

2.2.2  Effect of Temperature—Thermal Activation

Let us now take a closer look at the actual jump process for an interstitial
atom as in Fig. 2.6a. Due to the thermal energy of the solid all the atoms will
be vibrating about their rest positions and occasionally a particularly violent
oscillation of an interstitial atom, or some chance coincidence of the move-
ments of the matrix and interstitial atoms, will result in a jump. Since the
diffusion coefficient is closely related to the frequency of such jumps, I, it is of
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Fig. 2.6 Interstitial atom, (a) in equilibrium position, (b) at the position of maximum
lattice distortion. (c) Variation of the free energy of the lattice as a function of the
position of interstitial. (After P.G. Shewmon, in Physical Metallurgy, 2nd edn., R W.
Cahn (Ed.), North-Holland, Amsterdam, 1974.)

interest to know the factors controlling I' and the effect of raising the
temperature of the system.

The rest positions of the interstitial atoms are positions of minimum poten-
tial energy. In order to move an interstitial atom to an adjacent interstice the
atoms of the parent lattice must be forced apart into higher energy positions
as shown in Fig. 2.6b. The work that must be done to accomplish this process
causes an increase in the free energy of the system by AG,, (m refers to
migration) as shown in Fig. 2.6c. AG, is known as the activation energy for the
migration of the interstitial atom. In any system in thermal equilibrium the
atoms are constantly colliding with one another and changing their vibrational
energy. On average, the fraction of atoms with an energy of AG or more than
the mean energy is given by exp (—AG/RT). Thus if the interstitial atom in
Fig. 2.6a is vibrating with a mean frequency v in the x direction it makes v
attempts per second to jump into the next site and the fraction of these
attempts that are successful is given by exp (—AG,,/RT). Now the atom is
randomly vibrating in three-dimensional space, and if it is surrounded by z
sites to which it can jump the jump frequency is given by

-AG,,
RT

I'g = zv exp 2.7)

AG,, can be considered to be the sum of a large activation enthalpy AH, and
a small activation entropy term —TAS,,.

Combining this expression with Equation 2.3 gives the diffusion coefficient
as

ASm} —AH,, 2.8)

1 2
DB—[ga Zv exp R exp RT
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This can be simplified to an Arrhenius-type equation, that is

DB = DBO exp _Q]I,,D (29)
where
AS
= a2 —m
Dy gV exp ¢ (2.10)
and
O = AH, (2.11)

The terms that are virtually independent of temperature have been grouped
into a single material constant D,. Therefore D or I increases exponentially
with temperature at a rate determined by the activation enthalpy Qip (ID
refers to Interstitial Diffusion). Equation 2.9 is found to agree with ex-
perimental measurements of diffusion coefficients in substitutional as well as
interstitial diffusion. In the case of interstitial diffusion it has been shown that
the activation enthalpy Q is only dependent on the activation energy barrier
to the movement of interstitial atoms from one site to another.

Some experimental data for the diffusion of various interstitials in bcc-Fe
are given in Table 2.1. Note that the activation enthalpy for interstitial
diffusion increases as the size of the interstitial atom increases. (The atomic
diameters decrease in the order C, N, H.) This is to be expected since smaller
atoms cause less distortion of the lattice during migration.

A convenient graphical representation of D as a function of temperature
can be obtained writing Equation 2.9 in the form

1
log D= log D, — %(?) (2.12)

Thus if log D is plotted against (1/7) a straight line is obtained with a slope
equal to —(Q/2.3 R) and an intercept on the log D axis at log D, see
Fig. 2.7.

Table 2.1 Experimental Diffusion Data for Interstitials in Ferritic (bcc) Iron

Solute Do/mm?s™!  Q/kJ mol™! Ref.

C 2.0 84.1 2
N 0.3 76.1 3
H 0.1 13.4 4
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Fig. 2.7 The slope of log D v. 1/T gives the activation energy for diffusion Q.

2.2.3 Steady-State Diffusion

The simplest type of diffusion to deal with is when a steady state exists, that is
when the concentration at every point does not change with time. For exam-
ple consider a thin-walled pressure vessel containing hydrogen. The concen-
tration of hydrogen at the inner surface of the vessel will be maintained at a
level Cy depending on the pressure in the vessel, while the concentration at
the outer surface is reduced to zero by the escape of hydrogen to the
surroundings. A steady state will eventually be reached when the concentra-
tion everywhere reaches a constant value. Provided Dy is independent of
concentration there will be a single concentration gradient in the wall given by

E_O—CH
ox l

where [ is the wall thickness. On this basic the flux through the wall is given by

_ DyCy

Ju ]

(2.13)

2.2.4 Nonsteady-State Diffusion

In most practical situations steady-state conditions are not established, i.e.
concentration varies with both distance and time, and Fick’s first law can
no longer be used. For simplicity let us consider the situation shown in
Fig. 2.8a where a concentration profile exists along one dimension (x) only.
The flux at any point along the x-axis will depend on the local value of Dg and
dCg/dx as shown in Fig. 2.8b. In order to calculate how the concentration of
B at any point varies with time consider a narrow slice of material with an
area A and a thickness dx as shown in Fig. 2.8c.
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Fig. 2.8 The derivation of Fick’s second law.

The number of interstitial B atoms that diffuse into the slice across plane
(1) in a small time interval & will be J,A8¢. The number of atoms that leave
the thin slice during this time, however, is only J,Ad. Since J, < J; the
concentration of B within the slice will have increased by

sy = 1= T4 @19
But since 8x is small,
J,=J 4+ oy dx (2.15)
ox
and in the limit as 8 — 0 these equations give
a—a(% = —Zj—f (2.16)

Substituting Fick’s first law gives

3Cs _a(, 3Cy
a ax(DB ox ) 2.17)



Interstitial diffusion 71

which is referred to as Fick’s second law. If variations of Dg with concentra-
tion can be ignored this equation can be simplified to

aC 8°Cg
7[5 = Dg—— (2.18)

These equations relate the rate of change of composition with time to the
concentration profile Cg(x). Equation 2.18 has a simple graphical interpreta-
tion as 9°Cg/dx? is the curvature of the Cpg versus x curve. If the concentration
profile appears as shown in Fig. 2.9a it has a positive curvature everywhere
and the concentration at all points on such a curve will increase with time
(9Cg/ ot positive). When the curvature is negative as in Fig. 2.9b Cgy de-
creases with time (0Cg/ 9t negative).

Fig. 2.9 (a) 3°C/ax* > 0 all concentrations increase with time. (b) 92C/ax? < 0 all
concentrations decrease with time.

2.2.5 Solutions to the Diffusion Equation

Two solutions will be considered which are of practical importance. One
concerns the situation which is encountered in homogenization heat treat-
ments, and the other is encountered, for example, in the carburization of
steel.

Homogenization

It is often of interest to be able to calculate the time taken for an in-
homogeneous alloy to reach complete homogeneity, as for example in the
elimination of segregation in castings.

The simplest composition variation that can be solved mathematically is if
Cg varies sinusoidally with distance in one dimension as shown in Fig. 2.10.
In this case B atoms diffuse down the concentration gradients, and regions
with negative curvature, such as between x = 0 and x = [, decrease in con-
centration, while regions between x = / and 2/ increase in concentration. The
curvature is zero at x = 0, [, 2/, so the concentrations at these points remain
unchanged with time. Consequently the concentration profile after a certain
time reduces to that indicated by the dashed line in Fig. 2.10.
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Fig. 2.10 The effect of diffusion on a sinusoidal variation of composition.

At time ¢ = 0 the concentration profile is given by

X
l
where C is the mean composition, and B, is the amplitude of the initial

concentration profile. Assuming Dg is independent of concentration the
solution of Equation 2.18 that satisfies this initial condition is

C = C + By sin (2.19)

- —t
C = C + Bysin (%) exp— (2.20)
where 7 is a constant called the relaxation time and is given by:
12
= 2.21
T ’Tl'2 DB ( )

Thus the amplitude of the concentration profile after a time ¢ (8) is given by C
atx = 1/2, i.e.

-t
B = Bo exp Y (2.22)

In other words, the amplitude of the concentration profile decreases ex-
ponentially with time and after a sufficiently long time approaches zero so that
C = C everywhere. The rate at which this occurs is determined by the
relaxation time 7. After a time t = 1, B = Bo/e, that is, the amplitude has
decreased to 1/2.72 of its value at t = 0. The solute distribution at this stage
would therefore appear as shown by the dashed line in Fig. 2.10. After a time
t = 27 the amplitude is reduced by a total of 1/¢?, i.e. by about one order of
magnitude. From Equation 2.21 it can be seen that the rate of homogeniza-
tion increases rapidly as the wavelength of the fluctuations decreases.

The initial concentration profile will not usually be sinusoidal, but in
general any concentration profile can be considered as the sum of an infinite
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series of sine waves of varying wavelength and amplitude, and each wave
decays at a rate determined by its own 7. Thus the short wavelength terms die
away very rapidly and the homogenization will ultimately be determined by 7
for the longest wavelength component.

The Carburization of Steel

The aim of carburization is to increase the carbon concentration in the surface
layers of a steel product in order to achieve a harder wear-resistant surface.
This is usually done by holding the steel in a gas mixture containing CH,
and/or CO at a temperature where it is austenitic. By controlling the relative
proportions of the two gases the concentration of carbon at the surface of the
steel in equilibrium with the gas mixture can be maintained at a suitable
constant value. At the same time carbon continually diffuses from the surface
into the steel.

The concentration profiles that are obtained after different times are shown
in Fig. 2.11. An analytical expression for these profiles can be obtained by
solving Fick’s second law using the boundary conditions: Cg (at x = 0) = C;
and Cg (®) = C,, the original carbon concentration of the steel. The speci-
men is considered to be infinitely long. In reality the diffusion coefficient of
carbon in austenite increases with increasing concentration, but an approxi-
mate solution can be obtained by taking an average value and this gives the
simple solution

X
C=C, - (C,— Cp)erf (2 ] (Dt)) (2.23)

Where ‘erf’ stands for error function which is an indefinite integral defined by
the equation

erf (2) = % f exp (—3)dy
m™ Jo

Fig. 2.11 Concentration profiles at successive times (t3 > t, > t;) for diffusion into a
semi-infinite bar when the surface concentration C, is maintained constant.



74 Diffusion

The function is shown graphically in Fig. 2.12a. More accurate values can be
obtained from books of standard mathematical functions. Note that since erf
(0.5) = 0.5 the depth at which the carbon concentration is midway between
C, and C, is given by (x/2J(D1)) = 0.5, that is

x = J(Dt) (2.24)

Thus the thickness of the carburized layer is ~/(Dt). Note also that the depth
of any isoconcentration line is directly proportional to /(Dt), i.e. to obtain a
twofold increase in penetration requires a fourfold increase in time.

For the case of carbon diffusion in austenite at 1000 °C, D =
4 x 107" m?s™!, which means that a carburized layer 0.2 mm thick
requires a time of (0.2 x 107%)?/4x 107! i.e. 1000 s (17 min).

There are other situations in which the solution to the diffusion equation is
very similar to Equation 2.23. For example during decarburization of steel
the surface concentration is reduced to a very low value and carbon diffuses

Fig. 2.12 (a) Schematic diagram illustrating the main features of the error function.
(b) Conc_entratlon profiles at successive times (f, > t; > 0) when two semi-infinite
bars of different composition are annealed after welding.
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out of the specimen. The carbon profile is then given by
x
C = Cyerf (m) (2.25)
Another situation arises if two semi-infinite specimens of different composi-

tions C; and C, are joined together and annealed. The profiles in this case are
shown in Fig. 2.12b and the relevant solution is

_C1+C2_C1_C2 X
c-(839)- (259 (2

2.3 Substitutional Diffusion

Diffusion in dilute interstitial alloys was relatively simple because the diffusing
atoms are always surrounded by ‘vacant’ sites to which they can jump
whenever they have enough energy to overcome the energy barrier for
migration. In substitutional diffusion, however, an atom can only jump if
there happens to be a vacant site at one of the adjacent lattice positions as
shown in Fig. 2.2. The simplest case of substitutional diffusion is the self-
diffusion of atoms in a pure metal. This is amenable to a simple atomic model
similar to the case of interstitial diffusion and will be treated first. Substitu-
tional diffusion in binary alloys is more complex and will be dealt with
separately.

2.3.1 Self-Diffusion

The rate of self-diffusion can be measured experimentally by introducing a
few radioactive A atoms (A*) into pure A and measuring the rate at which
penetration occurs at various temperatures. Since A* and A atoms are
chemically identical their jump frequencies are also almost identical. Thus the
diffusion coefficient can be related to the jump frequency by Equation 2.3,
that is

1,

DA = Dy = i r (2.27)
where I' is the jump frequency of both the A* and A atoms. Strictly
speaking, Equation 2.3 was derived on the assumption that each atomic jump
is unrelated to the previous jump. This is a good assumption for interstitial
diffusion, but it is less valid for substitutional diffusion. The difference is that
once an atom has jumped into a vacancy the next jump is not equally
probable in all directions, but is most likely to occur back into the same
vacancy. Such jumps do not contribute to the diffusive flux and therefore
Equation 2.27 should be replaced by D% = fDA = f - «°T'/6 where f (known
as a correlation factor) is less than unity. However, the effect is small and f is
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close to unity. (See P.G. Shewmon Diffusion in Solids McGraw-Hill, New
York, 1963, p. 100.)

Consider the atomic jump shown in Fig. 2.2. An atom next to a vacancy
can make a jump provided it has enough thermal energy to overcome the
activation energy barrier to migration, AG,,. Therefore the probability that
any attempt at jumping will be successful is given by exp (—~AG,,/RT) as in
the case of interstitial migration. However, most of the time the adjacent site
will not be vacant and the jump will not be possible. The probability that an
adjacent site is vacant is given by zX, where z is the number of nearest
neighbours and X, is the probability that any one site is vacant, which is just
the mole fraction of vacancies in the metal. Combining all these probabilities
gives the probability of a successful jump as zX, exp (—AG,/RT). Since the
atoms are vibrating with a temperature-independent frequency v the number
of successful jumps any given atom will make in 1 s is given by

G
[ =vz X, exp RTm (2.28)

But, if the vacancies are in thermodynamic equilibrium, X, = X{ as given
by Equation 1.57, i.e.

-AG,

¢ = exp BT (2.29)
Combining these last three equations gives
Dy = %azzv exp _(A—G';e;-,—AiV) (2.30)
Substituting AG = AH — TAS gives
Da = —a’zvexp A% + AS, exp — (%+—AHV> (2.31)
6 R RT

For most metals v is ~10'%. In fcc metals z = 12 and o = a/,2 the jump
distance. This equation can be written more concisely as

_ —0Osp
Da = Dy exp RT (2.32)
where
AS,, + AS
— 2.2 m v
Dy = i Zv exp — R (2.33)
and
Osp = AH, + AH, (2.34)

Equation 2.32 is the same as was obtained for interstitial diffusion except that
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the activation energy for self-diffusion has an extra term (AH,). This is
because self-diffusion requires the presence of vacancies whose concentration
depends on AH,.

Some of the experimental data on substitutional self-diffusion are summa-
rised in Table 2.2. It can be seen that for a given crystal structure and bond
type Q/RT,, is roughly constant; that is, the activation enthalphy for self-
diffusion, Q, is roughly proportional to the equilibrium melting temperature,
T.. Also, within each class, the diffusivity at the melting temperature,
D(T,,), and D, are approximately constants. For example, for most close-
packed metals (fcc and hcp) Q/RT, ~ 18 and D(T,) 1pum 2s7!
(107 m? s7!). The Q/RT,, and D(T,,) data are also plotted in Fig. 2.13
along with data for other materials for comparison. An immediate conse-
quence of these correlations is that the diffusion coefficients of all materials
with a given crystal structure and bond type will be approximately the same
at the same fraction of their melting temperature, i.e. D(T/T,,) = constant.
(T/T,, is known as the homologous temperature.)

The above correlations have been evaluated for atmospheric pressure.
There are, however, limited experimental data that suggest the same correla-
tions hold independently of pressure, provided of course the effect of pressure
on T, is taken into account. Since volume usually increases on melting,
raising the pressure increases T, and thereby lowers the diffusivity at a given
temperature.

That a rough correlation exists between Q and T, is not surprising: increas-
ing the interatomic bond strength makes the process of melting more difficult;
that is, Ty, is raised. It also makes diffusion more difficult by increasing AH,
and AH,,.

Consider the effect of temperature on self-diffusion in Cu as an example.
At 800 °C (1073 K) the data in Table 2.2 give D¢, = 5 X 107° mm? s™!. The
jump distance o in Cu is 0.25 nm and Equation 2.3 therefore gives
I'ce = 5 X 10° jumps s~ After an hour at this temperature, \/(Df) ~ 4 um.
Extrapolating the data to 20 °C, however, gives D¢, ~ 107>* mm? s7%, i.e.
I' ~ 107%° jumps s~!. Alternatively, each atom would make one jump every
10'? years!

Experimentally the usual method for determining the self-diffusion coef-
ficient is to deposit a known quantity (M) of a radioactive isotope A* onto
the ends of two bars of A which are then joined as shown in Fig. 2.14a. After
annealing for a known time at a fixed temperature, A* will have diffused into
A and the concentration profile can be determined by machining away thin
layers of the bar and measuring the radioactivity as a function of position.
Since A and A* are chemically identical the diffusion of A* into A will occur
according to Equation 2.18. The solution of this equation for the present
boundary conditions is

M x° 2.35
¢ = 2JwDn P (_4_D—t> (235)
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Table 2.2 Experimental Data for Substitutional Self-Diffusion in Pure Metals
at Atmospheric Pressure

Data selected mainly from A.M. Brown and M.F. Ashby, ‘Correlations for
Diffusion Constants’, Acta Metallurgica, 28:1085 (1980).

T Dy Q Q D(T:,)
Class Metal ¥ mm?s? Kmo? RT., pmls’
bee e-Pu 914 0.3 65.7 8.7 53
(rare earths) 8-Ce 1071 1.2 90.0 10.1 49
v-La 1193 1.3 102.6 10.4 42
v-Yb 1796 1.2 121.0 8.1 3600
bee Rb 312 23 39.4 15.2 5.8
(alkali K 337 31 40.8 14.6 15
metals) Na 371 24.2 43.8 14.2 16
Li 454 23 55.3 14.7 9.9
bec B-Tl 577 40 94.6 19.7 0.11
(transition Eu 1095 100 143.5 15.8 14
metals) Er 1795 451 302.4 20.3 0.71
o-Fe* 1811 200 239.7 15.9 26
d-Fe* 1811 190 238.5 15.8 26
B-Ti 1933 109 251.2 15.6 18
B-Zr 2125 134 273.5 15.5 25
Cr 2130 20 308.6 17.4 0.54
\" 2163 28.8 309.2 17.2 0.97
Nb 2741 1240 439.6 19.3 5.2
Mo 2890 180 460.6 19.2 0.84
Ta 3269 124 413.3 15.2 31
w 3683 4280 641.0 20.9 3.4
hcp* Cd 594 |lc 5 76.2 15.4 0.99
1c 10 79.9 16.2 0.94
Zn 692 |lc 13 91.6  15.9 1.6
lc 18 96.2 16.7 0.98
Mg 922 |[c100 134.7 17.6 23
1¢c150 136.0 17.8 2.9
fcc Pb 601 137 109.1 21.8 0.045
Al 933 170 142.0 18.3 1.9
Ag 1234 40 184.6 18.0 0.61
Au 1336 10.7 176.9 15.9 1.3
Cu 1356 31 200.3 17.8 0.59

Ni 1726 190 279.7 19.5 0.65
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Table 2.2 (cont.)
Class Metal I : lzo — Q - Q D(Tm)
K mm?s kJ mol RT,, pm? s~}
B-Co 1768 83 283.4 19.3 0.35
v-Fet 1805 49 284.1 18.9 0.29
Pd 1825 20.5 266.3 17.6 0.49
Th 2023 120 319.7 19.0 6.6
Pt 2046 22 278.4 16.4 0.17
tet* B-Sn 505 |[c 770 107.1 25.5 0.0064
1¢1070 105.0 25.0 0.015
diamond Ge 1211 440 3245 323  4.4x107°
cubic Si 1683 0.9 x 10° 496.0 355 3.6x107*

* Data selected from N.L. Peterson, Solid State Physics, Vol. 22, D. Turnbull
and H. Ehrenreich (Eds.), Academic Press, New York, 1968.

' T for y-Fe is the temperature at which y-Fe would melt if 8-Fe did not
intervene.

M has units [quantity m~?] and C [quantity m~>]. Figure 2.14b shows the
form of this equation fitted to experimental points for self-diffusion in gold.

2.3.2 Vacancy Diffusion

The jumping of atoms into vacant sites can equally well be considered as the
jumping of vacancies onto atom sites. If excess vacancies are introduced into
the lattice they will diffuse at a rate which depends on the jump frequency.
However, a vacancy is always surrounded by sites to which it can jump and it
is thus analogous to an interstitial atom (see Section 2.2.2). Therefore a
vacancy can be considered to have its own diffusion coefficient given by

1

D, = 2T, (2.36)
By analogy with Equation 2.8
1, AS,, —-AH,,
D, = g O ZVexp o= eXp (2.37)

In this case AH,, and AS,, apply to the migration of a vacancy, and are
therefore the same as for the migration of a substitutional atom. Comparing
Equations 2.37 and 2.31 it can be seen that

D, = DAo/X° (2.38)
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,~Thin layer of Au*

]
Gold crystal Gold crystal :

Fig. 2.14 Tllustration of the principle of tracer diffusion and of the planar source
method for determining the self-diffusion coefficient of gold. (a) Initial diffusion
couple with planar source of radioactive gold Au*. (b) Distribution of Au* after
diffusion for 100 h at 920 °C. (After A.G. Guy, Introduction to Materials Science,
McGraw-Hill, New York, 1971.)

This shows in fact that D, is many orders of magnitude greater than D, the
diffusivity of substitutional atoms.

2.3.3 Diffusion in Substitutional Alloys

During self-diffusion all atoms are chemically identical. Thus the probability
of finding a vacancy adjacent to any atom and the probability that the atom
will make a jump into the vacancy is equal for all atoms. This leads to a simple
relationship between jump frequency and diffusion coefficient. In binary
substitutional alloys, however, the situation is more complex. In general, the
rate at which solvent (A) and solute (B) atoms can move into a vacant site is
not equal and each atomic species must be given its own intrinsic diffusion
coefficient D or Dg.

The fact that the A and B atoms occupy the same sites has important
consequences on the form that Fick’s first and second laws assume for substi-
tutional alloys. It will be seen later that when the A and B atoms jump at
different rates the presence of concentration gradients induces a movement of
the lattice through which the A and B atoms are diffusing.
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D, and Dy are defined such that Fick’s first law applies to diffusion relative
to the lattice, that is

aC

Ja = —DA—éx—A (2.39)
3Cg

Jp = —Dp— (2.40)

where J 5 and Jg are the fluxes of A and B atoms across a given lattice plane.
This point did not need emphasizing in the case of interstitial diffusion
because the lattice planes of the parent atoms were unaffected by the diffu-
sion process. It will be seen, however, that the situation is different in the case
of substitutional diffusion.

In order to derive Fick’s second law let us consider the interdiffusion of A
and B atoms in a diffusion couple that is made by welding together blocks of
pure A and B as shown in Fig. 2.15a. If the couple is annealed at a high
enough temperature, a concentration profile will develop as shown.

If we make the simplifying assumption that the total number of atoms per
unit volume is a constant, C,, independent of composition, then

CO = CA + CB (241)
and

aCx  9Cy

o (2.42)

Hence at a given position the concentration gradients driving the diffusion of
A and B atoms are equal but opposite, and the fluxes of A and B relative to
the lattice can be written as

aC

Ja= —DAa—xA (2.43)
aCa

]B - B ox

These fluxes are shown schematically in Fig. 2.15 for the case D5 > Dg, i.e.
[Jal > [Jal.

When atoms migrate by the vacancy process the jumping of an atom into a
vacant site can equally well be regarded as the jumping of the vacancy onto
the atom, as illustrated in Fig. 2.16. In other words, if there is a net flux of
atoms in one direction there is an equal flux of vacancies in the opposite
direction. Thus in Fig. 2.15a there is a flux of vacancies —J, due to the
migration of a A atoms plus a flux of vacancies —Jg due to the diffusion of B
atoms. As J, > Jg there will be a net flux of vacancies

J,=—Js—Jg (2.44)
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Fig. 2.15 Interdiffusion and vacancy flow. (a) Composition profile after interdiffu-
sion of A and B. (b) The corresponding fluxes of atoms and vacancies as a function of
position x. (c) The rate at which the vacancy concentration would increase or decrease
if vacancies were not created or destroyed by dislocation climb.
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Fig. 2.16 The jumping of atoms in one direction can be considered as the jumping of
vacancies in the other direction.

This is indicated in vector notation in Fig. 2.15a. In terms of D, and Dg,
therefore

aC
J, = (Da — Dg)—= (2.45)

This leads to a variation in J, across the diffusion couple as illustrated in
Fig. 2.15b.

In order to maintain the vacancy concentration everywhere near equilib-
rium vacancies must be created on the B-rich side and destroyed on the
A-rich side. The rate at which vacancies are created or destroyed at any
point is given by 8C,/0t = —aJ,/0x (Equation 2.16) and this varies across
the diffusion couple as shown in Fig. 2.15c.

It is the net flux of vacancies across the middle of the diffusion couple that
gives rise to movement of the lattice. Jogged edge dislocations can provide a
convenient source or sink for vacancies as shown in Fig. 2.17. Vacancies can
be absorbed by the extra half-plane of the edge dislocation shrinking while
growth of the plane can occur by the emission of vacancies. If this or a similar
mechanism operates on each side of the diffusion couple then the required
flux of vacancies can be generated as illustrated in Fig. 2.18. This means that
extra atomic planes will be introduced on the B-rich side while whole planes
of atoms will be ‘eaten’ away on the A-rich side. Consequently the lattice
planes in the middle of the couple will be shifted to the left.

The velocity at which any given lattice plane moves, v, can be related to the
flux of vacancies crossing it. If the plane has an area A, during a small time
interval &, the plane will sweep out a volume of Av - & containing
Av - 8t - Cy atoms. This number of atoms is removed by the total number of
vacancies crossing the plane in the same time interval, i.e. J,A - 3¢, giving
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Fig. 2.17 (a) before, (b) after: a vacancy is absorbed at a jog on an edge dislocation
(positive climb). (b) before, (a) after: a vacancy is created by negative climb of an
edge dislocation. (c) Perspective drawing of a jogged edge dislocation.

Fig. 2.18 A flux of vacancies causes the atomic planes to move through the
specimen.

J, = Cov (2.46)
Thus the velocity of the lattice planes will vary across the couple in the same
way as J,, see Fig. 2.15b. Substituting Equation 2.45 gives

X
v=(Ds - DB)B_xA (2.47)

where the mole fraction of A, X, = CA/C,

In practice, of course, internal movements of lattice planes are usually not
directly of interest. More practical questions concern how long homogeniza-
tion of an alloy takes, or how rapidly the composition will change at a fixed
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position relative to the ends of a specimen. To answer these questions we can
derive Fick’s second law for substitutional alloys.

Consider a thin slice of material 8x thick at a fixed distance x from one end
of the couple which is outside the diffusion zone as shown in Fig. 2.19. If the
total flux of A atoms entering this slice across plane 1 is J'5 and the total flux
leaving is Jy + (8J's/0x)dx the same arguments as were used to derive
Equation 2.16 can be used to show that

0Ca _ 0

o o (2.48)

The total flux of A atoms across a stationary plane with respect to the
specimen is the sum of two contributions: (i) a diffusive flux
Ja = —=D4 0Ca/ dx due to diffusion relative to the lattice, and (ii) a flux
v - C4 due to the velocity of the lattice in which diffusion is occurring.
Therefore:

d
By combining this equation with Equation 2.47 we obtain the equivalent of

Fick’s first law for the flux relative to the specimen ends:

aC
A = —(XgDa + XADB)a_xA (2.50)

where X, = Ca/Cp and Xg = Cg/C, are the mole fractions of A and B
respectively. This can be simplified by defining an interdiffusion coefficient D
as

D = XgDA + XADg (2.51)
so that Fick’s first law becomes
-0C,
= —-D—— 2.52
Jn= D= (2.52)

I = ""GJA

!

It 0x

o6x

12

X ox
Fig. 2.19 Derivation of Fick’s second law for interdiffusion. (See text for details.)
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Likewise,
0Cg  0Ca
= —]D)—— = D—
T8 b ox ox
i.e.
Jg = —Ja
Substitution of Equation 2.52 into Equation 2.48 gives
aC d(-0C
9%a _ _<D ——”—‘) (2.53)
ot ox ox

This equation is Fick’s second law for diffusion in substitutional alloys. The
only difference between this equation and Equation 2.18 (for interstitial
diffusion) is that the interdiffusion coefficient D for substitutional alloys
depends on D, and Dy whereas in interstitial diffusion Dy alone is needed.
Equations 2.47 and 2.51 were first derived by Darken® and are usually known
as Darken’s equations.

By solving Equation 2.53 with appropriate boundary conditions it is pos-
sible to obtain C,(x, t) and Cg(x, t), i.e. the concentration of A and B at any
position (x) after any given annealing time (f). The solutions that were given
in Section 2.2.5 will be applicable to substitutional alloys provided the range
of compositions is small enough that any effect of composition on D can be
ignored. For example, if D is known the characteristic relaxation time for an
homogenization anneal would be given by Equation 2.21 using D in place of
DB , i.e.

12
T WD

If the initial composition differences are so great that changes in D become
important then more complex solutions to Equation 2.53 must be used. These
will not be dealt with here, however, as they only add mathematical complex-
ities without increasing our understanding of the basic principles®.

Experimentally it is possible to measure D by determining the variation of
X, or Xg after annealing a diffusion couple for a given time such as that
shown in Fig. 2.15a. In cases where D can be assumed constant a comparison
of Equation 2.26 and the measured concentration profile would give D.
When D is not constant there are graphical solutions to Fick’s second law that
enable D to be determined at any composition. In order to determine D, and
Dy separately it is also necessary to measure the velocity of the lattice at a
given point in the couple. This can be achieved in practice by inserting
insoluble wires at the interface before welding the two blocks together. These
wires remain in effect ‘fixed’ to the lattice planes and their displacement after
a given annealing time can be used to calculate v. When v and D are known,
Equations 2.47 and 2.51 can be used to calculate D 5 and Dy for the composi-
tion at the markers.

The displacement of inert wires during diffusion was first observed by

(2.54)
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Smigelskas and Kirkendall in 19477 and is usually known as the Kirkendall
effect. In this experiment a block of a-brass (Cu-30wt% Zn) was wound
with molybdenum wire and encapsuled in a block of pure Cu, as shown in
Fig. 2.20. After annealing at a high temperature it was found that the
separation of the markers (w) had decreased. This is because D, > D¢,
and the zinc atoms diffuse out of the central block faster than they are
replaced by copper atoms diffusing in the opposite direction. Similar effects
have since been demonstrated in many other alloy systems. In general it is
found that in any given couple, atoms with the lower melting point possess a
higher D. The exact value of D, however, varies with the composition of the
alloy. Thus in Cu-Ni alloys D¢,, Dy; and D are all composition dependent,
increasing as Xc, increases, Fig. 2.21.

Molybdenum wires

e

W aBrass

by

Copper

Fig. 2.20 An experimental arrangement to show the Kirkendall effect.

In Fig. 2.17 it was assumed that the extra half-planes of atoms that grew or
shrank due to the addition or loss of atoms, were parallel to the original weld
interface so that there were no constraints on the resultant local expansion or
contraction of the lattice. In practice, however, these planes can be oriented
in many directions and the lattice will also try to expand or contract parallel to
the weld interface. Such volume changes are restricted by the surrounding
material with the result that two-dimensional compressive stresses develop in
regions where vacancies are created, while tensile stresses arise in regions
where vacancies are destroyed. These stress fields can even induce plastic
deformation resulting in microstructures characteristic of hot deformation.

Vacancies are not necessarily all annihilated at dislocations, but can also
be absorbed by internal boundaries and free surfaces. However, those not
absorbed at dislocations mainly agglomerate to form holes or voids in the
lattice. Void nucleation is difficult because it requires the creation of a new
surface and it is generally believed that voids are heterogeneously nucleated
at impurity particles. The tensile stresses that arise in conjunction with
vacancy destruction can also play a role in the nucleation of voids. When
voids are formed the equations derived above cannot be used without
modification.

In concentrated alloys the experimentally determined values of D, D, and
Dy are also found to show the same form of temperature dependence as all
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Fig. 2.21 The relationship between the various diffusion coefficients in the Cu-Ni

system at 1000 °C (After A.G. Guy, Introduction to Materials Science, McGraw-Hill,
New York, 1971.)
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other diffusivities, so that

.. -0
D = Dy exp — _
oexp == (2.55)
N
Da=D
A A0 €Xp o (2.56)
Dg = Dgy exp _QTB (2.57)

However the factors that determine Dy and Q in these cases are uncertain and
there is no simple atomistic model for concentrated solutions.

The variation of D with composition can be estimated in cases where it has
not been measured, by utilizing two experimental observations®:

1. For a given crystal structure, D at the melting point is roughly constant.
Therefore if adding B to A decreases the melting point, D will increase,
at a given temperature, and vice versa.

2. For a given solvent and temperature, both interstitial and substitutional
diffusion are more rapid in a bcc lattice than a close-packed lattice. For
example, for the diffusion of carbon in Fe at 910 °C, Dg/DY ~ 100. At
850 °C the self-diffusion coefficients for Fe are such that
Dg./D¢. ~ 100. The reason for this difference lies in the fact that the
bec structure is more open and the diffusion processes require less lattice
distortion.

2.3.4 Diffusion in Dilute Substitutional Alloys

Another special situation arises with diffusion in dilute alloys. When X ~ 0
and X4 ~ 1, Equation 2.51 becomes

D = Dg (2.58)
This is reasonable since it means that the rate of homogenization in dilute
alloys is controlled by how fast the solute (B) atoms can diffuse. Indeed the
only way homogenization can be achieved is by the migration of the B atoms
into the solute-depleted regions. Dg for a dilute solution of B in A is called
the impurity diffusion coefficient. Such data is more readily available than
interdiffusion data in concentrated alloys. One way in which impurity dif-
fusion coefficients can be measured is by using radioactive tracers.

It is often found that Dy in a dilute solution of B in A is greater than D, .
The reason for this is that the solute atoms can attract vacancies so that there
is more than a random probability of finding a vacancy next to a solute atom
with the result that they can diffuse faster than the solvent. An attraction
between a solute atom and a vacancy can arise if the solute atom is larger than
the solvent atoms or if it has higher valency. If the binding energy is very large
the vacancy will be unable to‘escape’ from the solute atom. In this case the
solute—vacancy pair can diffuse through the lattice together.
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2.4 Atomic Mobility

Fick’s first law is based on the assumption that diffusion eventually stops, that
is equilibrium is reached, when the concentration is the same everywhere.
Strictly speaking this situation is never true in practice because real materials
always contain lattice defects such as grain boundaries, phase boundaries and
dislocations. Some atoms can lower their free energies if they migrate to such
defects and at ‘equilibrium’ their concentrations will be higher in the vicinity of
the defect than in the matrix. Diffusion in the vicinity of these defects is
therefore affected by both the concentration gradient and the gradient of the
interaction energy. Fick’s law alone is insufficient to describe how the concen-
tration will vary with distance and time.

As an example consider the case of a solute atom that is too big or too small
in comparison to the space available in the solvent lattice. The potential
energy of the atom will then be relatively high due to the strain in the
surrounding matrix. However, this strain energy can be reduced if the atom is
located in a position where it better matches the space available, e.g. near
dislocations and in boundaries, where the matrix is already distorted.

Segregation of atoms to grain boundaries, interfaces and dislocations is of
great technological importance. For example the diffusion of carbon or ni-
trogen to dislocations in mild steel is responsible for strain ageing and blue
brittleness. The segregation of impurities such as Sb, Sn, P and As to grain
boundaries in low-alloy steels produces temper embrittlement. Segregation to
grain boundaries affects the mobility of the boundary and has pronounced
effects on recrystallization, texture and grain growth. Similarly the rate at
which phase transformations occur is sensitive to segregation at dislocations
and interfaces.

The problem of atom migration can be solved by considering the thermo-
dynamic condition for equilibrium; namely that the chemical potential of an
atom must be the same everywhere. Diffusion continues in fact until this
condition is satisfied. Therefore it seems reasonable to suppose that in general
the flux of atoms at any point in the lattice is proportional to the chemical
potential gradient. Fick’s first law is merely a special case of this more general
approach.

An alternative way to describe a flux of atoms is to consider a net drift
velocity (v) superimposed on the random jumping motion of each diffusing
atom. The drift velocity is simply related to the diffusive flux via the equation

Jp = vg(Cs (2.59)

Since atoms always migrate so as to remove differences in chemical potential
it is reasonable to suppose that the drift velocity is proportional to the local
chemical potential gradient, i.e.

opp

Vg = _MBW (2.60)
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where Mp is a constant of proportionality known as the atomic mobility. Since
pp has units of energy the derivative of pg with respect to distance (dpg/ox)
is effectively the chemical ‘force’ causing the atom to migrate.

Combining Equations 2.59 and 2.60 gives

d
g = _MBCBaLxB (2.61)

Intuitively it seems that the mobility of an atom and its diffusion coefficient
must be closely related. The relationship can be obtained by relating dp./dx to
dC/ax for a stress-free solid solution. Using Equation 1.70 and Cg = Xg/V,,
Equation 2.61 becomes

Jy = —mye RT}, dlnvgloXs 2.62
PTRYL Xg dIn Xg) ox (2.62)
ie.
dIn YB 6CB
JB MBRT[l i XB} o (2.63)
Comparison with Fick’s first law gives the required relationship:
dIn YB
= + —— M
Dy MBRT{l i XB} (2.64)
Similarly
d In YA
= + :
Dy MART{I in XA} (2.65)

For ideal or dilute solutions (Xg — 0)vyg is a constant and the term in brackets
is unity, i.e.

DB = MBRT (266)

For non-ideal concentrated solutions the terms in brackets, the so-called
thermodynamic factor, must be included. As shown by Equation 1.71 this
factor is the same for both A and B and is simply related to the curvature of
the molar free energy—composition curve.

When diffusion occurs in the presence of a strain energy gradient, for
example, the expression for the chemical potential can be modified to include
the effect of an elastic strain energy term E which depends on the position (x)
relative to a dislocation, say

KB = GB + RT In 'YBXB + E (267)

Following the above procedure, this gives

Jg= Dy —2_ BB "2 (2.68)
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It can thus be seen that in addition to the effect of the concentration gradient
the diffusive flux is also affected by the gradient of strain energy, dE/ox.

Other examples of atoms diffusing towards regions of high concentration
can be found when diffusion occurs in the presence of an electric field or a
temperature gradient. These are known as electromigration and thermo-
migration respectively’. Cases encountered in phase transformations can be
found where atoms migrate across phase boundaries, or, as mentioned in the
introduction, when the free energy curve has a negative curvature. The latter
is known as spinodal decomposition.

2.5 Tracer Diffusion in Binary Alloys

The use of radioactive tracers were described in connection with self-diffusion
in pure metals. It is, however, possible to use radioactive tracers to determine
the intrinsic diffusion coefficients of the components in an alloy. The method
is similar to that shown in Fig 2.14 except that a small quantity of a suitable
radioactive tracer, e.g. B*, is allowed to diffuse into a homogeneous bar of
A/B solution. The value obtained for D from Equation 2.35 is the tracer
diffusion coefficient D§.

Such experiments have been carried out on a whole series of gold-nickel
alloys at 900 °C'°. At this temperature gold and nickel are completely soluble
in each other, Fig. 2.22a. The results are shown in Fig. 2.22c¢. Since radioac-
tive isotopes are chemically identical it might appear at first sight that the
tracer diffusivities (D4, and D§;) should be identical to the intrinsic diffusivi-
ties (D, and Dy;) determined by marker movement in a diffusion couple.
This would be convenient as the intrinsic diffusivities are of more practical
value whereas it is much easier to determine tracer diffusities. However, it
can be demonstrated that this is not the case. D}, gives the rate at which Au*
(or Au) atoms diffuse in a chemically homogeneous alloy, whereas D 5, gives
the diffusion rate of Au when a concentration gradient is present.

The Au-Ni phase diagram contains a miscibility gap at low temperatures
implying that AH;, > 0 (the gold and nickel atoms ‘dislike’ each other).
Therefore, whereas the jumps made by Au atoms in a chemically
homogeneous alloy will be equally probable in all directions, in a concentra-
tion gradient they will be biased away from the Ni-rich regions. The rate of
homogenization will therefore be slower in the second case, i.e. DA, < D%,
and Dy; < Dfy;. On the other hand since the chemical potential gradient is
the driving force for diffusion in both types of experiment it is reasonable to
suppose that the atomic mobilities are not affected by the concentration
gradient. If this is true the intrinsic chemical diffusivities and tracer diffusiv-
ities can be related as follows.

In the tracer diffusion experiment the tracer essentially forms a dilute
solution in the alloy. Therefore from Equation 2.66

B8 = MERT = MgRT (2.69)
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Fig. 2.22 Interdiffusion in Au-Ni alloys at 900 °C (a) Au-Ni phase diagram, (b) the
thermodynamic factor, F, at 900 °C, (c) experimentally measured tracer diffusivities
at 900 °C, (d) experimentally measured interdiffusion coefficients compared with
values calculated from (b) and (c). (From J.E. Reynolds, B.L. Averbach and Morris
Cohen, Acta Metallurgica, 5 (1957) 29.)
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The second equality has been obtained by assuming Mg in the tracer experi-
ment equals Mg in the chemical diffusion case. Substitution into
Equations 2.64 and 2.51 therefore leads to the following relationships

(2.70)
Dg = FDg
and D = F(XgD} + XAD}) (2.71)
where F is the thermodynamic factor, i.e.
dIn YA dIn YB XAXB de
=4{1+—}= + = — .
F { dIn XA} {1 dIn Xg RT dXx? 2.72)

The last equality follows from Equation 1.71.

In the case of the Au-Ni system, diffusion couple experiments have also
been carried out so that data are available for the interdiffusion coefficient
D, the full line in Fig. 2.22d. In addition there is also enough thermo-
dynamic data on this system for the thermodynamic factor F to be evaluated,
Fig. 2.22b. It is therefore possible to check the assumption leading to the
second equality in Equation 2.69 by combining the data in Fig. 2.22b and ¢
using Equation 2.71. This produces the solid line in Fig. 2.22d. The agree-
ment is within experimental error.

Before leaving Fig. 2.22 it is interesting to note how the diffusion coef-
ficients are strongly composition dependent. There is a difference of about
three orders of magnitude across the composition range. This can be ex-
plained by the lower liquidus temperature of the Au-rich compositions. Also
in agreement with the rules of thumb given earlier, Au, with the lower melting
temperature, diffuses faster than Ni at all compositions.

2.6 Diffusion in Ternary Alloys

The addition of a third diffusing species to a solid solution produces mathema-
tical complexities which will not be considered here. Instead let us consider an
illustrative example of some of the additional effects that can arise. Fe-Si-C
alloys are particularly instructive for two reasons. Firstly silicon raises the
chemical potential (or activity) of carbon in solution, i.e. carbon will not only
diffuse from regions of high carbon concentration but also from regions rich in
silicon. Secondly the mobilities of carbon and silicon are widely different.
Carbon, being an interstitial solute, is able to diffuse far more rapidly than the
substitutionally dissolved silicon.

Consider two pieces of steel, one containing 3.8% silicon and
0.48% carbon and the other 0.44% carbon but no silicon. If the two pieces
are welded together and austenitized at 1050 °C, the carbon concentration
profile shown in Fig. 2.23b is produced. The initial concentrations of silicon
and carbon in the couple are shown in Fig. 2.23a and the resultant chemical
potentials of carbon by the dotted line in Fig. 2.23c. Therefore carbon atoms
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Fig. 2.23 (a) Carbon and silicon distribution in iron at ¢ = 0. (b) Carbon distribution
after high-temperature anneal. (c¢) Chemical potential of carbon v. distance.

on the silicon-rich side will jump over to the silicon-free side until the
difference in concentration at the interface is sufficient to equalize the activity,
or chemical potential, of carbon on both sides. The carbon atoms at the
interface are therefore in local equilibrium and the interfacial compositions
remain constant as long as the silicon atoms do not migrate. Within each half
of the couple the silicon concentration is initially uniform and the carbon
atoms diffuse down the concentration gradients as shown in Fig. 2.23b. The
resultant chemical potential varies smoothly across the whole specimen
Fig. 2.23c. If the total length of the diffusion couple is sufficiently small the
carbon concentration in each block will eventually equal the interfacial com-
positions and the chemical potential of carbon will be the same everywhere.
The alloy is now in a state of partial equilibrium. It is only partial because the
chemical potential of the silicon is not uniform. Given sufficient time the
silicon atoms will also diffuse over significant distances and the carbon atoms
will continually redistribute themselves to maintain a constant chemical
potential. In the final equilibrium state the concentrations of carbon and
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Fig. 2.24 Schematic diagram showing the change in composition of two points (A
and B) on opposite sides of the diffusion couple in Fig. 2.23. C is the final equilibrium
composition of the whole bar. (After L.S. Darken, Trans. AIME, 180 (1949) 430, ©
American Society for Metals and the Metallurgical Society of AIME, 1949.)

silicon are uniform everywhere. The change in composition of two points on
opposite sides of the weld will be as illustrated on the ternary diagram of
Fig. 2.24.

The redistribution of carbon in the Fe—Si—C system is particularly interest-
ing since the mobilities of carbon and silicon are so different. Similar, though
less striking effects can arise in ternary systems where all three components
diffuse substitutionally if their diffusivities (or mobilities) are unequal.

2.7 High-Diffusivity Paths

In Section 2.4 the diffusion of atoms towards or away from dislocations,
interfaces, grain boundaries and free surfaces was considered. In this section
diffusion along these defects will be discussed. All of these defects are
associated with a more open structure and it has been shown experimentally
that the jump frequency for atoms migrating along these defects is higher than
that for diffusion in the lattice. It will become apparent that under certain
circumstances diffusion along these defects can be the dominant diffusion
path.

2.7.1 Diffusion along Grain Boundaries and Free Surfaces

It is found experimentally that diffusion along grain boundaries and free
surfaces can be described by

Dy, = Dy exp —;—% (2.73)
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or

s
RT
where Dy, and D; are the grain boundary and surface diffusivities and D, and
Dy are the frequency factors. Qy, and O are the experimentally determined
values of the activation energies for diffusion. In general, at any temperature

the magnitudes of Dy, and D; relative to the diffusivity through defect-free
lattice D, are such that

D, > Dy > D, (2.75)

This mainly reflects the relative ease with which atoms can migrate along free
surfaces, interior boundaries and through the lattice. Surface diffusion can
play an important role in many metallurgical phenomena, but in an average
metallic specimen the total grain boundary area is much greater than the
surface area so that grain boundary diffusion is usually most important.
The effect of grain boundary diffusion can be illustrated by considering a
diffusion couple made by welding together two metals, A and B, as shown in
Fig. 2.25. A atoms diffusing along the boundary will be able to penetrate
much deeper than atoms which only diffuse through the lattice. In addition, as
the concentration of solute builds up in the boundaries atoms will also diffuse

Dg = Dy exp (2.74)

Fig. 2.25 The effect of grain boundary diffusion combined with volume diffusion.
(After R.E. Reed-Hill, Physical Metallurgy Principles, 2nd edn., Van Nostrand, New
York, 1973.)
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from the boundary into the lattice. The process can be compared to the
conduction of heat through a plastic in which a continuous network of
aluminium sheets is embedded. The temperature at any point in such a
specimen would be analogous to the concentration of solute in the diffusion
couple. Points in the lattice close to grain boundaries can receive solute via
the high' conductivity path much more rapidly than if the boundaries were
absent. Rapid diffusion along the grain boundaries increases the mean con-
centration in a slice such as dx in Fig. 2.25 and thereby produces an increase
in the apparent diffusivity in the material as a whole. Consider now under
what conditions grain boundary diffusion is important.

For simplicity let us take a case of steady-state diffusion through a sheet of
material in which the grain boundaries are perpendicular to the sheet as
shown in Fig. 2.26. Assuming that the concentration gradients in the lattice
and along the boundary are identical, the fluxes of solute through the lattice
J) and along the boundary J, will be given by
J] = _Dl—%xg Jb = _Dbda—x(; (276)
However the contribution of grain boundary diffusion to the total flux
through the sheet will depend on the relative cross-sectional areas through
which the solute is conducted.

If the grain boundary has an effective thickness & and the grain size is d the
total flux will be given by

2.77)

J=(Jd + Jd)/d = _<M)d_§

d dx

Fig. 2.26 Combined lattice and boundary fluxes during steady-state diffusion
through a thin slab of material.
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Thus the apparent diffusion coefficient in this case,

D,y = D) + Dy3/d (2.78)

D Dyd
Zapp _ g 4 b7 2.79
o, 1t Da 279)

It can be seen that the relative importance of lattice and grain boundary
diffusion depends on the ratio D,3/D,d. When D8 > Dd diffusion through
the lattice can be ignored in comparison to grain boundary diffusion. Thus
grain boundary diffusion makes a significant contribution to the total flux
when

Dy3 > Dd (2.80)

The effective width of a grain boundary is ~0.5 nm. Grain sizes on the other
hand can vary from ~1 to 1000 wm and the effectiveness of the grain bounda-
ries will vary accordingly. The relative magnitudes of D,d and D,d are most
sensitive to temperature. This is illustrated in Fig. 2.27 which shows the effect
of temperature on both D) and D,. Note that although Dy, > D, at all
temperatures the difference increases as temperature decreases. This is be-
cause the activation energy for diffusion along grain boundaries (Qy) is lower
than that for lattice diffusion (Q;). For example, in fcc metals it is generally
found that Q,, ~ 0.5 Q,. This means that when the grain boundary diffusivity
is scaled by the factor 8/d (Equation 2.78) the grain boundary contribution to
the total, or apparent, diffusion coefficient is negligible in comparison to the
lattice diffusivity at high temperatures, but dominates at low temperatures. In

Fig. 2.27 Diffusion in a polycrystalline metal.
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general it is found that grain boundary diffusion becomes important below
about 0.75-0.8 T,, where T, is the equilibrium melting temperature in
degrees Kelvin.

The rate at which atoms diffuse along different boundaries is not the same,
but depends on the atomic structure of the individual boundary. This in turn
depends on the orientation of the adjoining crystals and the plane of the
boundary. Also the diffusion coefficient can vary with direction within a given
boundary plane. The reasons for these differences will become apparent in
Chapter 3.

2.7.2 Diffusion along Dislocations

If grain boundary diffusion is compared to the conduction of heat through a
material made of sheets of aluminium in a plastic matrix, the analogy for
diffusion along dislocations would be aluminium wires in a plastic matrix. The
dislocations effectively act as pipes along which atoms can diffuse with a
diffusion coefficient D,. The contribution of dislocations to the total diffusive
flux through a metal will of course depend on the relative cross-sectional areas
of pipe and matrix. Using the simple model illustrated in Fig. 2.28 it can
easily be shown that the apparent diffusivity through a single crystal contain-
ing dislocations, D, , is related to the lattice diffusion coefficient by

D D
ZapP _ 1 4 . P
D, 1*té&p (2.81)

where g is the cross-sectional area of ‘pipe’ per unit area of matrix. In a
well-annealed material there are roughly 10° dislocations mm™2. Assuming
that the cross-section of a single pipe accommodates about 10 atoms while the
matrix contains about 10'* atoms mm ™2, makes g = 1077.

At high temperatures diffusion through the lattice is rapid and gD,/D; is
very small so that the dislocation contribution to the total flux of atoms is
negligible. However, since the activation energy for pipe diffusion is less than

Total area of

L W7 pipe=g per unit area
| A of lattice
e —Dp
dislocation //L } 1D,
/}_ —————— . :
unit area

Fig. 2.28 Dislocations act as a high conductivity path through the lattice.
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for lattice diffusion, D, decreases much more rapidly than D, with decreasing
temperature, and at low temperatures gD,/D; can become so large that the
apparent diffusivity is entirely due to diffusion along dislocations.

2.8 Diffusion in Multiphase Binary Systems

So far only diffusion in single-phase systems has been considered. In most
practical cases, however, diffusion occurs in the presence of more than one
phase. For example diffusion is involved in solidification transformations and
diffusional transformations in solids (Chapters 4 and 5). Another example of
multiphase diffusion arises when diffusion couples are made by welding
together two metals that are not completely miscible in each other. This
situation arises in practice with galvanized iron and hot-dipped tin plate for
example. In order to understand what happens in these cases consider the
hypothetical phase diagram in Fig. 2.29a. A diffusion couple made by welding
together pure A and pure B will result in a layered structure containing o, B
and y. Annealing at temperature 7; will produce a phase distribution and
composition profile as shown in Fig. 2.29b. Usually Xg varies as shown from 0
to a in the a phase, from b to c in the B phase, and from d to 1 in the vy phase,
where a, b, c and d are the solubility limits of the phases at 7,. The composi-
tions a and b are seen to be the equilibrium compositions of the o and B
phases in the a + B field of the phase diagram. The o and B phases are
therefore in local equilibrium across the o/ interface. Similarly B and vy are
in local equilibrium across the B/+y interface. A sketch of the free energy—
composition diagram for this system at 7} will show that the chemical poten-
tials (or activities) of A and B will vary continuously across the diffusion
couple. Figure 2.29c shows how the activity of B varies across the couple (see
problem 2.8). Clearly the equilibrium condition ag = a§ is satisfied at the
o/ interface (point p in Fig. 2.29¢). Similar considerations apply for A and
for the B/vy interface.

The a/B and P/y interfaces are not stationary but move as diffusion
progresses. For example if the overall composition of the diffusion couple
lies between b and c the final equilibrium state will be a single block of .

A complete solution of the diffusion equations for this type of diffusion
couple is complex. However an expression for the rate at which the bounda-
ries move can be obtained as follows. Consider the planar a/p interface as
shown in Fig. 2.30. If unit area of the interface moves a distance dx a volume
(dx - 1) will be converted from a containing Cg B-atoms m ™ to B containing
C8 B-atoms m>. This means that a total of

(Ck — Ch)dx

B atoms must accumulate at the o/ interface (the shaded area in Fig. 2.30).
There is a flux of B towards the interface from the B phase equal to
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Fig. 2.29 (a) A hypothetical phase diagram. (b) A possible diffusion layer structure
for pure A and B welded together and annealed at T. (c) A possible variation of the
activity of B (ag) across the diffusion couple.
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Fig. 2.30 Concentration profile across the a/B interface and its associated movement
assuming diffusion control.

~D(B)dC3/dx and a similar flux away from the interface into the a phase
equal to —D(a)dCg/ox. In a time dt, therefore, there will be an accumulation

of B atoms given by
)}dr

{(-00%E) - (-0

Equating the above expressions gives the instantaneous velocity of the a/B
interface v as

Cdx 1 N To S 1o
YT (- c‘;;){D @5 ~ PO

In the above treatment it has been assumed that the /B interface moves as
fast as allowed by the diffusive fluxes in the two adjacent phases. This is quite
correct when the two phases are in local equilibrium, and is usually true in
diffusion-couple experiments. However, it is not true for all moving inter-
phase interfaces. By assuming local equilibrium at the interface it has also
been assumed that atoms can be transferred across the interface as easily as
they can diffuse through the matrix. Under these circumstances g and ag are
continuous across the interface. However, in general this need not be true. If,
for some reason, the interface has a low mobility the concentration difference
across the boundary (C% — C%) will increase, thereby creating a discontinuity
of chemical potential across the boundary. The problem of evaluating the
boundary velocity in this case is more complex. Not only must the flux of
atoms to the interface balance the rate of accumulation due to the boundary

0Cy
0x

(2.82)
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migration and the rate of diffusion away into the other phase, but it must also
balance with the rate of transfer across the interface. In extreme cases the
interface reaction, as it is sometimes called, can be so slow that there are
virtually no concentration gradients in the two phases. Under these circum-
stances the interface migration is said to be interface controlled. The subject
of interface migration is treated further in Section 3.5.
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Exercises

2.1 A thin sheet of iron is in contact with a carburizing gas on one side and a
decarburizing gas on the other at temperature of 1000 °C.
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(a) Sketch the resultant carbon concentration profile when a steady
state has been reached assuming the surface concentrations are
maintained at 0.15 and 1.4 wt% C.

(b) If D, increases from 2.5x 107" m?s™! at 0.15% C to
7.7 x 107" m? s7! at 1.4% C what wnll be the quantitative rela-
tionship between the concentration gradients at the surfaces?

(c) Estimate an approximate value for the flux of carbon through the
sheet if the thickness is 2 mm (0.8 wt% C = 60 kg m~ at 1000 °C).

It was stated in Section 2.2.1 that D = ['a?/6 applies to any diffusing

species in any cubic lattice. Show that this is true for vacancy diffusion in

a pure fcc metal. (Hint: consider two adjacent {111} planes and deter-

mine what fraction of all possible jumps result in the transfer of a

vacancy between the two planes. Is the same result obtained by con-

sidering adjacent {100} planes?)

A small quantity of radioactive gold was deposited on the end of a gold

cylinder. After holding for 24 h at a high temperature the specimen was

sectioned and the radioactivity of each slice was as follows:

Distance from end of bar
to centre of slice/pm: 100 20 30 40 50
Activity: 83.8 66.4 42.0 23.6 8.74

Use the data to determine D.

Prove by differentiation that Equation 2.20 is a solution of Fick’s second
law.

Fourier analysis is a powerful tool for the solution of diffusion problems
when the initial concentration profile is not sinusoidal. Consider for
example the diffusion of hydrogen from an initially uniform sheet of
iron. If the concentration outside the sheet is maintained at zero the
resultant concentration profile is initially a top-hat function. Fourier
analysis of this function shows that it can be considered as an infinite
series of sine terms:

- 1 (21+1)‘n'x
; 2i+1° [

il

Cx) =

4G
™

where [ is the thickness of the sheet and C, is the initial concentration.

(a) Plot the first two terms of this series. If during diffusion the surface
concentration is maintained close to zero each Fourier component
can be considered to decrease exponentially with time with a time
constant 7; = [%/(2i + 1)>w°D. The solution to the diffusion equa-
tion therefore becomes

4C 20 + 1
0155 7 [B 0
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(b) Derive an equation for the time at which the amplitude of the
second term is less than 5% of the first term.

(c) Approximately how long will it take to remove 95% of all the
hydrogen from an initially uniform plate of a-iron at 20 °C if
(i) the plate is 10 mm thick and if (ii) it is 100 mm thick, assuming
the surface concentration is maintained constant at zero?
(Use data in Table 2.1.)

2.6 Figure 2.31 shows the molar free energy—composition diagram for the
A-B system at temperature T;. Imagine that a block of a with composi-
tion (1) is welded to a block of B phase with composition (2). By
considering the chemical potentials of the A and B atoms in both the a
and B phases predict which way the atoms will move during a diffusion
anneal at T;. Show that this leads to a reduction of the molar free energy
of the couple. Indicate the compositions of the two phases when equilib-
rium is reached.

Molar
free
energy

A Xg ™™ B
Fig. 2.31

2.7 A diffusion couple including inert wires was made by plating pure
copper on to a block of a-brass with a composition Cu-30 wt% Zn,
Fig. 2.20. After 56 days at 785°C the marker velocity was determined as
2.6 X 10 mm s ”!. Microanalysis showed that the composition at the mar-
kers was Xz, = 0.22, X, = 0.78, and that 3.Xz,/dx was 0.089 mm!.
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From an analysis of the complete penetration curve D* at the markers
was calculated as 4.5 X 10712 m? s™!. Use this data to calculate D%, and
Cu 1n brass at 22 atomic % Zn. How would you expect D%, D&, and
D* to vary as a function of composition?
Draw possible free energy—composition curves for the system in
Fig. 2.29 at T,. Derive from this a pg—Xg and an ag—Xp diagram
(similar to Fig. 1.28). Mark the points corresponding to p and q in
Fig. 2.29c. Sketch diagrams similar to Fig. 2.29c to show a, , pa and pg
across the diffusion couple. What will be the final composition profile
when the couple reaches equilibrium if the overall composition lies
(i) between a and b, (ii) below a?
Figure 2.32 is a hypothetical phase diagram for the A-B system. At a
temperature T, B is practically insoluble in A, whereas B can dissolve 10
atomic % A. A diffusion couple made by welding together pure A and
pure B is annealed at T,. Show by a series of sketches how the concen-
tration profiles and «/f interface position will vary with time. If the
overall composition of the couple is 50 atomic % B what will be the
maximum displacement of the o/ interface? (Assume o and B have
equal molar volumes.)

—

Fig. 2.32



3
Crystal Interfaces and Microstructure

Basically three different types of interface are important in metallic systems:

1. The free surfaces of a crystal (solid/vapour interface)
2. Grain boundaries (o/a interfaces)
3. Interphase interfaces (o/f interfaces).

All crystals possess the first type of interface. The second type separates
crystals with essentially the same composition and crystal structure, but a
different orientation in space. The third interface separates two different
phases that can have different crystal structures and/or compositions and
therefore also includes solid/liquid interfaces.

The great majority of phase transformations in metals occur by the growth
of a new phase () from a few nucleation sites within the parent phase (a)—a
nucleation and growth process. The o/ interface therefore plays an impor-
tant role in determining the kinetics of phase transformations and is the most
important class of interface listed. It is, however, also the most complex and
least understood, and this chapter thus begins by first considering the simpler
interfaces, (1) and (2).

The solid/vapour interface is of course itself important in vaporization and
condensation transformations, while grain boundaries are important in re-
crystallization, i.e. the transformation of a highly deformed grain structure
into new undeformed grains. Although no new phase is involved in recrystal-
lization it does have many features in common with phase transformations.

The importance of interfaces is not restricted to what can be called the
primary transformation. Since interfaces are an almost essential feature of the
transformed microstructure, a second (slower) stage of most transformations
is the microstructural coarsening that occurs with time'. This is precisely
analogous to the grain coarsening or grain growth that follows a recrystalliza-
tion transformation.

3.1 Interfacial Free Energy
It is common practice to talk of interfacial energy. In reality, however, what is

usually meant and measured by experiment is the interfacial free energy, .
The free energy of a system containing an interface of area A and free energy
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Y per unit area is given by
G = Gy + Ay (3.1)

where G is the free energy of the system assuming that all material in the
system has the properties of the bulk—y is therefore the excess free energy
arising from the fact that some material lies in or close to the interface. It is
also the work that must be done at constant T and P to create unit area of
interface.

Consider for simplicity a wire frame suspending a liquid film, Fig. 3.1. If
one bar of the frame is movable it is found that a force F per unit length must
be applied to maintain the bar in position. If this force moves a small distance
so that the total area of the film is increased by dA the work done by the force
is FdA. This work is used to increase the free energy of the system by dG.
From Equation 3.1

dG = ydA + Ady
Equating this with FdA gives

F=v+A— 3.2

Y+ AL (32
In the case of a liquid film the surface energy is independent of the area of the
interface and dy/dA = 0. This leads to the well-known result

F=x (3.3)

i.e. a surface with a free energy y J m~2 exerts a surface tension of y N m .

In the case of interfaces involving solids, however, it is not immediately
obvious that v is independent of area. Since a liquid is unable to support shear
stresses, the atoms within the liquid can rearrange during the stretching
process and thereby maintain a constant surface structure. Solids, however,
are much more viscous and the transfer of atoms from the bulk to the surface,
which is necessary to maintain an unchanged surface structure and energy,
will take much longer. If this time is long in comparison to the time of the
experiment then dy/dA # 0 and surface free energy and surface tension will
not be identical. Nevertheless, at temperatures near the melting point the
atomic mobility is usually high enough for Equation 3.3 to be applicable.

Fig. 3.1 A liquid film on a wire frame.
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3.2 Solid/Vapour Interfaces

To a first approximation the structure of solid surfaces can be discussed in
terms of a hard sphere model. If the surface is parallel to a low-index crystal
plane the atomic arrangement will be the same as in the bulk, apart from
perhaps a small change in lattice parameter. (This assumes that the surface is
uncontaminated: in real systems surfaces will reduce their free energies by the
adsorption of impurities.) Figure 3.2 for example shows the {111} {200} {220}
atom planes in the fcc metals. Note how the density of atoms in these planes
decreases as (k> + k* + [?) increases. (The notation {200} and {220} has been
used instead of {100} and {110} because the spacing of equivalent atom planes
is then given by a/J(h* + k* + I%) where a is the lattice parameter.)

%%Um@

200 220

Fig. 3.2 Atomic conﬁguratlons on the three closest-packed planes in fcc crystals:
(111), (200) and (220).

The origin of the surface free energy is that atoms in the layers nearest the
surface are without some of their neighbours. Considering only nearest neigh-
bours it can be seen that the atoms on a {111} surface, for example, are
deprived of three of their twelve neighbours. If the bond strength of the metal
is € each bond can be considered as lowering the internal energy of each atom
by ¢/2. Therefore every surface atom with three ‘broken bonds’ has an excess
internal energy of 3¢/2 over that of the atoms in the bulk. For a pure metal ¢
can be estimated from the heat of sublimation L,. (The latent heat of
sublimation is equal to the sum of the latent heat of melting (or fusion) and
the latent heat of vaporization.) If 1 mol of solid is vaporized 12 N, broken
bonds are formed. Therefore Ly = 12 N, €/2. Consequently the energy of a
{111} surface should be given by

E,, =025L;/N, J/surface atom (3.4)

This result will only be approximate since second nearest neighbours have
been ignored and it has also been assumed that the strengths of the remaining
bonds in the surface are unchanged from the bulk values.

From the definition of Gibbs free energy the surface free energy will be
given by

y=E+PV-TS (3.5)

Thus even if the ‘PV’ term is ignored surface entropy effects must be taken
into account. It might be expected that the surface atoms will have more
freedom of movement and therefore a higher thermal entropy compared to
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atoms in the bulk. Extra configurational entropy can also be introduced into
the surface by the formation of surface vacancies for example. The surface of
a crystal should therefore be associated with a positive excess entropy which
will partly compensate for the high internal energy of Equation 3.4.

Experimental determination of v, is difficult? but the measured values for
pure metals indicate that near the melting temperature the surface free
energy averaged over many surface planes is given by

Yoo = 0.15 Ly/N, J/surface atom (3.6)

As a result of entropy effects vy, is slightly dependent on temperature.
From Equation 1.10

ay _
2, - s o

Measured values of S are positive and vary between 0 and 3 mJ m2 K™'.
Some selected values of «,, at the melting point are listed in Table 3.1. Note
that metals with high melting temperatures have high values for L and high
surface energies.

Table 3.1 Average Surface Free Energies of Selected Metals

Values selected from H. Jones ‘The surface energy of solid metals’, Metal
Science Journal, 5:15 (1971). Experimental errors are generally about 10%.
The values have been extrapolated to the melting temperature, T,,.

Crystal T./°C Yev/mMJ M2

Sn 232 680
Al 660 1080
Ag 961 1120
Au 1063 1390
Cu 1084 1720
5-Fe 1536 2080
Pt 1769 2280
w 3407 2650

It can be seen from the above simple model that different crystal surfaces
should have different values for E, depending on the number of broken
bonds (see exercise 3.1). A little consideration will show that for the surfaces
shown in Fig. 3.2 the number of broken bonds at the surface will increase
through the series {111} {200} {220}. Therefore ignoring possible differences
in the entropy terms <, should also increase along the same series.

When the macroscopic surface plane has a high or irrational {hk/} index the
surface will appear as a stepped layer structure where each layer is a close-
packed plane. This is illustrated for a simple cubic crystal in Fig. 3.3.



114 Crystal interfaces and microstructure

Fig. 3.3 The ‘broken-bond’ model for surface energy.

A crystal plane at an angle 6 to the close-packed plane will contain broken
bonds in excess of the close-packed plane due to the atoms at the steps. For
unit length of interface in the plane of the diagram and unit length out of the
paper (parallel to the steps) there will be (cos 8/a)(1/a) broken bonds out of
the close-packed plane and (sin |6|/a)(1/a) additional broken bonds from the
atoms on the steps. Again attributing €/2 energy to each broken bond, then

E,, = (cos 8 + sin |0|)e/2a® (3.8)

This is plotted as a function of 6 in Fig. 3.4. Note that the close-packed
orientation (8 = 0) lies at a cusped minimum in the energy plot. Similar
arguments can be applied to any crystal structure for rotations about any axis
from any reasonably close-packed plane. All low-index planes should there-
fore be located at low-energy cusps.

If y is plotted v. 6 similar cusps are found, but as a result of entropy effects

Fig. 3.4 Variation of surface energy as a function of 6 in Fig. 3.3.
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they are less prominent than in the E-6 plot, and for the higher index planes
they can even disappear.

A convenient method for plotting the variation of vy with surface orienta-
tion in three dimensions is to construct a surface about an origin such that the
free energy of any plane is equal to the distance between the surface and the
origin when measured along the normal to the plane in question. A section
through such a surface is shown in Fig. 3.5a. This type of polar representation
of y is known as a y-plot and has the useful property of being able to predict
the equilibrium shape of an isolated single crystal.

For an isolated crystal bounded by several planes A, A,, etc. with ener-
gies vy, <2, etc. the total surface energy will be given by the sum
Ay, + Ayy, + - -+ The equilibrium shape has the property that ZA;y; is a
minimum and the shape that satisfies this condition is given by the following,
so-called Wulff construction®. For every point on the v surface, such as A in
Fig. 3.5a, a plane is drawn through the point and normal to the radius vector

(001)
A Wulff plane -~ ) Y plot
- /
4 B
! (111)  (b)
R AN Yoot
s \
7 \\YA C
\\ Y.
\ 11
\ (110)
0
Equilibrium
shape

(a)

Fig. 3.5 (a) A possible (110) section through the y-plot of an fcc crystal. The length
OA represents the free energy of a surface plane whose normal lies in the direction
OA. Thus OB = vy(go1), OC = yq11), etc. Wulff planes are those such as that which
lies normal to the vector OA. In this case the Wulff planes at the cusps (B, C, etc.) give
the inner envelope of all Wulff planes and thus the equilibrium shape. (b) The
equilibrium shape in three dimensions showing {100} (square faces) and {111} (hex-
agonal faces).
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OA. The equilibrium shape is then simply the inner envelope of all such
planes. Therefore when the y-plot contains sharp cusps the equilibrium shape
is a polyhedron with the largest facets having the lowest interfacial free
energy.

Equilibrium shapes can be determined experimentally by annealing small
single crystals at high temperatures in an inert atmosphere, or by annealing
small voids inside a crystal®. Fcc crystals for example usually assume a form
showirg {i0C} and {111} facets as shown in Fig. 3.5b. Of course when 7 is
isotropic, as for liquid droplets, both the y-plot and equilibrium shapes are
spheres.

When the equilibrium shape is known it is possible to use the Wulff
theorem in reverse to give the relative interfacial free energies of the
observed facet planes. In Fig. 3.5 for example the widths of the crystal in the
(111) and (100) directions will be in the ratio of y(111) : y(100). {110} facets are
usually missing from the equilibrium shape of fcc metals, but do however
appear for bcc metals’.

The aim of this section has been to show, using the simplest type of
interface, the origin of interfacial free energy, and to show some of the
methods available for estimating this energy. Let us now consider the second
type of interface, grain boundaries.

3.3 Boundaries in Single-Phase Solids

The grains in a single-phase polycrystalline specimen are generally in many
different orientations and many different types of grain boundary are there-
fore possible. The nature of any given boundary depends on the misorienta-
tion of the two adjoining grains and the orientation of the boundary plane
relative to them. The lattices of any two grains can be made to coincide by
rotating one of them through a suitable angle about a single axis. In general
the axis of rotation will not be simply oriented with respect to either grain or
the grain-boundary plane, but there are two special types of boundary that
are relatively simple. These are pure tilt boundaries and pure twist bound-
aries, as illustrated in Fig. 3.6. A tilt boundary occurs when the axis of
rotation is parallel to the plane of the boundary, Fig. 3.6a, whereas a twist
boundary is formed when the rotation axis is perpendicular to the boundary,
Fig. 3.6b.

3.3.1 Low-Angle and High-Angle Boundaries

It is simplest to first consider what happens when the misorientation between
two grains is small. This type of boundary can be simply considered as an
array of dislocations. Two idealized boundaries are illustrated in Fig. 3.7.
These are symmetrical low-angle tilt and low-angle twist boundaries. The
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Fig. 3.6 The relative orientations of the crystals and the boundary forming (a) a tilt
boundary (b) a twist boundary.

low-angle tilt boundary is an array of parallel edge dislocations, whereas the
twist boundary is a cross-grid of two sets of screw dislocations. In each case
the atoms in the regions between the dislocations fit almost perfectly into both
adjoining crystals whereas the dislocation cores are regions of poor fit in
which the crystal structure is highly distorted.

The tilt boundary need not be symmetrical with respect to the two adjoin-
ing crystals. However, if the boundary is unsymmetrical dislocations with
different Burgers vectors are required to accommodate the misfit, as illus-
trated in Fig. 3.8. In general boundaries can be a mixture of the tilt and twist
type in which case they must contain several sets of different edge and screw
dislocations.

The energy of a low-angle grain boundary is simply the total energy of the
dislocations within unit area of boundary. (For brevity the distinction be-
tween internal energy and free energy will usually not be made from now on
except where essential to understanding.) This depends on the spacing of the
dislocations which, for the simple arrays in Fig. 3.7, is given by

p=-2 .0 (3.9)
sing 0

where b is the Burgers vector of the dislocations and 6 is the angular mis-

orientation across the boundary. At very small values of 6 the dislocation
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spacing is very large and the grain boundary energy vy is approximately
proportional to the density of dislocations in the boundary (1/D), i.e.

yx0 (3.10)

However as 0 increases the strain fields of the dislocations progressively
cancel out so that <y increases at a decreasing rate as shown in Fig. 3.9. In
general when 0 exceeds 10-15° the dislocation spacing is so small that the
dislocation cores overlap and it is then impossible to physically identify the
individual dislocations (see Fig. 3.10). At this stage the grain-boundary en-
ergy is almost independent of misorientation, Fig. 3.9.

When 6 > 10-15° the boundary is known as a random high-angle grain
boundary. The difference in structure between low-angle and high-angle grain
boundaries is lucidly illustrated by the bubble-raft model in Fig. 3.11. High-
angle boundaries contain large areas of poor fit and have a relatively open
structure. The bonds between the atoms are broken or highly distorted and
consequently the boundary is associated with a relatively high energy. In

Fig. 3.7 (a) Low-angle tilt boundary, (b) low-angle twist boundary: O atoms in crys-
tal below boundary, @ atoms in crystal above boundary. (After W.T. Read Jr.,
Dislocations in Crystals, McGraw-Hill, New York, 1953.)
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low-angle boundaries, however, most of the atoms fit very well into both
lattices so that there is very little free volume and the interatomic bonds are
only slightly distorted. The regions of poor fit are restricted to the dislocation
cores which are associated with a higher energy similar to that of the random
high-angle boundary.

Fig. 3.7 (b)
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Fig. 3.8 An unsymmetric tilt boundary. Dislocations with two different Burgers
vectors are present. (After W.T. Read Jr., Dislocations in Crystals, McGraw-Hill,
New York, 1953.)

Fig. 3.9 Variation of grain boundary energy with misorientation (schematic).
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Fig. 3.10 Disordered grain boundary structure (schematic).

Fig. 3.11 Rafts of soap bubbles showing several grains of varying misorientation.
Note that the boundary with the smallest misorientation is made up of a row of
dislocations, whereas the high-angle boundaries have a disordered structure in which
individual dislocations cannot be identified. (After P.G. Shewmon, Transformations

in Metals, McGraw-Hill, New York, 1969, from C.S. Smith.)
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Measured high-angle grain boundary energies vy, are often found to be
roughly given by
1
Yo = 3Vsv (3.11)

Some selected values for vy, and v,/v, are listed in Table 3.2. As for
surface energies <y, is temperature dependent decreasing somewhat with
increasing temperature.

Table 3.2 Measured Grain Boundary Free Energies

Values selected from compilation given in Interfacial Phenomena in Metals
and Alloys, by L.E. Murr, Addison-Wesley, London, 1975.

Crystal Yp/mJ m~? T/°C Yo/Ysv
Sn 164 223 0.24
Al 324 450 0.30
Ag 375 950 0.33
Au 378 1000 0.27
Cu 625 925 0.36

v-Fe 756 1350 0.40
d-Fe 468 1450 0.23
Pt 660 1300 0.29
\%% 1080 2000 0.41

3.3.2 Special High-Angle Grain Boundaries

Not all high-angle boundaries have an open disordered structure. There are
some special high-angle boundaries which have significantly lower energies
than the random boundaries. These boundaries only occur at particular
misorientations and boundary planes which allow the two adjoining lattices to
fit together with relatively little distortion of the interatomic bonds.

The simplest special high-angle grain boundary is the boundary between
two twins. If the twin boundary is parallel to the twinning plane the atoms in
the boundary fit perfectly into both grains. The result is a coherent twin
boundary as illustrated in Fig. 3.12a. In fcc metals this is a {111} close-packed
plane. Because the atoms in the boundary are essentially in undistorted
positions the energy of a coherent twin boundary is extremely low in compari-
son to the energy of a random high-angle boundary.

If the twin boundary does not lie exactly parallel to the twinning plane,
Fig. 3.12b, the atoms do not fit perfectly into each grain and the boundary
energy is much higher. This is known as an incoherent twin boundary. The
energy of a twin boundary is therefore very sensitive to the orientation of the
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Fig. 3.12 (a) A coherent twin boundary. (b) An incoherent twin boundary.
(c) Twin-boundary energy as a function of the grain boundary orientation.

boundary plane. If vy is plotted as a function of the boundary orientation a
sharp cusped minimum is obtained at the coherent boundary position as
shown in Fig. 3.12c. Table 3.3 lists some experimentally measured values of
coherent and incoherent twins along with high-angle grain boundary energies
for comparison.

Table 3.3 Measured Boundary Free Energies for Crystals in Twin Rela-
tionships (Units mJ m~2)

Values selected from compilation given in Interfacial Phenomena in Metals
and Alloys, by L.E. Murr, Addison-Wesley, London, 1975.

Coherent twin ~ Incoherent twin Grain
Crystal boundary energy boundary energy boundary energy
Cu 21 498 623
Ag 8 126 377
Fe-Cr-Ni 19 209 835

(stainless
steel type 304)
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Twin orientations in fcc metals correspond to a misorientation of 70.5°
about a (110) axis. Therefore a twin boundary is a special high-angle grain
boundary, and a coherent twin boundary is a symmetrical tilt boundary
between the two twin-related crystals. Figure 3.13 shows measured grain-
boundary energies for various symmetric tilt boundaries in aluminium. When
the two grains are related by a rotation about a (100) axis, Fig. 3.13a, it can be
seen that most high-angle boundaries have about the same energy and should
therefore have a relatively disordered structure characteristic of random
boundaries. However, when the two grains are related by a rotation about a
(110) axis there are several large-angle orientations which have significantly
lower energies than the random boundaries (Fig. 3.13b). 6 = 70.5° corres-
ponds to the coherent twin boundary discussed above, but low-energy bound-
aries are also found for several other values of 6. The reasons for these other
special grain boundaries are not well understood. However, it seems reason-
able to suppose that the atomic structure of these boundaries is such that they
contain extensive areas of good fit. A two-dimensional example is shown in
Fig. 3.14. This is a symmetrical tilt boundary between grains with a miso-
rientation of 38.2°. The boundary atoms fit rather well into both grains
leaving relatively little free volume. Moreover, a small group of atoms
(shaded) are repeated at regular intervals along the boundary.

3.3.3 Equilibrium in Polycrystalline Materials

Let us now examine how the possibility of different grain-boundary energies
affects the microstructure of a polycrystalline material. Figure 3.15 shows the
microstructure of an annealed austenitic stainless steel (fcc). The material
contains high- and low-angle grain boundaries as well as coherent and
incoherent twin boundaries. This microstructure is determined by how the
different grain boundaries join together in space. When looking at two-

Fig. 3.13 Measured grain boundary energies for symmetric tilt boundaries in Al
(a) when the rotation axis is parallel to (100), (b) when the rotation axis is parallel to
(110). (After G. Hasson and C. Goux, Scripta Metallurgica, 5 (1971) 889.)
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Fig. 3.14 Special grain boundary. (After H. Gleiter, Physica Status Solidi (b) 45
(1971) 9.)

dimensional microstructures like this it is important to remember that in
reality the grains fill three dimensions, and only one section of the three-
dimensional network of internal boundaries is apparent. Note that two grains
meet in a plane (a grain boundary) three grains meet in a line (a grain edge)
and four grains meet at a point (a grain corner). Let us now consider the
factors that control the grain shapes in a recrystallized polycrystal.

The first problem to be solved is why grain boundaries exist at all in
annealed materials. The boundaries are all high-energy regions that increase
the free energy of a polycrystal relative to a single crystal. Therefore a
polycrystalline material is never a true equilibrium structure. However the
grain boundaries in a polycrystal can adjust themselves during annealing to
produce a metastable equilibrium at the grain boundary intersections.

The conditions for equilibrium at a grain-boundary junction can be
obtained either by considering the total grain boundary energy associated
with a particular configuration or, more simply, by considering the forces that
each boundary exerts on the junction. Let us first consider a grain-boundary
segment of unit width and length OP as shown in Fig. 3.16. If the boundary is
mobile then forces F, and F, must act at O and P to maintain the boundary in
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Fig. 3.15 Microstructure of an annealed crystal of austenitic stainless steel. (After
P.G. Shewmon, Transformations in Metals, McGraw-Hill, New York, 1969.)

equilibrium. From Equation 3.3, F, = v. F, can be calculated as follows: if P
is moved a small distance 8y while O remains stationary, the work done will be
Fydy. This must balance the increase in boundary energy caused by the
change in orientation 36, i.e.

dy
F5y = I— 30
Wy =l

Since 8y = 56

dy
F, TS (3.12)
This means that if the grain-boundary energy is dependent on the orientation
of the boundary (Fig. 3.16b) a force dy/d6 must be applied to the ends of the
boundary to prevent it rotating into a lower energy orientation. dy/d# is
therefore known as a torque term. Since the segment OP must be supported
by forces F, and F, the boundary exerts equal but opposite forces —F, and
—F, on the ends of the segment which can be junctions with other grain
boundaries.
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Fig. 3.16 (a) Equilibrium forces F, and F, supporting a length / of boundary OP.
(b) The origin of F,.

If the boundary happens to be at the orientation of a cusp in the free
energy, e.g. as shown in Fig. 3.12c, there will be no torque acting on the
boundary since the energy is a minimum in that orientation. However, the
boundary will be able to resist a pulling force F, of up to (dy/d8).,s, without
rotating.

If the boundary energy is independent of orientation the torque term is
zero and the grain boundary behaves like a soap film. Under these conditions
the requirement for metastable equilibrium at a junction between three
grains, Fig. 3.17, is that the boundary tensions v, , v, and y; must balance. In

Fig. 3.17 The balance of grain boundary tensions for a grain boundary intersection
in metastable equilibrium.
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mathematical terms

Y3 _ Y13 _ Y12
sin 6; sin 0, sin 6,

(3.13)

Equation 3.13 applies to any three boundaries so that grain 1 for example
could be a different phase to grains 2 and 3. Alternatively grain 1 could be a
vapour phase in which case v;3 and vy;, would be the surface energies of the
solid. This relationship is therefore useful for determining relative boundary
energies.

One method of measuring grain-boundary energy is to anneal a specimen at
a high temperature and then measure the angle at the intersection of the
surface with the boundary, see Fig. 3.18. If the solid—vapour energy (vsy) is
the same for both grains, balancing the interfacial tensions gives

sy cosg = Y (3.14)
Therefore if v, is known 1y, can be calculated.

When using Equation 3.14 it must be remembered that the presence of any
torque terms has been neglected and such an approximation may introduce
large errors. To illustrate the importance of such effects let us consider the
junction between coherent and incoherent twin boundary segments,
Fig. 3.19. As a result of the orientation dependence of twin boundary energy,
Fig. 3.12c, it is energetically favourable for twin boundaries to align themselves
parallel to the twinning plane. If, however, the boundary is constrained to follow
a macroscopic plane that is near but not exactly parallel to the twinning plane the
boundary will usually develop a stepped appearance with large coherent
low-energy facets and small incoherent high-energy risers as shown in Fig. 3.19.
Although this configuration does not minimize the total twin boundary area it
does minimize the total free energy.

It is clear that at the coherent/incoherent twin junction the incoherent twin
boundary tension vy; must be balanced by a torque term. Since the maximum
value of the resisting force is dy./d@, the condition that the configuration
shown in Fig. 3.19 is stable is

dye

Ysv
6/ " vapour
Solid Solid

Y b
Fig. 3.18 The balance of surface and grain boundary tensions at the intersection of a
grain boundary with a free surface.



Boundaries in single-phase solids 129

[ P

(c)
Fig. 3.19 (a) A twin boundary in a thin foil specimen as imaged in the transmission
electron microscope. (After M.N. Thompson and C.W. Chen, Philips Electron Optics
Bulletin, EM 112-1979/1 Eindhoven, 1979.) (b) and (c), the coherent and incoherent
segments of the twin boundary.

Likewise the ‘incoherent’ facet must also be a special boundary showing
rather good fit in order to provide a force resisting .. That is

_ &

< 3.16
8 (3.16)

Ye

However, since v, is usually very small the incoherent interface need only lie
in a rather shallow energy cusp.
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The above can be obtained in another way from energy considerations. If
(metastable) equilibrium exists at P in Fig. 3.19c, then a small displacement
such as that shown should either produce no change, or an increase in the
total free energy of the system, i.e.

dG =0

Considering unit depth a small displacement 8y at P will increase the total free
energy by an amount

dvy.
= ]— —_ . >
dG =1 ) 30 — ydy =0

Since /86 = dy this leads to the same result as given by Equation 3.15

3.3.4 Thermally Activated Migration of Grain Boundaries

In the previous section it was shown that metastable equilibrium at the grain
boundary junctions requires certain conditions to be satisfied for the angles at
which three boundaries intersect. For simplicity, if all grain boundaries in a
polycrystal are assumed to have the same grain-boundary energy independent
of boundary orientation, Equation 3.13 predicts that 6; = 6, = 6; = 120°. It
can be similarly shown that the grain-boundary edges meeting at a corner
formed by four grains will make an angle of 109° 28'. If these, or similar,
angular conditions are satisfied then metastable equilibrium can be estab-
lished at all grain boundary junctions. However, for a grain structure to be in
complete metastable equilibrium the surface tensions must also balance over
all the boundary faces between the junctions. If a boundary is curved in the
shape of a cylinder, Fig. 3.20a, it is acted on by a force of magnitude vy/r
towards its centre of curvature. Therefore the only way the boundary tension
forces can balance in three dimensions is if the boundary is planar (r = «) or
if it is curved with equal radii in opposite directions, Fig. 3.20b and c. It is

(b) (c)

Fig. 3.20 (a) A cylindrical boundary with a radius of curvature r is acted on by a
force y/r. (b) A planar boundary with no net force. (c) A doubly curved boundary
with no net force.
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theoretically possible to construct a three-dimensional polycrystal in which
the boundary tension forces balance at all faces and junctions, but in a
random polycrystalline aggregate, typical of real metallurgical specimens,
there are always boundaries with a net curvature in one direction. Conse-
quently a random grain structure is inherently unstable and, on annealing at
high temperatures, the unbalanced forces will cause the boundaries to mi-
grate towards their centres of curvature.

The effect of different boundary curvatures in two dimensions is shown in
Fig. 3.21. Again for simplicity it has been assumed that equilibrium at each
boundary junction results in angles of 120°. Therefore if a grain has six
boundaries they will be planar and the structure metastable. However, if the
total number of boundaries around a grain is less than six each boundary must
be concave inwards, Fig. 3.21. These grains will therefore shrink and even-
tually disappear during annealing. Larger grains, on the other hand, will have

120° J20
AN

Fig. 3.21 Two-dimensional grain boundary configurations. The arrows indicate the
directions boundaries will migrate during grain growth.

more than six boundaries and will grow. The overall result of such boundary
migration is to reduce the number of grains, thereby increasing the mean
grain size and reducing the total grain boundary energy. This phenomenon is
known as grain growth or grain coarsening. It occurs in metals at tempera-
tures above about 0.5 T,,, where the boundaries have significant mobility. A
soap froth serves as a convenient analogue to demonstrate grain growth as
shown in Fig. 3.22.

In the case of the cells in a soap froth the higher pressure on the concave
side of the films induces the air molecules in the smaller cells to diffuse
through the film into the larger cells, so that the small cells eventually
disappear. A similar effect occurs in metal grains. In this case the atoms in the
shrinking grain detach themselves from the lattice on the high pressure side of
the boundary and relocate themselves on a lattice site of the growing grain.
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Fig. 3.22 Two-dimensional cells of a soap solution illustrating the process of grain
growth. Numbers are time in minutes. (After C.S. Smith, Metal Interfaces, American
Society for Metals, 1952, p. 81.)

For example in Fig. 3.23a if atom C jumps from grain 1 to grain 2 the
boundary locally advances a small distance.

The effect of the pressure difference caused by a curved boundary is to
create a difference in free energy (AG) or chemical potential (Ap) that drives
the atoms across the boundary, see Fig. 3.24. In a pure metal AG and A are
identical and are given by Equation 1.58 as

29V
b

AG = Ap (3.17)
This free energy difference can be thought of as a force pulling the grain
boundary towards the grain with the higher free energy. As shown in
Fig. 3.25, if unit area of grain boundary advances a distance 8x the number of
moles of material that enter grain B is 8x - 1/V,, and the free energy released
is given by
AG - ¥x/V,,
This can be equated to the work done by the pulling force Fdx. Thus the
pulling force per unit area of boundary is given by
_AG
Vi
In other words the force on the boundary is simply the free energy difference
per unit volume of material.

In the case of grain growth AG arises from the boundary curvature, but
Equation 3.18 applies equally to any boundary whose migration causes a

F N m™2 (3.18)
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Fig. 3.23 (a) The atomic mechanism of boundary migration. The boundary migrates
to the left if the jump rate from grain 1 — 2 is greater than 2 — 1. Note that the free
volume within the boundary has been exaggerated for clarity. (b) Step-like structure
where close-packed planes protrude into the boundary.

decrease in free energy. During recrystallization, for example, the boundaries
between the new strain-free grains and the original deformed grains are acted
on by a force AG/V,, where, in this case, AG is due to the difference in
dislocation strain energy between the two grains. Figure 3.26 shows a disloca-
tion-free recrystallized grain expanding into the heavily deformed surround-
ings. In this case the total grain-boundary area is increasing, therefore the

Fig. 3.24 The free energy of an atom during the process of jumping from one grain
to the other.
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Fig. 3.25 A boundary separating grains with different free energies is subjected to a
pulling force F.

Fig. 3.26 Grain boundary migration in nickel pulled 10% and annealed 10 min at
425 °C. The region behind the advancing boundary is dislocation-free. (After
J. Bailey and P. Hirsch, Proceedings of the Royal Society, London, A267 (1962) 11.)
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driving force for recrystallization must be greater than the opposing boundary
tension forces. Such forces are greatest when the new grain is smallest, and
the effect is therefore important in the early stages of recrystallization.

Let us now consider the effect of the driving force on the kinetics of
boundary migration. In order for an atom to be able to break away from grain
1 it must acquire, by thermal activation, an activation energy AG?, Fig 3.24. If
the atoms vibrate with a frequency v, the number of times per second that an
atom has this energy is v; exp (—AG?*/RT). If there are on average n; atoms
per unit area in a favourable position to make a jump there will be
n, exp (—AG*/RT) jumps m 2 s~! away from grain 1. It is possible that
not all these atoms will find a suitable site and ’stick’ to grain 2. If the
probability of being accommodated in grain 2 is A, the effective flux of atoms
from grain 1 to 2 will be

Aynqu exp (—AG*/RT) m 257!

There will also be a similar flux in the reverse direction, but if the atoms in
grain 2 have a lower free energy than the atoms in grain 1 by AG (mol~!) the
flux from 2 to 1 will be

Any, exp — (AG* + AG)/RT m ?s7!

When AG = 0 the two grains are in equilibrium and there should therefore
be no net boundary movement, i.e. the rates at which atoms cross the
boundary in opposite directions must be equal. Equating the above expres-
sions then gives

Anyu, = Asngv,

For a high-angle grain boundary it seems reasonable to expect that there will
not be great problems with accommodation so that A; = A, = 1. Assuming
the above equality also holds for small non-zero driving forces, with AG > 0
there will be a net flux from grain 1 to 2 given by

AG? AG
Jnet = AZnIUl exp (_ RT){l — &xp (_ﬁ)} (319)

If the boundary is moving with a velocity v the above flux must also be equal
to v/(Vim/N,), where (V,/N,) is the atomic volume. Therefore expanding
exp (—AG/RT) for the usual case of AG < RT gives

Aznlvlvrzn AGa AG
- == 3.20
N,RT SP\"RT)V, (3.20)

In other words v should be proportional to the driving force
AG/V,, (N m™?). Equation 3.20 can be written more simply as

v=M-AG/Vy (3.21)

where M is the mobility of the boundary, i.e. the velocity under unit driving
force. Substituting for AG® gives
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Aznlleg', AS? —-AH?

M= { N.RT exp( R )}exp( RT ) (3.22)
Note how this simple model predicts an exponential increase in mobility with
temperature. This result should of course be intuitively obvious since the
boundary migration is a thermally activated process like diffusion. Indeed
boundary migration and boundary diffusion are closely related processes.
The only difference is that diffusion involves transport along the boundary
whereas migration requires atomic movement across the boundary.

The model used to derive Equations 3.20 and 3.22 is particularly simple
and gross assumptions are involved. In real grain boundaries it is likely that
not all atoms in the boundary are equivalent and some will jump more easily
than others. For example atoms may jump preferably to and from atomic
steps or ledges, like atoms A, B and Cin Fig. 3.23a. In fcc metals such ledges
should exist where the close-packed {111} planes protrude into the boundary.
Boundary migration could then be effected by the growth of the ledges in one
grain combined with the shrinking of corresponding ledges in the other grain
as shown in Fig. 3.23b.

From our discussion of grain-boundary structure it might be argued that the
relatively open structure of a random high-angle boundary should lead to a
high mobility whereas the denser packing of the special boundaries should be
associated with a low mobility. Indeed, the coherent twin boundary, in which
the atoms fit perfectly into both grains, has been found to be almost entirely
immobile®. However, experiments have shown that the other special bound-
aries are usually more mobile than random high-angle boundaries. The
reason for this is associated with the presence of impurity or alloying elements
in the metal. Figure 3.27 shows data for the migration of various boundaries
in zone-refined lead alloyed with different concentrations of tin. For a given
driving force the velocity of the random boundaries decreases rapidly with
increasing alloy content. Note that only very low concentrations of impurity
are required to change the boundary mobility by orders of magnitude. The
special grain boundaries on the other hand are less sensitive to impurities. It is
possible that if the metal were ‘perfectly’ pure the random boundaries would
have the higher mobility. The reason for this type of behaviour arises from
differences in the interactions of alloy elements or impurities with different
boundaries.

Generally the grain boundary energy of a pure metal changes on alloying.
Often (though not always) it is reduced. Under these circumstances the
concentration of alloying element in the boundary is higher than that in the
matrix. In grain boundary segregation theory, grain boundary solute con-
centrations (X;,) are expressed as fractions of a monolayer. One monolayer
(X, = 1) means that the solute atoms in the boundary could be arranged to
form a single close-packed layer of atoms. Approximately, for low mole
fractions of solute in the matrix (Xj), the boundary solute concentration X,
is given by
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Fig. 3.27 Migration rates of special and random boundaries at 300 °C in zone-refined
lead alloyed with tin under equal driving forces. (After K. Aust and J.W. Rutter,
Transactions of the Metallurgical Society of AIME, 215 (1959) 119.)

AG,

Xy, = Xp exp—ﬁ

(3.23)

AG, is the free energy released per mole when a solute atom is moved
from the matrix to the boundary. AG, is usually positive and roughly
increases as the size misfit between the solute and matrix increases and as
the solute—solute bond strength decreases.

Equation 3.23 shows how grain boundary segregation decreases as tem-
perature increases, i.e. the solute ‘evaporates’ into the matrix. For suf-
ficiently low temperatures or high values of AGy, Xy, increases towards unity
and Equation 3.23 breaks down as X, approaches a maximum saturation
value.

The variation of boundary mobility with alloy concentration varies
markedly from one element to another. It is a general rule that AG,, which
measures the tendency for segregation, increases as the matrix solubility
decreases. This is illustrated by the experimental data in Fig. 3.28.
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Fig. 3.28 Increasing grain boundary enrichment with decreasing solid solubility in a
range of systems. (After E.D. Hondras and M.P. Seah, International Metallurgical
Reviews, December 1977, Review 222.)

When the boundary moves the solute atoms migrate along with the
boundary and exert a drag that reduces the boundary velocity. The mag-
nitude of the drag will depend on the binding energy and the concentration
in the boundary. The higher mobility of special boundaries can, therefore,
possibly be attributed to a low solute drag on account of the relatively more
close-packed structure of the special boundaries.

The variation of boundary mobility with alloy concentration varies mark-
edly from one element to another. It is a general rule that Qg, which
measures the tendency for segregation, increases as the matrix solubility
decreases. This is illustrated by the experimental data in Fig. 3.28.

It is possible that the higher mobility of special grain boundaries plays a
role in the development of recrystallization textures. If a polycrystalline metal
is heavily deformed, by say rolling to a 90% reduction, a deformation texture
develops such that the rolled material resembles a deformed single crystal.
On heating to a sufficiently high temperature new grains nucleate and begin to
grow. However, not all grains will grow at the same rate: those grains which
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are specially oriented with respect to the matrix should have higher mobility
boundaries and should overgrow the boundaries of the randomly oriented
grains. Consequently the recrystallized structure should have a special
orientation with respect to the original ‘single crystal’. Thus a new texture
results which is called the recrystallization texture. Recrystallization is,
however, incompletely understood and the above explanation of recrystalliza-
tion texture may be an oversimplification. It is possible for example that the
nuclei for recrystallization are themselves specially oriented with respect to
the deformed matrix.

A recrystallization texture is sometimes an advantage. For example the
proper texture in Fe—3wt% Si alloys makes them much better soft magnets
for use in transformers. Another application is in the production of textured
sheet for the deep drawing of such materials as low-carbon steel. The only
way to avoid a recrystallization texture is to give an intermediate anneal
before a deformation texture has been produced.

3.3.5 The Kinetics of Grain Growth

It was shown in the previous section that at sufficiently high temperatures the
grain boundaries in a recrystallized specimen will migrate so as to reduce the
total number of grains and thereby increase the mean grain diameter. In a
single-phase metal the rate at which the mean grain diameter D increases with
time will depend on the grain boundary mobility and the driving force for
boundary migration.

If we assume that the mean radius of curvature of all the grain boundaries is
proportional to the mean grain diameter D the mean driving force for grain
growth will be proportional to 2y/D (Equation 3.17). Therefore

V=ao

2y _ab

3.24
D dt (3.24)

where a is a proportionality constant of the order of unity.

Note that this equation implies that the rate of grain growth is inversely
proportional to D and increases rapidly with increasing temperature due to
increased boundary mobility, M. Integration of Equation 3.24 taking D = D,
when ¢ = 0 gives

D?> = D} + Kt (3.25)
where K = 4aMy.

Experimentally it is found that grain growth in single-phase metals follows a
relationship of the form

D=K't (3.26)
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Fig. 3.29 Optical micrograph (x 130) showing abnormal grain growth in a fine-grained
steel containing 0.4 wt% carbon. The matrix grains are prevented from growing by a fine
dispersion of unresolved carbide particles. (After D.T. Gawne and G.T. Higgins, Journal
of the Iron and Steel Institute, 209 (1971), 562.)

where K’ is a proportionality constant which increases with temperature. This
is equivalent to Equation 3.25 with n = 0.5 if D = D,. However, the ex-
perimentally determined values of n are usually much less than 0.5 and only
approach 0.5 in very pure metals or at very high temperatures. The reasons
for this are not fully understood, but the most likely explanation is that the
velocity of grain boundary migration, v, is not a linear function of the driving
force, AG, i.e the mobility in Equation 3.21 is not a constant but varies with
AG and therefore also with D. It has been suggested that such a variation of
M could arise from solute drag effects’.

The above type of grain growth is referred to as normal. Occasionally
so-called abnormal grain growth can occur. This situation is characterized by
the growth of just a few grains to very large diameters. These grains then
expand consuming the surrounding grains, until the fine grains are entirely
replaced by a coarse-grained array. This effect is illustrated in Fig. 3.29 and is
also known as discontinuous grain growth, coarsening, or secondary recrystal-
lization. It can occur when normal grain growth ceases due to the presence of
a fine precipitate array.

The nature of normal grain growth in the presence of a second phase
deserves special consideration. The moving boundaries will be attached to
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Fig. 3.30 The effect of spherical particles on grain boundary migration.

the particles as shown in Fig. 3.30a, so that the particles exert a pulling force
on the boundary restricting its motion. The boundary shown in Fig. 3.30b
will be attached to the particle along a length 27r cos 8. Therefore if the
boundary intersects the particle surface at 90° the particle will feel a pull of
(2mr - cos 8 - ) sin 6. This will be counterbalanced by an equal and opposite
force acting on the boundary. As the boundary moves over the particle
surface 0 changes and the drag reaches a maximum value when sin 6 - cos 0 is
amaximum, i.e. at & = 45°. The maximum force exerted by a single particle is
therefore given by wry.

If there is a volume fraction f of particles all with a radius r the mean
number of particles intersecting unit area of a random plane is 3f /2mr? so that
the restraining force per unit area of boundary is approximately
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Fig. 3.31 Effect of second-phase particles on grain growth.

3. Iy (3.27)

™= 2r

This force will oppose the driving force for grain growth, namely ~2vy/D as
shown in Fig. 3.30a. When D is small P will be relatively insignificant, but as
D increases the driving force 2y/D decreases and when

23y
D 2r

27r?

the driving force will be insufficient to overcome the drag of the particles and
grain growth stagnates. A maximum grain size will be given by

b 4
max"3f

The effect of a particle dispersion on grain growth is illustrated in Fig. 3.31. It
can be seen that the stabilization of a fine grain size during heating at high
temperatures requires a large volume fraction of very small particles. Unfor-
tunately, if the temperature is too high, the particles tend to coarsen or
dissolve. When this occurs some boundaries can break away before the others
and abnormal grain growth occurs, transforming the fine-grain array into a
very coarse-grain structure. For example aluminium-killed steels contain
aluminium nitride precipitates which stabilize the austenite grain size during
heating. However, their effectiveness disappears above about 1000 °C when
the aluminium nitride precipitates start to dissolve.

(3.28)

3.4 Interphase Interfaces in Solids

The previous section dealt in some detail with the structure and properties of
boundaries between crystals of the same solid phase. In this section we will be
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Fig. 3.32 Strain-free coherent interfaces. (a) Each crystal has a different chemical
composition but the same crystal structure. (b) The two phases have different lattices.

dealing with boundaries between different solid phases, i.e. where the two
adjoining crystals can have different crystal structures and/or compositions.
Interphase boundaries in solids can be divided on the basis of their atomic
structure into three classes: coherent, semicoherent and incoherent.

3.4.1 Interface Coherence
Fully Coherent Interfaces

A coherent interface arises when the two crystals match perfectly at the
interface plane so that the two lattices are continuous across the interface,

Fig. 3.33 The close-packed plane and directions in fcc and hep structures.
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Fig. 3.32. This can only be achieved if, disregarding chemical species, the
interfacial plane has the same atomic configuration in both phases, and this
requires the two crystals to be oriented relative to each other in a special way.
For example such an interface is formed between the hcp silicon-rich k phase
and the fcc copper-rich a-matrix in Cu-Si alloys. The lattice parameters of
these two phases are such that the (111)¢, plane is identical to the (0001)p,,
plane. Both planes are hexagonally close-packed (Fig. 3.33) and in this par-
ticular case the interatomic distances are also identical. Therefore when the
two crystals are joined along their close-packed planes with the close-packed
directions parallel the resultant interface is completely coherent. The require-
ment that the close-packed planes and directions are parallel produces an
orientation relationship between the two phases such that

(111),//(0001),

[110],//[1120],
Note that the relative orientation of two crystals can always be specified by
giving two parallel planes (hkl) and two parallel directions [uvw] that lie in
those planes.

Within the bulk of each phase every atom has an optimum arrangement of
nearest neighbours that produces a low energy. At the interface, however,
there is usually a change in composition so that each atom is partly bonded to
wrong neighbours across the interface. This increases the energy of the
interfacial atoms and leads to a chemical contribution to the interfacial energy
(Ycn). For a coherent interface this is the only contribution, i.e.

vy(coherent) = v, (3.29)

In the case of the a—« interface in Cu-Si alloys the interfacial energy has been
estimated to be as low as 1 mJ m™2. In general coherent interfacial energies
range up to about 200 mJ m~2,

Fig. 3.34 A coherent interface with slight mismatch leads to coherency strains in the
adjoining lattices.
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In the case of a hcp/fcc interface there is only one plane that can form a
coherent interface: no other plane is identical in both crystal lattices. If,
however, the two adjoining phases have the same crystal structure and lattice
parameter then, apart from differences in composition, all lattice planes are
identical.

When the distance between the atoms in the interface is not identical it is
still possible to maintain coherency by straining one or both of the two lattices
as illustrated in Fig. 3.34. The resultant lattice distortions are known as
coherency strains.

Semicoherent Interfaces
The strains associated with a coherent interface raise the total energy of the
system, and for sufficiently large atomic misfit, or interfacial area, it becomes
energetically more favourable to replace the coherent interface with a semi-
coherent interface in which the disregistry is periodically taken up by misfit
dislocations, Fig. 3.35.

If d, and dg are the unstressed interplanar spacings of matching planes in
the o and P phases respectively, the disregistry, or misfit between the two
lattices (8) is defined by

dp — d
- ¢ 3.30
8 i (3.30)

It can be shown that in one dimension the lattice misfit can be completely
accommodated without any long-range strain fields by a set of edge disloca-
tions with a spacing D given by

Fig. 3.35 A semicoherent interface. The misfit parallel to the interface is accommo-
dated by a series of edge dislocations.
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_d
D= (3.31)

or approximately, for small &
=3 (3.32)

where b = (d, + dg)/2 is the Burgers vector of the dislocations. The match-
ing in the interface is now almost perfect except around the dislocation
cores where the structure is highly distorted and the lattice planes are
discontinuous.

In practice misfit usually exists in two dimensions and in this case the
coherency strain fields can be completely relieved if the interface contains two
non-parallel sets of dislocations with spacings D, = b,/8, and D, = b,/9,, as
shown in Fig. 3.36. If, for some reason, the dislocation spacing is greater than
given by Equation 3.32, the coherency strains will have been only partially
relieved by the misfit dislocations and residual long-range strain fields will still
be present.

The interfacial energy of a semicoherent interface can be approximately
considered as the sum of two parts: (a) a chemical contribution, vy, as for a
fully coherent interface, and (b) a structural term +,, which is the extra
energy due to the structural distortions caused by the misfit dislocations, i.e.

v (semicoherent) = vy, + g (3.33)

Equation 3.32 shows that as the misfit 8 increases the dislocation spacing
diminishes. For small values of 8 the structural contribution to the interfacial
energy is approximately proportional to the density of dislocations in the
interface, i.e.

Yt * O (for small d) (3.34)

However v, increases less rapidly as 8 becomes larger and it levels out when
8 = 0.25 in a similar way to the variation of grain-boundary energy with 6

Dz=bz/52

101=b1/51
54 l —
misfit

6,

Fig. 3.36 Misfit in two directions (3; and 3,) can be accommodated by a cross-grid of
edge dislocations with spacings D; = b;/3; and D, = b,/3%;.
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shown in Fig. 3.9. The reason for such behaviour is that as the misfit disloca-
tion spacing decreases the associated strain fields increasingly overlap and
annul each other. The energies of semicoherent interfaces are generally in the
range 200-500 mJ m~2.

When 8 > 0.25, i.e. one dislocation every four interplanar spacings, the
regions of poor fit around the dislocation cores overlap and the interface
cannot be considered as coherent, i.e. it is incoherent.

Incoherent Interfaces

When the interfacial plane has a very different atomic configuration in the two
adjoining phases there is no possibility of good matching across the interface.
The pattern of atoms may either be very different in the two phases or, if it is
similar, the interatomic distances may differ by more than 25%. In both cases
the interface is said to be incoherent. In general, incoherent interfaces result
when two randomly oriented crystals are joined across any interfacial plane as
shown in Fig. 3.37. They may, however, also exist between crystals with an
orientation relationship if the interface has a different structure in the two
crystals.

Very little is known about the detailed atomic structure of incoherent
interfaces, but they have many features in common with high-angle grain
boundaries. For example they are characterized by a high energy (~500-
1000 mJ m~2) which is relatively insensitive to the orientation of the interfa-

Fig. 3.37 An incoherent interface.
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cial plane. They probably have a disordered atomic structure in that the
interface lacks the long-range periodicity of coherent and semicoherent inter-
faces; although, like high-angle grain boundaries, they may have a step-like
structure caused by low-index planes protruding into the interface, as in
Fig. 3.23b.

Complex Semicoherent Interfaces
The semicoherent interfaces considered above have been observed at

boundaries formed by low-index planes whose atom patterns and spacings are
clearly almost the same. However, semicoherent interfaces, i.e. interfaces
containing misfit dislocations, can also form between phases when good
lattice matching is not initially obvious. For example, fcc and bec crystals
often appear with the closest-packed planes in each phase, (111),. and
(110)pcc, almost parallel to each other. Two variants of this relationship are
found: the so-called Nishiyama—Wasserman (N—-W) relationship:

(110)bcc//(111)fcc ’ [001]bcc//[101]fcc
and the so-called Kurdjumov-Sachs (K-S) relationship:

(llo)bcc//(lll)fcc > [1il]bcc//[011]fcc

Fig. 3.38 Atomic matching across a (111)./(110)y. interface bearing the NW
orientation relationship for lattice parameters closely corresponding to the case of fcc
and bcee iron (M.G. Hall et al., Surface Science, 31 (1972) 257).
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(The only difference between these two is a rotation in the closest-packed
planes of 5.26°.) Figure 3.38 shows that the matching between a {111} and
{110}, plane bearing the N-W relationship is very poor. Good fit is
restricted to small diamond-shaped areas that only contain ~8% of the
interfacial atoms. A similar situation can be shown to exist for the K-S
orientation relationship. Thus it can be seen that a coherent or semicoherent
interface between the two phases is impossible for large interfaces parallel
to {111}, and {110},c.. Such interfaces would be incoherent.

The degree of coherency can, however, be greatly increased if a macro-
scopically irrational interface is formed, (i.e. the indices of the interfacial
plane in either crystal structure are not small integers). The detailed struc-
ture of such interfaces is, however, uncertain due to their complex nature®®.

3.4.2 Second-Phase Shape: Interfacial Energy Effects

In a two-phase microstructure one of the phases is often dispersed within the
other, for example B-precipitates in an a-matrix. Consider for simplicity a
system containing one B-precipitate embedded in a single a crystal, and
assume for the moment that both the precipitate and matrix are strain free.
Such a system will have a minimum free energy when the shape of the
precipitate and its orientation relationship to the matrix are optimized to give
the lowest total interfacial free energy (2A;y;). Let us see how this can be
achieved for different types of precipitate.

Fully Coherent Precipitates

If the precipitate (B) has the same crystal structure and a similar lattice
parameter to the parent o phase the two phases can form low-energy coherent
interfaces on all sides—provided the two lattices are in a parallel orientation
relationship—as shown in Fig. 3.39a. This situation arises during the early
stages of many precipitation hardening heat treatments, and the B phase is
then termed a fully coherent precipitate or a GP zone. (GP for Guinier and
Preston who first discovered their existence. This discovery was made inde-
pendently by Preston in the USA and Guinier in France, both employing
X-ray diffraction techniques. Their work was later confirmed by transmission
electron microscopy.) Since the two crystal structures match more or less
perfectly across all interfacial planes the zone can be any shape and remain
fully coherent. Thus a y-plot of the o/ interfacial energy would be largely
spherical and, ignoring coherency strains, the equilibrium shape of a zone
should be a sphere. Figure 3.39b shows an example of GP zones, ~10 nm in
diameter, in an Al-4 atomic % Ag alloy. The zones are a silver-rich fcc
region within the aluminium-rich fcc matrix. Since the atomic diameters of
aluminium and silver differ by only 0.7% the coherency strains make a
negligible contribution to the total free energy of the alloy. In other systems
such as Al-Cu where the atomic size difference is much larger strain energy is
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Fig. 3.39 (a) A zone with no misfit (O Al, @ Ag, for example). (b) Electron micro-
graph of Ag-rich zones in an Al-4 atomic % Ag alloy (X 300 000). (After R.B.
Nicholson, G. Thomas and J. Nutting, Journal of the Institute of Metals, 87 (1958-
1959) 431.)
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found to be more important than interfacial energy in determining the
equilibrium shape of the zone. This point will be discussed further in
Section 3.4.3.

Partially Coherent Precipitates

From an interfacial energy standpoint it is favourable for a precipitate to be
surrrounded by low-energy coherent interfaces. However, when the precipi-
tate and matrix have different crystal structures it is usually difficult to find a
lattice plane that is common to both phases. Nevertheless, for certain phase
combinations there may be one plane that is more or less identical in each
crystal, and by choosing the correct orientation relationship it is then possible
for a low-energy coherent or semicoherent interface to be formed. There
are, however, usually no other planes of good matching and the precipitate
must consequently also be bounded by high-energy incoherent interfaces.

A y-plot of the interfacial energy in this case could look like that in
Fig. 3.40, i.e. roughly a sphere with two deep cusps normal to the coherent
interface. The Wulff theorem would then predict the equilibrium shape to be
a disc with a thickness/diameter ratio of vy./v;, where . and v; are the
energies of the (semi-) coherent and incoherent interfaces. Triangular,
square, or hexagonal plate shapes would be predicted if the <y plot also
contained smaller cusps at symmetrically disposed positions in the plane of
the plate.

The precipitate shapes observed in practice may deviate from this shape for
two main reasons. Firstly the above construction only predicts the equilibrium
shape if misfit strain energy effects can be ignored. Secondly the precipitate
may not be able to achieve an equilibrium shape due to constraints on how it
can grow. For example disc-shaped precipitates may be much wider than the
equilibrium shape if the incoherent edges grow faster than the broad faces.

Plate-like precipitates occur in many systems. For example the hcp vy'-
phase in aged Al-4 atomic % Ag alloys forms as plates with semicoherent

|

\V

Equilibrium
shape

Fig. 3.40 A section through a y-plot for a precipitate showing one coherent or
semicoherent interface, together with the equilibrium shape (a disc).
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broad faces parallel to the {111}, matrix planes and with the usual hcp/fcc
orientation relationship. The tetragonal 6’ phase in aged Al-4 wt% Cu alloys
are also plate-shaped, but in this case the broad faces of the plate (known as
the habit plane) are parallel to {100}, matrix planes. Figure 3.41 shows that
the {100}, planes are almost identical to the (001)y- plane so that the orienta-
tion relationship between the 8’ and the aluminium-rich matrix (a) is

(001)q///(001),
[100]e-//[100],

Examples of the precipitate shapes that are formed in these two systems are
shown in Figs. 3.42 and 3.43. Note that as a result of the cubic symmetry of
the aluminium-rich matrix there are many possible orientations for the pre-
cipitate plates within any given grain. This leads to a very characteristic
crystallographic microstructure known after its discoverer as a Widmanstitten
morphology.

Besides plate-like habits precipitates have also been observed to be lath-
shaped (a plate elongated in one direction) and needle-like. For example the
S phase in Al-Cu-Mg alloys forms as laths and the B’ phase in A-Mg-Si
alloys as needles'®. In both cases the precipitates are also crystallographically
related to the matrix and produce a Widmanstitten structure.

Incoherent Precipitates

When the two phases have completely different crystal structures, or when
the two lattices are in a random orientation, it is unlikely that any coherent or
semicoherent interfaces form and the precipitate is said to be incoherent.
Since the interfacial energy should be high for all interfacial planes, the y-plot
and the equilibrium inclusion shape will be roughly spherical. It is possible

Fig. 3.41 (a) The unit cell of the 8’ precipitate in Al-Cu alloys. (b) The unit cell of
the matrix. (After J.M. Silcock, T.J. Heal and H.K. Hardy, Journal of the Institute of
Metals, 82 (1953-1954) 239.)
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Fig. 3.42 Electron micrograph showing the Widmanstitten morphology of vy’ pre-
cipitates in an Al-4 atomic % Ag alloy. GP zones can be seen between the y', e.g. at H
(x 7000). (R.B. Nicholson and J. Nutting, Acta Metallurgica, 9 (1961) 332.)

that certain crystallographic planes of the inclusion lie at cusps in the y-plot so
that polyhedral shapes are also possible. Such faceting, however, need not
imply the existence of coherent or semicoherent interfaces.

The 0(CuAl,) precipitate in Al-Cu alloys is an example of an incoherent
precipitate, Fig. 3.44. It is found that there is an orientation relationship
between the ® and aluminium matrix but this is probably because 6 forms
from the 8’ phase and does not imply that 0 is semicoherent with the matrix.

Precipitates on Grain Boundaries

Rather special situations arise when a second-phase particle is located on a
grain boundary as it is necessary to consider the formation of interfaces with
two differently oriented grains. Three possibilities now arise (Fig. 3.45): the
precipitate can have (i) incoherent interfaces with both grains, (ii) a coherent
or semicoherent interface with one grain and an incoherent interface with the
other, or (iii) it can have a coherent or semicoherent interface with both
grains. The first two cases are commonly encountered but the third possibility
is unlikely since the very restrictive crystallographic conditions imposed by
coherency with one grain are unlikely to yield a favourable orientation
relationship towards the other grain.
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Fig. 3.43 Electron micrograph of a single coherent 8’ plate in an Al-3.9 wt% Cu
alloy aged 24 h at 200 °C. (x 80 000) (R. Sankaran and C. Laird, Acta Metallurgica 22
(1974) 957.)

The minimization of interfacial energy in these cases also leads to planar
semicoherent (or coherent) interfaces and smoothly curved incoherent inter-
faces as before, but now the interfacial tensions and torques must also balance
at the intersection between the precipitate and the boundary. (The shape that
produces the minimum free energy can in fact be obtained by superimposing
the v plots for both grains in a certain way''.) An example of a grain-
boundary precipitate is shown in Fig. 3.46.

3.4.3 Second-Phase Shape: Misfit Strain Effects

Fully Coherent Precipitates

It was pointed out in the previous section that the equilibrium shape of a
coherent precipitate or zone can only be predicted from the y-plot when the
misfit between the precipitate and matrix is small. When misfit is present the
formation of coherent interfaces raises the free energy of the system on
account of the elastic strain fields that arise. If this elastic strain energy is
denoted by AG; the condition for equilibrium becomes

3 A;v; + AG, = minimum (3.35)
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Fig. 3.44 Electron micrograph showing incoherent particles of 8 in an Al-Cu alloy.
(After G.A. Chadwick, Metallography of Phase Transformations, Butterworths, Lon-
don, 1972, from C. Laird.)

The origin of the coherency strains for a misfitting precipitate is demon-
strated in Fig. 3.47. If the volume of matrix encircled in Fig. 3.47a is cut out
and the atoms are replaced by smaller atoms the cut-out volume will undergo
a uniform negative dilatational strain to an inclusion with a smaller lattice
parameter, Fig. 3.47b. In order to produce a fully coherent precipitate the
matrix and inclusion must be strained by equal and opposite forces as shown
in Fig. 3.47c'2.

If the lattice parameters of the unstrained precipitate and matrix are ag and
a, respectively the unconstrained misfit 3 is defined by

@—

(c)
Fig. 3.45 Possible morphologies for grain boundary precipitates. Incoherent inter-
faces smoothly curved. Coherent or semicoherent interfaces planar.
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Fig. 3.46 An a precipitate at a grain boundary triple point in an « — B Cu-In alloy.
Interfaces A and B are incoherent while C is semicoherent (X 310). (After G.A.
Chadwick, Metallography of Phase Transformations, Butterworths, London, 1972.)

Y (3.36)
a(!
However, the stresses maintaining coherency at the interfaces distort the
precipitate lattice, and in the case of a spherical inclusion the distortion is
purely hydrostatic, i.e. it is uniform in all directions, giving a new lattice
parameter a. The in situ or constrained misfit € is defined by

gE=—"7 (3.37)

Fig. 3.47 The origin of coherency strains. The number of lattice points in the hole is
conserved.
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If the elastic moduli of the matrix and inclusion are equal and Poisson’s
ratio is 1/3, € and d are simply related by

. =25 (3.38)
3

In practice the inclusion has different elastic constants to the matrix, neverthe-
less € still usually lies in the range 0.5 8 < ¢ < 3.

When the precipitate is a thin disc the in situ misfit is no longer equal in all
directions, but instead it is large perpendicular to the disc and almost zero in
the plane of the broad faces, as shown in Fig. 3.48.

In general the total elastic energy depends on the shape and elastic prop-
erties of both matrix and inclusion. However, if the matrix is elastically
isotropic and both precipitate and matrix have equal elastic moduli, the total
elastic strain energy AG is independent of the shape of the precipitate, and
assuming Poissons ratio (v) = 1/3 it is given by

AG, =~ 4ud? - V (3.39)

where . is the shear modulus of the matrix and V is the volume of the
unconstrained hole in the matrix. Therefore coherency strains produce an
elastic strain energy which is proportional to the volume of the precipitate and
increases as the square of the lattice misfit (3%). If the precipitate and inclu-
sion have different elastic moduli the elastic strain energy is no longer shape-
independent but is a minimum for a sphere if the inclusion is hard and a disc if
the inclusion is soft.

The above comments applied to isotropic matrices. In general, however,
most metals are elastically anisotropic. For example, most cubic metals

Fig. 3.48 For a coherent thin disc there is little misfit parallel to the plane of the disc.
Maximum misfit is perpendicular to the disc.
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(except molybdenum) are soft in (100) directions and hard in (111).
The shape with a minimum strain energy under these conditions is a disc
parallel to {100} since most of the misfit is then accommodated in the soft
directions perpendicular to the disc.

The influence of strain energy on the equilibrium shape of coherent precipi-
tates can be illustrated by reference to zones in various aluminium-rich
precipitation hardening alloys: Al-Ag, Al-Zn and Al-Cu. In each case zones
containing 50-100% solute can be produced. Assuming the zone is pure
solute the misfit can be calculated directly from the atomic radii as shown
below.

Atom radius (A) Al:1.43 Ag:1.44 Zn:1.38 Cu:1.28
Zone misfit (3) — +0.7% -3.5% -10.5%
Zone shape — sphere sphere disc

When 8 < 5% strain energy effects are less important than interfacial energy
effects and spherical zones minimize the total free energy. For 8 = 5%, as in
the case of zones in Al-Cu, the small increase in interfacial energy caused by
choosing a disc shape is more than compensated by the reduction in coheren-
Cy strain energy.

Incoherent Inclusions

When the inclusion is incoherent with the matrix, there is no attempt at
matching the two lattices and lattice sites are not conserved across the
interface. Under these circumstances there are no coherency strains. Misfit
strains can, however, still arise if the inclusion is the wrong size for the hole it
is located in, Fig. 3.49. In this case the lattice misfit § has no significance and
it is better to consider the volume misfit A as defined by

AV

A= (3.40)

where V is the volume of the unconstrained hole in the matrix and (V — AV)
the volume of the unconstrained inclusion. (For a coherent spherical inclusion

Fig. 3.49 The origin of misfit strain for an incoherent inclusion (no lattice matching).
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the volume misfit and the linear lattice misfit are related by A = 3%. But for a
non-coherent sphere the number of lattice sites within the hole is not pre-
served (see Fig. 3.49) and in this case A # 33.) When the matrix hole and
inclusion are constrained to occupy the same volume the elastic strain fields
again result as shown in Fig. 3.49b. The elasticity problem in this case has
been solved for spheroidal inclusions which are described by the equation

2LrLE (3.41)

@ @ '
Nabarro®? gives the elastic strain energy for a homogeneous incompressible
inclusion in an isotropic matrix as

2
3

where p is the shear modulus of the matrix. Thus the elastic strain energy is
proportional to the square of the volume misfit A%. The function f(c/a) is a
factor that takes into account the shape effects and is shown in Fig. 3.50.
Notice that, for a given volume, a sphere (c/a = 1) has the highest strain
energy while a thin, oblate spheroid (c/a — 0) has a very low strain energy,
and a needle shape (c/a = «) lies between the two. If elastic anisotropy is
included' it is found that the same general form for f(c/a) is preserved
and only small changes in the exact values are required. Therefore the
equilibrium shape of an incoherent inclusion will be an oblate spheroid with
c/a value that balances the opposing effects of interfacial energy and strain

AG, = ZpA? -V - f(c/a) (3.42)

Fig. 3.50 The variation of misfit strain energy with ellipsoid shape, f(c/a). (After
F.R.N. Nabarro, Proceedings of the Royal Society A, 175 (1940) 519.)
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energy. When A is small interfacial energy effects should dominate and the
inclusion should be roughly sphercial.

Plate-Like Precipitates

Consider a plate-like precipitate with coherent broad faces and incoherent or
semicoherent edges, Fig. 3.51. (The criterion for whether these interfaces are
coherent or semicoherent is discussed in the following section.) Misfit across
the broad faces then results in large coherency strains parallel to the plate, but
no coherency strains will exist across the edges. The in situ misfit across the
broad faces increases with increasing plate thickness which leads to greater
strains in the matrix and higher shear stresses at the corners of the plates™.
Eventually it becomes energetically favourable for the broad faces to become
semicoherent. Thereafter the precipitate behaves as an incoherent inclusion
with comparatively little misfit strain energy. An example of a precipitate that
can be either coherent or semicoherent in this way is 8’ in Al-Cu alloys (see
Section 5.5.1).

3.4.4 Coherency Loss

Precipitates with coherent interfaces have a low interfacial energy, but in the
presence of misfit, they are associated with a coherency strain energy. On the
other hand, if the same precipitate has non-coherent interfaces it will have a
higher interfacial energy but the coherency strain energy will be absent. Let
us now consider which state produces the lowest total energy for a spherical
precipitate with a misfit 3 and a radius .

The free energy of a crystal containing a fully coherent spherical precipi-
tate has contributions from (i) the coherency strain energy given by
Equation 3.39, and (ii) the chemical interfacial energy v.,. The sum of these
two terms is given by

4
AG(coherent) = 4pd? - 31173 + 417 -y (3.43)

If the same precipitate has incoherent or semicoherent interfaces that com-
pletely relieve the unconstrained misfit there will be no misfit energy, but

Fig. 3.51 Coherency strains caused by the coherent broad faces of 6’ precipitates.
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there will be an extra structural contribution to the interfacial energy vy, . The
total energy in this case is given by

AG(non-coherent) = 0 + 4mr?(ye + Yor) (3.44)

For a given 8, AG (coherent) and AG (non-coherent) vary with r as shown
in Fig. 3.52. When small, therefore, the coherent state gives the lowest total
energy, while it is more favourable for large precipitates to be semicoherent
or incoherent (depending on the magnitude of 8). At the critical radius (ry,)
AG(coherent) = AG(non-coherent) giving

_ 375!
Terit = 4982

If we assume that & is small, a semicoherent interface will be formed with a
structural energy vy, * 8. In which case

Ferit 1 (3.46)
)
If a coherent precipitate grows, during ageing for example, it should lose
coherency when it exceeds r. ;. However, as shown in Fig. 3.53 loss of
coherency requires the introduction of dislocation loops around the precipi-
tate and in practice this can be rather difficult to achieve. Consequently
coherent precipitates are often found with sizes much larger than r.;,.
There are several ways in which coherency may be lost and some of them
are illustrated in Fig. 3.54. The most straightforward way is for a dislocation
loop to be punched out at the interface as shown in Fig. 3.54a. This requires
the stresses at the interface to exceed the theoretical strength of the matrix.
However, it can be shown that the punching stress ps is independent of the
precipitate size and depends only on the constrained misfit . If the shear
modulus of the matrix is p

(3.45)

Ds = 3pe (3.47)
AG Coherent Non-coherent
|
|
0 |
[
A -
Q r
Ferit

Fig. 3.52 The total energy of matrix + precipitate v. precipitate radius for spherical
coherent and non-coherent (semicoherent or incoherent) precipitates.
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Dislocation

<

(c)

Fig. 3.53 Coherency loss for a spherical precipitate. (a) Coherent. (b) Coherency
strains replaced by dislocation loop. (c) In perspective.

Dislocation

Precipitate
Punched-
out loop

(b)

Fig. 3.54 Mechanisms for coherency loss. (a) Dislocation punching from interface.
(b) Capture of matrix dislocation. (c) Nucleation at edge of plate repeated as plate
lengthens. (d) Loop expansion by vacancy condensation in the precipitate.
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It has been estimated that the critical value of € that can cause the theoretical
strength of the matrix to be exceeded is approximately given by

€erit = 0.05 (3.48)

Consequently precipitates with a smaller value of € cannot lose coherency by
this mechanism, no matter how large.

There are several alternative mechanisms but all require the precipitate to
reach a larger size than r;,'®. For example, the precipitate can attract a matrix
dislocation with a suitable Burgers vector, and cause it to wrap itself around
the precipitate, Fig. 3.54b. This mechanism is difficult in annealed specimens
but is assisted by mechanical deformation.

In the case of plate-like precipitates the situation is different and it is now
possible for the high stresses at the edges of the plates to nucleate dislocations
by exceeding the theoretical strength of the matrix. The process can be
repeated as the plate lengthens so as to maintain a roughly constant interdis-
location spacing, Fig. 3.54c. Another mechanism that has been observed for
plate-like precipitates is the nucleation of dislocation loops within the
precipitate!’. Vacancies can be attracted to coherent interfaces'® and ‘con-
dense’ to form a prismatic dislocation loop which can expand across the
precipitate, as shown in Fig. 3.54d.

3.4.5 Glissile Interfaces

In the treatment of semicoherent interfaces that has been presented in the
previous sections it has been assumed that the misfit dislocations have Bur-
gers vectors parallel to the interfacial plane. This type of interface is referred
to as epitaxial. Glide of the interfacial dislocations cannot cause the interface
to advance and the interface is therefore non-glissile. It is however possible,
under certain circumstances, to have glissile semicoherent interfaces which
can advance by the coordinated glide of the interfacial dislocations. This is
possible if the dislocations have a Burgers vector that can glide on matching
planes in the adjacent lattices as illustrated in Fig. 3.55. The slip planes must
be continuous across the interface, but not necessarily parallel. Any gliding
dislocation shears the lattice above the slip plane relative to that below by the
Burgers vector of the dislocation. In the same way the gliding of the disloca-
tions in a glissile interface causes the receding lattice, a say, to be sheared into
the B-structure.

As an aid to understanding the nature of glissile boundaries consider two
simple cases. The first is the low-angle symmetric tilt boundary, shown in
Figs. 3.7a and 3.11. In this case the Burgers vectors are all pure edge in
nature and as they glide one grain is rotated into the other grain. Strictly
speaking this is not an interphase interface as there is no change in crystal
structure, just a rotation of the lattice. A slightly more complex example of a
glissile interface between two different lattices is that which can arise between
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Fig. 3.55 The nature of a glissile interface.

the cubic and hexagonal close-packed lattices. To understand the structure of
this interface requires a slight digression to consider the nature of Shockley
partial dislocations.

Both fcc and hcp lattices can be formed by stacking close-packed layers of
atoms one above the other. If the centres of the atoms in the first layer are
denoted as A-positions, the second layer of atoms can be formed either by
filling the B-positions, or C-positions as shown in Fig. 3.56. Either position
produces the same atomic configuration at this stage. Let us assume therefore
that the atoms in the second layer occupy B-sites. There are now two non-
equivalent ways of stacking the third layer. If the third layer is placed directly
above the first layer the resulting stacking sequence is ABA and the addition
of further layers in the same sequence ABABABABAB . . . has hexagonal
symmetry and is known as a hexagonal close-packed arrangement. The unit
cell and stacking sequence of this structure are shown in Fig. 3.57. The
close-packed plane can therefore be indexed as (0001) and the close-packed
directions are of the type (1120).

If the atoms in the third layer are placed on the C-sites to form ABC and
the same sequence is then repeated, the stacking sequence becomes
ABCABCAB . . . which produces a cubic close-packed arrangement with a
face-centred cubic unit cell as shown in Fig. 3.58. The close-packed atomic
planes in this case become the {111} type and the close-packed directions the
(110) type.

In terms of the fcc unit cell the distance between the B- and C-sites
measured parallel to the close-packed planes corresponds to vectors of the
type 4 (112). Therefore if a dislocation with a Burgers vector & [112] glides
between two (111) layers of an fcc lattice, say layers 4 and 5 in Fig. 3.59, all
layers above the glide plane (5, 6,7 . . .) will be shifted relative to those
below the glide plane by a vector § [112]. Therefore all atoms above the glide
plane in B-sites are moved to C-sites, atoms in C-sites move to A-sites, and
atoms in A-sites move to B-sites, as shown in Fig. 3.59. This type of disloca-
tion with b = §(112) is known as Shockley partial dislocation. They are called
partial dislocations because vectors of the type 4(112) do not connect lattice
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Fig. 3.56 The location of A, B and C sites in a close-packed layer of atoms. See also
Figs. 3.57 and 3.58. (After J.W. Martin and R.D. Doherty, Stability of Microstructure
in Metallic Systems, Cambridge University Press, Cambridge, 1976.)

Fig. 3.57 A hexagonal close-packed unit cell and stacking sequence.
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Fig. 3.58 A cubic close-packed structure showing fcc unit cell and stacking sequence.

Fig. 3.59 (a) An edge dislocation with a Burgers vector b = ¢[112] on (111). (Shock-
ley partial dislocation.) (b) The same dislocation locally changes the stacking sequence
from fcc to hcp.

points in the fcc structure. The gliding of Shockley partial dislocations there-
fore disrupts the crystal lattice and causes a stacking fault over the area of
glide plane swept by the dislocation. Figure 3.59 shows that the nature of this
fault is such that four layers of material are converted into a hexagonal
close-packed sequence CACA. Therefore in thermodynamically stable fcc
lattices the stacking fault is a region of high free energy. On the other hand if
the fcc lattice is only metastable with respect to the hcp structure the stacking
fault energy will be effectively negative and the gliding of Shockley partial
dislocations will decrease the free energy of the system.

Consider now the effect of passing another 4[112] dislocation between
layers 6 and 7 as shown in Fig. 3.60. It can be seen that the region of hcp
stacking is now extended by a further two layers. Therefore a sequence of
Shockley partial dislocations between every other (111) plane will create a
glissile interface separating fcc and hcp crystals, Fig. 3.61.

The glide planes of the interfacial dislocations are continuous from the fcc
to the hcp lattice and the Burgers vectors of the dislocations, which neces-
sarily lie in the glide plane, are at an angle to the macroscopic interfacial
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Fig. 3.60 Two Shockley partial dislocations on alternate (111) planes create six
layers of hcp stacking.

Fig. 3.61 An array of Shockley partial dislocations forming a glissile interface be-
tween fcc and hcp crystals.

plane. If the dislocation network glides into the fcc crystal it results in a
transformation of fcc — hcp, whereas a hcp — fcc transformation can be
brought about by the reverse motion. Macroscopically the interfacial plane
lies at an angle to the (111) or (0001) planes and need not be parallel to any
low-index plane, i.e. it can be irrational. Microscopically, however, the inter-
face is stepped into planar coherent facets parallel to (111)g. and (0001)p,
with a step height the thickness of two closed-packed layers.

An important characteristic of glissile dislocation interfaces is that they can
produce a macroscopic shape change in the crystal. This is illustrated for the
fcc — hep transformation in Fig. 3.62a. If a single fcc crystal is transformed
into an hcp crystal by the passage of the same Shockley partial over every
(111) plane then there is a macroscopic shape change, in this case a simple
shear, as shown. There are, however, two other Shockley partials which can
also be used to transform fcc — hep stacking, and if the transformation is
achieved using all three partials in equal numbers there will be no overall
shape change, Fig. 3.62b.
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Fig. 3.62 Schematic representation of the different ways of shearing cubic close-
packed planes into hexagonal close-packed (a) using only one Shockley partial,
(b) using equal numbers of all three Shockley partials.

The formation of martensite in steel and other alloy systems occurs by the
motion of glissile-dislocation interfaces. These transformations are character-
ized by a macroscopic shape change and no change in composition. Usually,
however, the interface must be more complex than the fcc/hcp case discussed
above, although the same principles will still apply. Martensitic transforma-
tions are dealt with further in Chapter 6.

3.4.6 Solid/Liquid Interfaces®®

Many of the ideas that were discussed with regard to solid/vapour interfaces
can be carried over to solid/liquid interfaces, only now the low density vapour
phase is replaced by a high density liquid, and this has important conse-
quences for the structure and energy of the interface.

There are basically two types of atomic structure for solid/liquid interfaces.
One is essentially the same as the solid/vapour interfaces described in
Section 3.1, i.e. an atomically flat close-packed interface, Fig. 3.63a. In this
case the transition from liquid to solid occurs over a rather narrow transition
zone approximately one atom layer thick. Such interfaces can also be de-
scribed as smooth, faceted, or sharp. The other type is an atomically diffuse
interface, Fig. 3.63b, in which the transition from liquid to solid occurs over
several atom layers. Thus there is a gradual weakening of the interatomic
bonds and an increasing disorder across the interface into the bulk liquid
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Fig. 3.63 Solid/liquid interfaces: (a) atomically smooth, (b) and (c) atomically
rough, or diffuse interfaces. (After M.C. Flemings, Solidification Processing,
McGraw-Hill, New York, 1974.)

phase; or in thermodynamic terms, enthalpy and entropy gradually change
from bulk solid to bulk liquid values across the interface as shown in
Fig. 3.64. When the solid and liquid are in equilibrium (at T,) the high
enthalpy of the liquid is balanced by a high entropy so that both phases have
the same free energy. In the interface, however, the balance is disturbed
thereby giving rise to an excess free energy, ys. .

Diffuse interfaces are also known as rough or non-faceted. The dotted line

Fig. 3.64 The variation of H, —T,S and G across the solid/liquid interface at the
equilibrium melting temperature Ty, showing the origin of the solid/liquid interfacial
energy v.
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in Fig. 3.63b is an attempt to show the rough nature of the interface by
dividing the atoms into the ‘solid’ and ‘liquid’. If this is done the schematic
representation of Fig. 3.63c can be used.

The type of structure chosen by a particular system will be that which
minimizes the interfacial free energy. According to a simple theory developed
by Jackson®® the optimum atomic arrangement depends mainly on the latent
heat of fusion (L) relative to the melting temperature (T,,). This theory
predicts that there is a critical value of L¢/T,, = 4 R above which the inter-
face should be flat and below which it should be diffuse. Most metals have
L¢/T, = R and are therefore predicted to have rough interfaces. On the
other hand some intermetallic compounds and elements such as Si, Ge, Sb as
well as most non-metals have high values of L;/T,, and generally have flat
close-packed interfaces. If the model is applied to solid/vapour interfaces L,
(the heat of sublimation) should be used instead of L; and then flat surfaces
are predicted even for metals, in agreement with observations.

If the broken-bond model is applied to the calculation of the energy of a
solid/liquid interface it can be argued that the atoms in the interface are
roughly half bonded to the solid and half to the liquid so that the interfacial
enthalpy should be ~0.5 L¢/N, per atom. This appears to compare rather
favourably with experimentally measured values of yg; which are ~0.45
L¢/N, per atom for most metals. However the agreement is probably
only fortuitous since entropy effects should also be taken into account,
Fig. 3.64.

Some experimentally determined values of vyg; are listed in Table 3.4.

Table 3.4 Experimentally Determined Solid/Liquid Interfacial Free
Energies

Values selected from D. Turnbull, Journal of Applied Physics, Vol. 21:
1022(1950).

Material T./K Ys../mJ m~2
Sn 505.7 54.5
Pb 600.7 333
Al 931.7 93
Ag 12337 126
Au 1336 132
Cu 1356 177
Mn 1493 206
Ni 1725 255
Co 1763 234
Fe 1803 204
Pd 1828 209

Pt 2043 240
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These values were determined by indirect means from homogeneous nuclea-
tion experiments (see Chapter 4) and may contain systematic errors. Com-
parison of Tables 3.2 and 3.3 indicates yg; = 0.30v, (for a grain boundary).
More direct experiments?! imply that ys; = 0.45 vy, (= 0.15 ygv). Another
useful empirical relationship is that

Ysv = YsL T YLv

which means that for a solid metal close to T, it is energetically favourable for
the surface to melt and replace the solid/vapour interface with solid/liquid
and liquid/vapour interfaces.

It is found experimentally that the free energies of diffuse interfaces do not
vary with crystallographic orientation, i.e. y-plots are spherical??>. Materials
with atomically flat interfaces, however, show strong crystallographic effects
and solidify with low-index close-packed facets, Fig. 3.65.

3.5 Interface Migration

The great majority of phase transformations in metals and alloys occur by a
process known as nucleation and growth, i.e. the new phase (B) first appears

Fig. 3.65 Examples of solid-liquid interface structure in metallic systems. (a) Non-
faceted dendrites of silver in a copper-silver eutectic matrix (X 330); (b) faceted
cuboids of B'-SnSb compound in a matrix of Sn-rich material (x 110). (After G.A.
Chadwick, Metallography of Phase Transformations, Butterworths, London, 1972.)
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at certain sites within the metastable parent («) phase (nucleation) and this is
subsequently followed by the growth of these nuclei into the surrounding
matrix. In other words, an interface is created during the nucleation stage
and then migrates into the surrounding parent phase during the growth stage.
This type of transformation is therefore essentially heterogeneous, i.e. at any
time during the transformation the system can be divided into parent and
product phases. The nucleation stage is very important and determines many
features of the transformation. However, most of the transformation product
is formed during the growth stage by the transfer of atoms across the moving
parent/product interface.

There are basically two different types of interface: glissile and non-glissile.
Glissile interfaces migrate by dislocation glide that results in the shearing of
the parent lattice into the product. The motion of glissile interfaces is rela-
tively insensitive to temperature and is therefore known as athermal migra-
tion. Most interfaces are non-glissile and migrate by the more or less random
jumps of individual atoms across the interface in a similar way to the migra-
tion of a random high-angle grain boundary. The extra energy that the atom
needs to break free of one phase and attach itself to the other is supplied by

thermal activation. The migration of non-glissile interfaces is therefore ex-
tremely sensitive to temperature.

A convenient way of classifying nucleation and growth transformations is to
divide them according to the way in which the product grows. Therefore two
major groupings can be made by dividing the transformations according the
whether growth involves glissile or non-glissile interfaces. Transformations
produced by the migration of a glissile interface are referred to as military
transformations. This emphasizes the analogy between the coordinated mo-
tion of atoms crossing the interface and that of soldiers moving in ranks on the
parade ground. In contrast the uncoordinated transfer of atoms across a
non-glissile interface results in what is known as a civilian transformation.

During a military transformation the nearest neighbours of any atom are
essentially unchanged. Therefore the parent and product phases must have
the same composition and no diffusion is involved in the transformation.
Martensitic transformations belong to this group. Glissile interfaces are also
involved in the formation of mechanical twins and twinning therefore has
much in common with martensitic transformations.

During civilian transformations the parent and product may or may not
have the same composition. If there is no change in composition, e.g. the
o — vy transformation in pure iron, the new phase will be able to grow as fast
as the atoms can cross the interface. Such transformations are said to be
interface controlled. When the parent and product phases have different
compositions, growth of the new phase will require long-range diffusion. For
example, the growth of the B-rich B phase into the A-rich a phase shown in
Fig. 3.66 can only occur if diffusion is able to transport A away from, and B
towards the advancing interface. If the interfacial reaction is fast, i.e. the
transfer of atoms across the interface is an easy process, the rate at which the
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® O
> @

Fig. 3.66 Composition changes in a substitutional alloy caused by interface migra-
tion when the two adjoining phases have different compositions.

B phase can grow will be governed by the rate at which lattice diffusion can
remove the excess atoms from ahead of the interface. This is therefore
known as diffusion-controlled growth. However, if for some reason the
interfacial reaction is slow, the growth rate will be governed by the interface
kinetics. Under these circumstances growth is said to be interface controlled
and a very small concentration gradient in the matrix is sufficient to provide
the necessary flux of atoms to and from the interface. It is also possible that
the interface reaction and diffusion process occur at similar rates in which
case the interface is said to migrate under mixed control.

The above discussion of interface migration and classification of nucleation
and growth transformations (also known as heterogeneous transformations)
is summarized in Table 3.5, together with some examples of each class. This
classification is adapted from that first proposed by Christian®>***, Non-glissile
interfaces can be considered to include solid/liquid and solid/vapour inter-
faces as well as solid/solid (coherent, semicoherent and incoherent) inter-
faces. Therefore solidification and melting can be included in the classification
of civilian transformations under diffusion control (although the concept of
diffusion may sometimes need to be extended to include the diffusion of
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heat). Condensation and evaporation at a free solid surface are also included
although they will not be treated in any depth®.

While many transformations can be easily classified into the above system,
there are other transformations where difficulties arise. For example, the
bainite transformation takes place by thermally activated growth, but it also
produces a shape change similar to that produced by the motion of a glissile
interface. At present the exact nature of such transformations is unresolved.

There is a small class of transformations, known as homogeneous trans-
formations that are not covered by Table 3.5. This is because they do not
occur by the creation and migration of an interface, i.e. no nucleation stage is
involved. Instead the transformation occurs homogeneously throughout the
parent phase. Spinodal decomposition and certain ordering transformations
are examples of this category and they will be discussed in Chapter 5.

3.5.1 Diffusion-Controlled and Interface-Controlled Growth*®

Let us now look more closely at the migration of an interface separating two
phases of different composition. Consider for simplicity a B precipitate of
almost pure B growing behind a planar interface into A-rich o with an initial
composition X as illustrated in Fig. 3.67. As the precipitate grows, the o
adjacent to the interface becomes depleted of B so that the concentration of
B in the a phase adjacent to the interface X; decreases below the bulk
concentration, Fig. 3.67a. Since growth of the precipitate requires a net flux
of B atoms from the a to the B phase there must be a positive driving force
across the interface Apk as shown in Fig. 3.67b. The origin of this chemical
potential difference can be seen in Fig. 3.67c. Clearly for growth to occur
the interface composition must be greater than the equilibrium concen-
tration X.. By analogy with the migration of a high-angle grain boundary
(Section 3.3.4) the net flux of B across the interface will produce an inter-
face velocity v given by

v = MAps/ Ve, (3.49)

where M is the interface mobility and V,, is the molar volume of the B phase.
The corresponding flux across the interface will be given by

Ji = —MAps/VZ molesof Bm™2s™! (3.50)

(The negative sign indicates that the flux is in the negative direction along
the x-axis.) As a result of the concentration gradient in the o phase there
will also be a flux of B atoms towards the interface Jg given by

o= —p[%s (3.51)
Ox interface

If a steady state exists at the interface these two fluxes must balance, i.e.
Jg =T3 (3.52)
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Fig. 3.67 Interface migration with long-range diffusion. (a) Composition profiles
across the interface. (b) The origin of the driving force for boundary migration into
the a phase. (c) A schematic molar free energy dlagram showing the relationship
between Apg, X; and X,. (Note that the solubility of A in the B phase is so low that
the true shape of the free energy curve cannot be drawn on this scale.)
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If the interface mobility is very high, e.g. an incoherent interface, Aph can
be very small and X; = X.. Under these circumstances there is effectively
local equilibrium at the interface. The interface will then move as fast as
diffusion allows, and growth takes place under diffusion control. The growth
rate can then be evaluated as a function of time, say, by solving the diffusion
equation with the boundary conditions X; = X, and Xp(*) = X,. Simple
examples of this problem will be given in subsequent chapters in connection
with solidification and diffusive transformations in solids.

When the interface has a lower mobility a greater chemical potential
difference (Apk) is required to drive the interface reaction and there will be a
departure from local equilibrium at the interface. The value of X; that is
chosen will be that which enables Equation 3.52 to be satisfied and the
interface will then be migrating under mixed control. In the limit of a very low
mobility it is possible that X; = X, and (9C/9x)intertace is almost zero. Under
these conditions growth is said to be interface controlled and there is a
maximum possible driving force App across the interface.

It can easily be shown that for a dilute or ideal solution, the driving force
Apk; is given by
X, _RT
X, X

provided (X; — X.) << X, (see exercise 3.20). Thus the rate at which the
interface moves under interface control should be proportional to the deviation
of the interface concentration from equilibrium (X; — X).

Let us now consider the question of why interface control should occur at
all when the two phases have a different composition. At first sight it may
appear that interface control should be very unlikely in practice. After all, the
necessary long-range diffusion involves a great many atom jumps while the
interface reaction essentially involves only one jump. Furthermore the activa-
tion energy for diffusion across the interface is not likely to be greater than for
diffusion through the lattice—quite the contrary. On this basis, therefore, all
interface reactions should be very rapid in comparison to lattice diffusion, i.e.
all growth should be diffusion controlled. In many cases the above arguments
are quite valid, but under certain conditions they are insufficient and may
even be misleading.

Consider again the expression that was derived for the mobility of a
high-angle grain boundary, Equation 3.22. A similar expression can be de-
rived for the case of an interphase interface with Aph replacing AG, (see
exercise 3.19). It can be seen, therefore, that the above arguments neglect the
effect of the accommodation factor (A), i.e. the probability that an atom
crossing the boundary will be accommodated on arrival at the new phase. It is
likely that incoherent interfaces and diffuse solid/liquid interfaces, as high-
angle grain boundaries, will have values of A close to unity. These interfaces
should therefore migrate under diffusion control. However, as will be demon-
strated later, it is possible for certain types of coherent or semicoherent

Aps = RTIn

(X — Xe) (3.53)
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interfaces, as well as smooth solid/liquid interfaces to have such low values of
A that some degree of interface control is easily possible.

If two phases with different compositions, but the same crystal structure are
separated by a coherent interface as shown in Fig. 3.32a, the interface can
advance by the replacement of the o atoms in plane AA’ with B atoms by
normal lattice diffusion involving vacancies. There is no need for a separate
interface reaction and the migration of this type of interface is therefore
diffusion controlled. This situation arises during the growth of GP zones for
example. The same arguments will apply if the interface is semicoherent
provided the misfit dislocations can climb by vacancy creation or annihilation.

Quite a different situation arises when the two phases forming a coherent or
semicoherent interface have different crystal structures. Consider for example
the coherent close-packed interface between fcc and hep crystals, Fig. 3.68a.
If growth of the hcp phase is to occur by individual atomic jumps (i.e.
so-called continuous growth) then an atom on a C site in the fcc phase must
change into a B position as shown in Fig. 3.68b. It can be seen, however, that
this results in a very high energy, unstable configuration with two atoms
directly above each other on B sites. In addition a loop of Shockley partial
dislocation is effectively created around the atom. An atom attempting such a
jump will, therefore, be unstable and be forced back to its original position.
The same situation will be encountered over the coherent regions of semi-
coherent interfaces separating phases with different crystal structures.
Solid/vapour as well as smooth solid/liquid interfaces should behave in a
similar manner, though perhaps to a lesser extent. If a single atom attaches
itself to a flat close-packed interface it will raise the interfacial free energy and
will therefore tend to detach itself again. It can thus be seen that continuous
growth at the above type of interfaces will be very difficult, i.e. very low
accommodation factors and low mobility are expected.

fcc. B
C

A
hcp B
A

(a) (b)

Fig. 3.68 Problems associated with the continuous growth of coherent interfaces
between phases with different crystal structures. (After J.W. Martin and R.D. Doher-
ty, Stability of Microstructure in Metallic Systems, Cambridge University Press, Cam-
bridge, 1976.)

> or O W >
> orlo o>
> or O oW >
> o> O O >
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A B
c! D

E
Fig. 3.69 The ledge mechanism.

F

A way of avoiding the difficulties of continuous growth encountered in the
above cases is provided by the ‘ledge’ mechanism shown in Fig. 3.69. If the
interface contains a series of ledges BC, DE normal to the facets AB, CD,
EF, atoms will be able to transfer more easily across the ledges than the
immobile facets and interface migration is therefore effected by the transverse
migration of the ledges as shown.

Growth ledges have in fact been seen with the aid of the electron micro-
scope on the surfaces of growing precipitates. For example Fig. 3.70 shows
an electron micrograph and a schematic drawing of the growth ledges on an
Mg,Si plate in an A1-Mg-Si alloy?’. Note that growth ledges are usually
hundreds of atom layers high.

When existing ledges have grown across the interface there is a problem of
generating new ones. In Fig. 3.70 the source of new ledges is thought to be
heterogeneous nucleation at the point of contact with another precipitate.
The same problem will not be encountered if the precipitate is dissolving,
however, since the edges of the plate will provide a continual source of
ledges®®. It is thought that once nucleated, the rate at which ledges migrate
across the planar facets should be diffusion controlled, i.e. controlled by how
fast diffusion can occur to and from the ledges. However, the problem of
nucleating new ledges may often lead to a degree of interface control on the
overall rate at which the coherent or semicoherent interface can advance
perpendicular to itself.

Growth ledges are by no means restricted to solid/solid systems. The first
evidence for the existence of growth ledges came from studies of solid/vapour
interfaces. They are also found on faceted solid/liquid interfaces.

The mechanism of interface migration can have important effects on the
shape of second-phase inclusions. It was shown in Section 3.4.2 that in the
absence of strain energy effects the equilibrium shape of a precipitate should
be determined by the relative energies of the bounding interfaces. For exam-
ple, a partially coherent precipitate should be disc or plate shaped with an
aspect ratio of y;/y. where v; is the energy of the incoherent edges and v, is
the energy of the coherent or semicoherent broad faces. However, the pre-
cipitate shape observed in practice may be prevented from achieving this
equilibrium shape by the relative rates at which the coherent and incoherent
interfaces can migrate. For example if there are problems of ledge nucleation
the easier growth of the incoherent plate edges may lead to a larger aspect
ratio than the equilibrium.
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Fig. 3.70 (a) Growth ledges at an Mg,Si plate in Al-1.5 wt% Mg,Si, solution treated
and aged 2 h at 350 °C. Dark field micrograph. (b) Schematic diagram of (a) showing
ledges on Mg,Si plate. (After G.C. Weatherly, Acta Metallurgica, 19 (1971) 181.)
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Exercises

3.1 Use the method of Section 3.1 to estimate the surface energy of {111},
{200} and {220} surface planes in an fcc crystal. Express your answer in
J/surface atom and in J/m?.

3.2 Differentiate Equation 3.8 to obtain the slope of the Egy, — 0 curve at
0 =0.

3.3 If a two-dimensional rectangular crystal is bounded by sides of lengths /;
and /, show by differentiation that the equilibrium shape is given by

hiom
L

where vy, and vy, are the energies of the sides /; and /, respectively. (The

area of the crystal /;/, is constant.)

3.4 (a) Measure 6 for the low-angle tilt boundary in Fig. 3.11.

(b) Determine the Burgers vector of the interface dislocations by
making a Burgers circuit around one of the dislocations. Does the
mean spacing of the dislocations agree with that predicted by
Equation 3.9?

3.5 Explain why grain boundaries move towards their centre of curvature
during grain growth but away from their centre of curvature during
recrystallization.

3.6 (a) Suppose a recrystallized, dislocation-free grain is growing into a

deformed matrix containing a dislocation density of 10'® m™2
(i.e. 10'* m/m?). If the dislocations have an energy of wb?/4 J m™*
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calculate the pulling force acting on the recrystallized grain bound-
ary. (Assume a shear modulus p = 10'° N m~2 and a Burgers vec-
tor b = 0.28 nm.)

(b) If the recrystallized grains grow from spherically shaped nuclei,
what is the diameter of the smallest nucleus that can expand into
the surrounding matrix? (Assume a grain boundary energy of
0.5Jm™2)

Look up the equilibrium phase diagrams for the Al-Fe and Al-Mg

systems. On the basis of these diagrams would you expect the grain

boundary enrichment of Fe in dilute Al-Fe alloys to be greater or less
than for Mg in dilute Al-Mg alloys at the same temperatures?

Derive Equation 3.31.

When a precipitate is surrounded by a spherical interface of radius r it is

subjected to a pressure above that of the matrix by 2y/r. Consider a

faceted precipitate with an equilibrium shape that of a square plate with

a thickness of 2x, and width 2x,. If the free energies of the broad faces

and edges are respectively y; and v,, show that the broad faces exert a

pressure on the precipitate (AP) given by

AP = 2v,/x,

(Hint: consider the total force acting on the periphery of the broad
faces.) Show that the same result can be obtained by considering the
pressure exerted by one of the edge faces of the plate.

Explain the structure and energies of coherent, semicoherent and in-
coherent interfaces, with particular reference to the role of orientation
relationships and misfit.

Fe-rich GP zones can form in dilute Al-Fe alloys. Given that the atomic
radii are 1.43 A for Al and 1.26 A Fe, would you expect the zones to be
spherical or disc shaped?

Mg can dissolve in Al to form a substitutional solid solution. Mg atoms
are, however, bigger than Al atoms and each Mg atom therefore
distorts the surrounding Al lattice, i.e. a coherency strain field effec-
tively exists around each Mg atom. Using Equation 3.39 estimate the
misfit strain energy. Express the answer in kJ mol~' and eV atom™'.
(The shear modulus of Al = 25 GPa, the radius of an Al atom = 1.43
A, the radius of a Mg atom = 1.60 A.) What assumptions are implicit
in this calculation?

Explain why fully coherent precipitates tend to lose coherency as they
grow.

Show that the passage of a Shockley partial dislocation over every one of
a given set of close-packed planes in fcc crystals produces a twin of the
original crystal.

If the ledges on the planar semicoherent interface in Fig. 3.69 move with
a transverse velocity u what will be the overall velocity of the interface
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perpendicular to CD. Assume an infinite array of identical ledges of
height (BC) = h and spacing (CD) = [.

3.16 Using arguments similar to those used in connection with Fig. 3.68 show
that a coherent twin boundary in an fcc metal will not migrate by the
random jumping of atoms across the interface. Suggest an interfacial
structure that would result in a highly mobile interface (see
exercise 3.15).

3.17 What are the most likely atomic processes involved in the migration of
(i) solid/vapour interfaces, (ii) solid/liquid interfaces in non-metals,
(iii) solid/liquid interfaces in metals.

3.18 By using a similar approach to the derivation of Equation 3.20 for a
high-angle grain boundary, show that the net flux of B atoms across the
a/B interface in Fig. 3.67 is given by

. Aphavy Ap? ;
To==pp exp (_ RT) Awp

3.19 Derive Equation 3.53 for an ideal or dilute solution.

3.20 If an alloy containing B precipitates in an a matrix is given a solution
treatment by heating to a temperature above the equilibrium f solvus
the precipitates will dissolve. (See for example the phase diagram in
Fig. 1.36.) Show with diagrams how the composition will change in the
vicinity of an «/B interface during dissolution if the dissolution is
(i) diffusion controlled, (ii) interface controlled, (iii).under mixed con-
trol. Indicate compositions by reference to a phase diagram where
appropriate.




4
Solidification

Solidification and melting are transformations between crystallographic and
non-crystallographic states of a metal or alloy. These transformations are of
course basic to such technological applications as ingot casting, foundry
casting, continuous casting, single-crystal growth for semiconductors,
directionally solidified composite alloys, and more recently rapidly solidified
alloys and glasses. Another important and complex solidification and
melting process, often neglected in textbooks on solidification, concerns
the process of fusion welding. An understanding of the mechanism of
solidification and how it is affected by such parameters as temperature
distribution, cooling rate and alloying, is important in the control of mech-
anical properties of cast metals and fusion welds. It is the objective of this
chapter to develop some of the basic concepts of solidification, and apply
these to some of the more important practical processes such as ingot
casting, continuous casting and fusion welding. We then consider a few
practical examples illustrating the casting or welding of engineering alloys in
the light of the theoretical introduction.

4.1 Nucleation in Pure Metals

If a liquid is cooled below its equilibrium melting temperature (7,,) there is a
driving force for solidification (GL — Gs) and it might be expected that the
liquid phase would spontaneously solidify. However, this is not always the
case. For example under suitable conditions liquid nickel can be undercooled
(or supercooled) to 250 K below T, (1453 °C) and held there indefinitely
without any transformation occurring. The reason for this behaviour is that
the transformation begins by the formation of very small solid particles or
nuclei. Normally undercoolings as large as 250 K are not observed, since in
practice the walls of the liquid container and solid impurity particles in the
liquid catalyse the nucleation of solid at undercoolings of only ~1 K. This is
known as heterogeneous nucleation. The large undercoolings mentioned
above are only obtained when no heterogeneous nucleation sites are avail-
able, i.e. when solid nuclei must form homogeneously from the liquid. Ex-
perimentally this can be achieved by dividing the liquid into tiny droplets,
many of which remain impurity-free and do not solidify until very large
undercoolings are reached’.
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Fig. 4.1 Homogeneous nucleation.

4.1.1 Homogeneous Nucleation

Consider a given volume of liquid at a temperature AT below T, with a free
energy G,, Fig. 4.1a. If some of the atoms of the liquid cluster together to
form a small sphere of solid, Fig. 4.1b, the free energy of the system will
change to G, given by:

G, = VsG; + Vi.Gy + AsLyse
where Vj is the volume of the solid sphere, V| the volume of liquid, Ag; is the
solid/liquid interfacial area, G5 and G-are the free energies per unit volume

of solid and liquid respectively, and +ys; the solid/liquid interfacial free
energy. The free energy of the system without any solid present is given by

G, = (Vs + V1)Gy

The formation of solid therefore results in a free energy change
AG = G, — G, where:

AG = -VsAG, + AgrysL (4.1)
and
AG, = G- G 4.2)
For an undercooling AT, AG, is given by Equation 1.17 as
aG, = 22 (43)

where L, is the latent heat of fusion per unit volume. Below T,,, AG, is
positive so that the free energy change associated with the formation of a
small volume of solid has a negative contribution due to the lower free energy
of a bulk solid, but there is also a positive contribution due to the creation of a
solid/liquid interface. The excess free energy associated with the solid
particle can be minimized by the correct choice of particle shape. If yg; is
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isotropic this is a sphere of radius r. Equation 4.1 then becomes
4

This is illustrated in Fig. 4.2. Since the interfacial term increases as r*
whereas the volume free energy released only increases as 7°, the creation of
small particles of solid always leads to a free energy increase. It is this increase
that is able to maintain the liquid phase in a metastable state almost
indefinitely at temperatures below T, . It can be seen from Fig. 4.2 that for a
given undercooling there is a certain radius, r*, which is associated with a
maximum excess free energy. If r < r* the system can lower its free energy by
dissolution of the solid, whereas when r > r* the free energy of the system
decreases if the solid grows. Unstable solid particles with » < r* are known as
clusters or embryos while stable particles with r > r* are referred to as
nuclei—r* is known as the critical nucleus size. Since dG = 0 when r = r* the
critical nucleus is effectively in (unstable) equilibrium with the surrounding
liquid.

Fig. 4.2 The free energy change associated with homogeneous nucleation of a sphere
of radius r.
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It can easily be shown by differentiation of Equation 4.4 that

a o DrsL
AG,
and
16my3,
* 3
46" = 36,y

Substituting Equation 4.3 for AG, gives

e (PYsTm) L
L, AT

and

AGH = (mmgLT%n) 1

312 ) (AT)?

Note how r* and AG* decrease with increasing undercooling (AT).

(4.5)

(4.6)

@.7)

(4.8)

Equation 4.5 could also have been obtained from the Gibbs—Thomson
equation. Since r* is the radius of the solid sphere that is in (unstable)
equilibrium with the surrounding liquid, the solidified sphere and liquid must
then have the same free energy. From Equation 1.58 a solid sphere of radius r
will have a free energy greater than that of bulk solid by 2yV,,,/r per mole or
2v/r per unit volume. Therefore it can be seen from Fig. 4.3 that equality of

Fig. 4.3 Volume free energy as a function of temperature for solid and liquid phases,

showing the origin of AG, and r*.
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free energy implies
AGV = ZYSL/r* (49)

which is identical to Equation 4.5.

To understand how it is possible for a stable solid nucleus to form
homogeneously from the liquid it is first necessary to examine the atomic
structure of the liquid phase. From dilatometric measurements it is known
that at the melting point the liquid phase has a volume 2-4% greater than the
solid. Therefore there is a great deal more freedom of movement of atoms in
the liquid and when averaged over a period of time the atom positions appear
completely random. However, an instantaneous picture of the liquid would
reveal the presence of many small close-packed clusters of atoms which are
temporarily in the same crystalline array as in the solid, Fig. 4.4. On average
the number of spherical clusters of radius r is given by

AG,
kT

n, = ny exp (— (4.10)
where ng is the total number of atoms in the system, AG, is the excess free
energy associated with the cluster, Equation 4.4, and k is Boltzmann’s con-
stant. For a liquid above T, this relationship applies for all values of r. Below
T, it only applies for r < r* because clusters greater than the critical size are
stable nuclei of solid and no longer part of the liquid. Since n, decreases
exponentially with AG, (which itself increases rapidly with r) the probability
of finding a given cluster decreases very rapidly as the cluster size increases.
For example by combining Equations 4.4 and 4.10 it can be shown
(exercise 4.2) that 1 mm? of copper at its melting point (~10%° atoms) should
on average contain ~10' clusters of 0.3 nm radius (i.e. ~10 atoms) but only
~10 clusters with a radius of 0.6 nm (i.e. ~60 atoms). These numbers are of
course only approximate. Such small clusters of atoms cannot be considered
to be spherical, and even more important the effective value of y used in
calculating AG, (equation 4.4) is very probably a function of the cluster size.
However the above calculations do illustrate how sensitively cluster density
depends on their size. Also, it can be seen that there is effectively a maximum

Fig. 4.4 A two-dimensional representation of an instantaneous picture of the liquid
structure. Many close-packed crystal-like clusters (shaded) are present.
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cluster size, ~100 atoms, which has a reasonable probability of occurring in the
liquid. The same sort of calculations can be made at temperatures other than
T, . Below T, there is an increasing contribution from AG, in Equation 4.4
as the solid becomes progressively more stable and this has the effect of
increasing the ‘maximum’ cluster size somewhat. Figure 4.5 shows schemati-
cally how rp,,, varies with AT. Of course larger clusters than ry,,, are possible
in large enough systems or given sufficient time, but the probability of finding
clusters only slightly larger than r,,, is extremely small.

The critical nucleus size r* is also shown in Fig. 4.5. It can be seen that at
small undercoolings, r* is so large that there will be virtually no chance of
forming a stable nucleus. But as AT increases r* and AG* decrease, and for
supercoolings of ATy or greater there is a very good chance of some clusters
reaching r* and growing into stable solid particles. In the small droplet
experiment, therefore, homogeneous nucleation should occur when the liquid
is undercooled by ~ATy.

The same conclusion can also be reached by an energy approach. The
creation of a critical nucleus can be considered to be a thermally activated
process, i.e. a solid-like cluster must be able to cross the nucleation barrier
AG* before it becomes a stable nucleus. Since the probability of achieving
this energy is proportional to exp (—AG */kT) nucleation will only become
possible when AG* is reduced below some critical value which can be
shown to be ~78 kT (see below).

4.1.2 The Homogeneous Nucleation Rate

Let us consider how fast solid nuclei will appear in the liquid at a given
undercooling. If the liquid contains C, atoms per unit volume, the number of

Fig. 4.5 The variation of r* and rp,, with undercooling AT.
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clusters that have reached the critical size (C*) can be obtained from
Equation 4.10 as

AGtom -3

C*=Coexp|— clusters m (4.11)
kT

The addition of one more atom to each of these clusters will convert them into

stable nuclei and, if this happens with a frequency f,, the homogeneous nuclea-

tion rate will be given by

AG*om . —_ —_
Nhom = foCo exp (— khT ) nuclei m™3s7! (4.12)

where fj is a complex function that depends on the vibration frequency of
the atoms, the activation energy for diffusion in the liquid, and the surface
area of the critical nuclei. Its exact nature is not important here and it is
sufficient to consider it a constant equal to ~10.* Since C, is typically
~10% atoms m~? a reasonable nucleation rate (1 cm™> s™!) is obtained
when AG* ~ 78 kT.

Nhom = foCo exp [_ﬁi] (4.13)

where A is relatively insensitive to temperature and is given by
_ 16mv3LTh,
3LkT

Nhom is plotted as a function of AT in Fig, 4.6. As a result of the (AT)? term,
inside the exponential Ny, changes by orders of magnitude from essentially
zero to very high values over a very narrow temperature range, i.e. there is
effectively a critical undercooling for nucleation ATy . This is the same as ATy
in Fig. 4.5, but Fig. 4.6 demonstrates more vividly how virtually no nuclei are
formed until ATy is reached after which there is an ‘explosion’ of nuclei.

The small droplet experiments of Turnbull et al.! have shown that ATy is
~0.2 T,, for most metals (i.e. ~200 K). The measured values of ATy have in
fact been used along with Equation 4.13 to derive the values of interfacial
free energy given in Table 3.4.

In practice homogeneous nucleation is rarely encountered in solidification.

* Since atomic jumps from the liquid on to the cluster are thermally activated, f, will
in fact diminish with decreasing temperature. In some metallic systems the liquid can
be rapidly cooled to temperatures below the so-called glass transition temperature
without the formation of crystalline solid. fy is very small at these temperatures and
the supercooled liquid is a relatively stable metallic glass or amorphous metal. The
variation of f, with temperature is very important with solid-state transformations,
and it is covered in Chapter 5. For further details on alloys rapidly quenched from
the melt see R.W. Cahn and P. Haasen (Eds), Physical Metallurgy, North-Holland,
1983, Chapter 28.
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Fig. 4.6 The homogeneous nucleation rate as a function of undercooling AT. ATy is
the critical undercooling for homogeneous nucleation.

Instead heterogeneous nucleation occurs at crevices in mould walls, or at
inpurity particles suspended in the liquid.

4.1.3 Heterogeneous Nucleation

From the expression for AG* (Equation 4.8) it can be seen that if nucleation
is to be made easier at small undercoolings the interfacial energy term must
be reduced. A simple way of effectively achieving this is if the nucleus forms
in contact with the mould wall. Consider a solid embryo forming in contact
with a perfectly flat mould wall as depicted in Fig. 4.7. Assuming vg; is
isotropic it can be shown that for a given volume of solid the total interfacial
energy of the system is minimized if the embryo has the shape of a spherical

Fig. 4.7 Heterogeneous nucleation of spherical cap on a flat mould wall.
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cap with a ‘wetting’ angle 6 given by the condition that the interfacial tensions
YML> Ysm and g, balance in the plane of the mould wall.

YML = Ysm T YsL €Os O

or

cos 0 = (YmL — Ysm)/¥sL (4.14)

Note that the vertical component of yg; remains unbalanced. Given time
this force would pull the mould surface upwards until the surface tension
forces balance in all directions. Therefore Equation 4.14 only gives the
optimum embryo shape on the condition that the mould walls remain planar.

The formation of such an embryo will be associated with an excess free
energy given by

AGpey = —VSAG, + Ag ysit AsmYsm — AsmYmL (4.15)

where Vg is the volume of the spherical cap, Ag; and Agy are the areas of the
solid/liquid and solid/mould interfaces, and vyg; , ysm @and.yp are the free
energies of the solid/liquid, solid/mould and mould/liquid interfaces. Note
that there are now three interfacial energy contributions. The first two are
positive as they arise from interfaces created during the nucleation process.
The third, however, is due to the destruction of the mould/liquid interface
under the spherical cap and results in a negative energy contribution.

It can be easily shown (see exercise 4.6) that the above equation can be
written in terms of the wetting angle (6) and the cap radius (r) as

4
AGhe, = [—;«PAGV + 4wr2vSL}S(e) (4.16)
where
S(6) = (2 + cos 0)(1 — cos 0)?/4 (4.17)

Note that except for factor S(6) this expression is the same as that obtained
for homogeneous nucleation, Equation 4.4. $(0) has a numerical value <1
dependent only on 6, i.e. the shape of the nucleus. It is therefore referred to
as a shape factor. AGj,, is shown in Fig. 4.8 along with AGy,,, for compari-
son. By differentiation of Equation 4.16 it can be shown that

. = D5t (4.18)
" T AG,
and
1673
AG* = 3225; . 5(6) (4.19)

Therefore the activation energy barrier against heterogeneous nucleation
(AG¢.,) is smaller than AGY,,, by the shape factor S(6). In addition the critical
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Fig. 4.8 The excess free energy of solid clusters for homogeneous and heterogeneous
nucleation. Note r* is independent of the nucleation site.

nucleus radius (7*) is unaffected by the mould wall and only depends on the

undercooling. This result was to be expected since equilibrium across the

curved interface is unaffected by the presence of the mould wall.
Combining Equations 4.6 and 4.19 gives

AGfe: = S(8)AGhom (4.20)

If for example 8 = 10°, §(6) ~ 1074, i.e. the energy barrier for hetero-
geneous nucleation can be very much smaller than for homogeneous nu-
cleation. Significant reductions are also obtained for higher values of 6, e.g.
when 8 = 30°, § = 0.02; even when 6 = 90°, § = 0.5. It should be noted
that the above model breaks down for 8 = 0. In this case the nucleus must
be modelled in some other way, e.g. as shown in Fig. 4.12.

The effect of undercooling on AG}., and AG},,, is shown schematically
in Fig. 4.9. If there are n; atoms in contact with the mould wall the number
of nuclei should be given by

n* = nyexp (—2Chet) (4.21)
P\™%r
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Fig. 4.9 (a) Variation of AG* with undercooling (AT) for homogeneous and heter-
ogeneous nucleation. (b) The corresponding nucleation rates assuming the same
critical value of AG*.

Therefore heterogeneous nucleation should become feasible when AGY.,
becomes sufficiently small. The critical value for AG{,, should not be very
different from the critical value for homogeneous nucleation. It will mainly
depend on the magnitude of n; in the above equation. Assuming for the sake
of simplicity that the critical value is again ~78 kT it can be seen from
Fig. 4.9 that heterogeneous nucleation will be possible at much lower under-
coolings than are necessary for homogeneous nucleation.

To be more precise, the volume rate of heterogeneous nucleation ought to
be given by an equation of the form

AGhp.
Nher = f1Cy exp (__k‘%‘t) (4.22)

where f; is a frequency factor similar to f, in Equation 4.12, C; is the number
of atoms in contact with heterogeneous nucleation sites per unit volume of
liquid.
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(b)
Fig. 4.10 Heterogeneous nucleation in mould-wall cracks. (a) The critical nuclei.
(b) The upper nucleus cannot grow out of the crack while the lower one can. (After
P.G. Shewmon, Transformations in Metals, © 1969 McGraw-Hill. Used with the
permission of McGraw-Hill Book Company.)

So far it has been assumed that the mould wall is microscopically flat. In
practice however it is likely to contain many microscopic cracks or crevices. It
is possible to write down equations for the formation of a nucleus on such a
surface but the result can be obtained more easily as follows. In both of the
nucleation types considered so far it can be shown that

1
AG* = 5V*AG, (4.23)

where V * is the volume of the critical nucleus (sphere or cap). This equation,
as well as Equation 4.7, are in fact quite generally true for any nucleation
geometry. Thus, if a nucleus forms at the root of a crack the critical volume
can be very small even if the wetting angle 6 is quite large. Figure 4.10 shows
an example where 6 = 90°. Therefore nucleation from cracks or crevices
should be able to occur at very small undercoolings even when the wetting
angle 0 is relatively large. Note however that for the crack to be effective the
crack opening must be large enough to allow the solid to grow out without the
radius of the solid/liquid interface decreasing below r*.

In commercial practice heterogeneous nucleation is often enhanced by the
addition of inoculants to the melt in order to refine the final grain size. The
inoculating agent forms a solid compound with one of the components of the
melt which then acts as a site for nucleation. According to the theory of
heterogeneous nucleation outlined above the effectiveness of an inoculant
should depend on the wetting angle and the surface roughness. Low values
of 0 are favoured by a low-energy interface between the inoculant and solid
nucleus, ygy, Which should in turn be favoured by good lattice matching
between the particle and solid. However lattice matching alone is unable to
account for the effectiveness of nucleants. Other contributing factors include
chemical effects, as well as surface segregation and roughness. It is thus
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difficult at present to predict the effectiveness of a given nucleant. In practice
the aim of inoculant additions is of course not to reduce undercooling but to
achieve a fine grain size, and then other variables such as the concentration of
nucleating particles also becomes important.

4.1.4 Nucleation of Melting

Although nucleation during solidification usually requires some undercool-
ing, melting invariably occurs at the equilibrium melting temperature even
at relatively high rates of heating. This is due to the relative free energies of
the solid/vapour, solid/liquid and liquid/vapour interfaces. It is always found
that

YsL t YLv < Ysv (4.24)

Therefore the wetting angle 6 = 0 and no superheating is required for nuclea-
tion of the liquid. In fact this interfacial energy relationship implies that a thin
liquid layer should even be able to form below T, (see exercise 4.10). This
phenomenon has not, however, been verified for metals as yet.

It is interesting to note that although T, is a well-defined parameter in
metallurgy, the actual atomic mechanism of melting is still not properly
understood (for a good discussion of this phenomenon see, e.g. Cahn, 1978%).
The solid — melt transformation in metals corresponds to an equivalent
increase in vacancy concentration of as much as 10%, which is difficult to
explain in the usual terms of defect structures. The melt, on this basis, might
simply be considered to consist of an array of voids (condensed vacancies)
surrounded by loose regions of disordered crystal (Frenkel’s theory’). The
sudden change from long-range crystallographic order to this loose, dis-
ordered structure may be associated with the creation of avalanches of dis-
locations which effectively break up the close-packed structure as melting
occurs, as proposed by Cotterill et al. (1975)* on the basis of computer
simulation experiments. There are, however, problems of quantifying this
dislocation mechanism with dilatometric observations, and a more refined
theory of melting is awaited.

4.2 Growth of a Pure Solid

It was shown in Section 3.4.6 that there are basically two different types of
solid/liquid interface: an atomically rough or diffuse interface associated with
metallic systems, and an atomically flat or sharply defined interface often
associated with non-metals. Because of the differences in atomic structure
these two types of interface migrate in quite different ways. Rough interfaces
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migrate by a continuous growth process while flat interfaces migrate by a
lateral growth process involving ledges.

4.2.1 Continuous Growth

The migration of a diffuse solid/liquid interface can be treated in a similar
way to the migration of a random high-angle grain boundary. The free energy
of an atom crossing the S/L interface will vary as shown in Fig. 3.24 except
one solid grain is replaced by the liquid phase. The activation energy barrier
AG? should be approximately the same as that for diffusion in the liquid
phase, and the driving force for solidification (AG) will then be given by

AG = L. AT; (4.25)
T
where L is the latent heat of melting and AT; is the undercooling of the
interface below the equilibrium melting temperature T,,. By analogy with
Equation 3.21 therefore, the net rate of solidification should be given by an
equation of the form

Vv = klATi (426)

where k; has the properties of boundary mobility. A full theoretical treatment
indicates that k; has such a high value that normal rates of solidification can
be achieved with interfacial undercoolings (AT;) of only a fraction of a degree
Kelvin. For most purposes therefore AT; can be ignored and the solid/liquid
interface is assumed to be at the equilibrium melting temperature. In other
words the solidification of metals is usually a diffusion controlled process. For
pure metals growth occurs at a rate controlled by heat conduction (diffusion)
whereas alloy solidification is controlled by solute diffusion.

The above treatment is applicable to diffuse interfaces where it can be
assumed that atoms can be received at any site on the solid surface, i.e. the
accommodation factor A in Equation 3.22 is approximately unity. For this
reason it is known as continuous growth. Such a mode of growth is reasonable
because the interface is disordered and atoms arriving at random positions
on the solid will not significantly disrupt the equilibrium configuration of the
interface. The situation is, however, more complex when the equilibrium
interface structure is atomically smooth as in the case of many non-metals.

4.2.2 Lateral Growth

It will be recalled that materials with a high entropy of melting prefer to form
atomically smooth, close-packed interfaces. For this type of interface the
minimum free energy also corresponds to the minimum internal energy, i.e. a
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Fig. 4.11 Atomically smooth solid/liquid interfaces with atoms represented by
cubes. (a) Addition of a single atom onto a flat interface increases the number of
‘broken bonds’ by four. (b) Addition to a ledge (L) only increases the number of
broken bonds by two, whereas at a jog in a ledge (J) there is no increase.

minimum number of broken ‘solid’ bonds. If a single atom leaves the liquid
and attaches itself to the flat solid surface, Fig. 4.11a, it can be seen that the
number of broken bonds associated with the interface, i.e. the interfacial
energy, will be increased. There is therefore little probability of the atom
remaining attached to the solid and it is likely to jump back into the liquid. In
other words, atomically smooth interfaces have inherently low accommoda-
tion factors. However, if the interface contains ledges, Fig. 4.11b, ‘liquid’
atoms will be able to join the ledges with a much lower resulting increase in
interfacial energy. If the ledge contains a jog, J, atoms from the liquid can
join the solid without any increase in the number of broken bonds and the
interfacial energy remains unchanged. Consequently the probability of an
atom remaining attached to the solid at these positions is much greater than
for an atom joining a facet. Smooth solid/liquid interfaces can therefore be
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Fig. 4.12 Ledge creation by surface nucleation.

expected to advance by the lateral growth of ledges similar to that described
for coherent solid/solid interfaces in Section 3.5.1. Since the ledges and jogs
are a non-equilibrium feature of the interface, growth will be very dependent
on how the ledges and jogs can be supplied. It is thought that there are
basically three different ways in which this can be achieved. These are (i) by
repeated surface nucleation, (ii) by spiral growth, and (iii) from twin
boundaries.

Surface Nucleation

It was pointed out above that a single atom ‘solidifying’ on to a flat solid
surface will be unstable and tend to rejoin the melt. However, if a sufficently
large number of atoms can come together to form a disc-shaped layer as
shown in Fig. 4.12 it is possible for the arrangement to become self-stabilized
and continue to grow. The problem of disc creation is the two-dimensional
analogue of cluster formation during homogeneous nucleation. In this case
the edges of the disc contribute a positive energy which must be counterbal-
anced by the volume free energy released in the process. There will therefore
be a critical radius (r*) associated with the two-dimensional nucleus which
will decrease with increasing interface undercooling. Once nucleated the disc
will spread rapidly over the surface and the rate of growth normal to the
interface will be governed by the surface nucleation rate. A full theoretical
treatment shows that

v « exp (—k,/AT)) “4.27)

where k, is roughly constant. This is shown schematically in Fig. 4.14. Note
that this mechanism is very ineffective at small undercoolings where r* is very
large.
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Fig. 4.13 Spiral growth. (a) A screw dislocation terminating in the solid/liquid
interface showing the associated ledge. (After W.T. Read Jr., Dislocations in Crystals,
© 1953 McGraw-Hill. Used with the permission of McGraw-Hill Book Company.)
Addition of atoms at the ledge causes it to rotate with an angular velocity decreasing
away from the dislocation core so that a growth spiral develops as shown in (b). (After
J.W. Christian, The Theory of Phase Transformations in Metals and Alloys, Pergamon
Press, Oxford, 1965.)

Spiral Growth
If the solid contains dislocations that intersect the S/L interface the problem
of creating new interfacial steps can be circumvented.

Consider for simplicity the introduction of a screw dislocation into a block
of perfect crystal. The effect will be to create a step or ledge in the surface of
the crystal as shown in Fig. 4.13a. The addition of atoms to the ledge will
cause it to rotate about the point where the dislocation emerges, i.e. the ledge
will never run out of the interface. If, on average, atoms add at an equal rate
to all points along the step the angular velocity of the step will be initially
greatest nearest to the dislocation core. Consequently as growth proceeds the
ledge will develop into a growth spiral as shown in Fig. 4.13b. The spiral
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Fig. 4.14 The influence of interface undercooling (AT;) on growth rate for atomically
rough and smooth interfaces.

tightens until it reaches a minimum radius of curvature r* at which it is in
equilibrium with the surrounding liquid and can decrease no more. Further
out the radius of curvature is less and the spiral can advance at a greater rate.
Eventually a steady state is reached when the spiral appears to be rotating
with a constant angular velocity. A complete theoretical treatment of this
situation shows that for spiral growth the normal growth rate v and the
undercooling of the interface AT; are related by an expression of the type

v = ks(AT))? (4.28)

where k5 is a materials constant. This variation is shown in Fig. 4.14 along
with the. variations for continuous growth and two-dimensional nucleation.
Note that for a given solid growth rate the necessary undercooling at the
interface is least for the continuous growth of rough interfaces. For a given
undercooling, faceted interfaces are much less mobile and it is to be expected
that the spiral growth mechanism will normally be more important than
repeated nucleation.

Growth from Twin Intersections

Another permanent source of steps can arise where two crystals in different
orientations are in contact. In solidification it is quite common for materials
showing faceting to solidify as two crystals in twin orientations. Interfacial
facets will therefore intersect at the twin boundary which can act as a perma-
nent source of new steps thereby providing an easy growth mechanism similar
to the growth spiral mechanism.
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Fig. 4.15 (a) Temperature distribution for solidification when heat is extracted
through the solid. Isotherms (b) for a planar S/L interface, and (c) for a protrusion.

4.2.3 Heat Flow and Interface Stability

In pure metals solidification is controlled by the rate at which the latent heat
of solidification can be conducted away from the solid/liquid interface. Con-
duction can take place either through the solid or the liquid depending on the
temperature gradients at the interface. Consider for example solid growing at
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Fig. 4.16 As Fig. 4.15, but for heat conduction into the liquid.

a velocity v with a planar interface into a superheated liquid, Fig. 4.15a. The
heat flow away from the interface through the solid must balance that from
the liquid plus the latent heat generated at the interface, i.e.

KsTs = K. TL + vL, (4.29)

where K is the thermal conductivity, 7" is the temperature gradient (d7/dx),
the subscripts S and L stand for solid and liquid, v is the rate of growth of the
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solid, and L, is the latent heat of fusion per unit volume. This equation is
quite general for a planar interface and even holds when heat is conducted
into the liquid (T'y < 0), Fig. 4.16a.

When a solid grows into a superheated liquid, a planar solid/liquid inter-
face is stable. This can be shown as follows. Suppose that as a result of a local
increase in v a small protrusion forms at the interface, Fig. 4.15c. If the radius
of curvature of the protrusion is so large that the Gibbs—Thomson effect can
be ignored the solid/liquid interface remains isothermal at essentially T,,.
Therefore the temperature gradient in the liquid ahead of the nodule will

Fig. 4.17 The development of thermal dendrites: (a) a spherical nucleus; (b) the
interface becomes unstable; (c) primary arms develop in crystallographic directions
((100) in cubic crystals); (d) secondary and tertiary arms develop (after R.E.
Reed-Hill, Physical Metallurgy Principles, 2nd. edn., Van Nostrand, New York,
1973.)
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increase while that in the solid decreases. Consequently more heat will be
conducted into the protruding solid and less away so that the growth rate will
decrease below that of the planar regions and the protrusion will disappear.

The situation is, however, different for a solid growing into supercooled
liquid, Fig. 4.16. If a protrusion forms on the solid in this case the negative
temperature gradient in the liquid becomes even more negative. Therefore
heat is removed more effectively from the tip of the protrusion than from the
surrounding regions allowing it to grow preferentially. A solid/liquid inter-
face advancing into supercooled liquid is thus inherently unstable.

Heat conduction through the solid as depicted in Fig. 4.15, arises when
solidification takes place from mould walls which are cooler than the melt.
Heat flow into the liquid, however, can only arise if the liquid is supercooled
below T,,. Such a situation can arise at the beginning of solidification if
nucleation occurs at impurity particles in the bulk of the liquid. Since a certain
supercooling is required before nucleation can occur, the first solid particles
will grow into supercooled liquid and the latent heat of solidification will be
conducted away into the liquid. An originally spherical solid particle will
therefore develop arms in many directions as shown in Fig. 4.17. As the
primary arms elongate their surfaces will also become unstable and break up
into secondary and even tertiary arms. This shape of solid is knowns as a
dendrite. Dendrite comes from the Greek for tree. Dendrites in pure metals
are usually called thermal dendrites to distinguish them from dendrites in

I b )

\ Heat flow

Fig. 4.18 Temperature distribution at the tip of a growing thermal dendrite.
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alloys (see below). It is found experimentally that the dendrite arms are
always in certain crystallographic directions: e.g. (100) in cubic metals, and
(1100) in hcp metals®.

Let us now take a closer look at the tip of a growing dendrite. The situation
is different from that of a planar interface because heat can be conducted
away from the tip in three dimensions. If we assume the solid is isothermal
(Ts = 0) the growth rate of the tip v will be given by a similar equation to
Equation 4.29 provided T is measured in the direction of v. A solution to the
heat-flow equations for a hemispherical tip shows that the (negative) tempera-
ture gradient T is approximately given by AT_/r where AT, is the difference
between the interface temperature (7;) and the temperature of the super-
cooled liquid far from the dendrite (T.) as shown in Fig. 4.18. Equation 4.29
therefore gives

y=KlL K AT (4.30)

Thus for a given AT, rapid growth will be favoured by small values of r due to
the increasing effectiveness of heat conduction as r diminishes. However AT is
not independent of r. As a result of the Gibbs—Thomson effect equilibrium
across a curved interface occurs at an undercooling AT, below Ty, given by

_ 2Ty
L.r

AT,

The minimum possible radius of curvature of the tip is when AT, equals the
total undercooling ATy = Ty, — T.. This is just the critical nucleus radius r*
given by (2yTy/L,ATy). Therefore in general AT, is given by ATyr*/r.
Finally since ATy = AT, + AT, Equation 4.30 becomes

_K 1(1 _ ’f) (4.31)

L, r r

It can thus be seen that the tip velocity tends to zero as r — r* due to the
Gibbs—-Thomson effect and as r — % due to slower heat conduction. The
maximum velocity is obtained when r = 2r*.

4.3 Alloy Solidification

The solidification of pure metals is rarely encountered in practice. Even
commercially pure metals contain sufficient impurities to change the charac-
teristics of solidification from pure-metal to alloy behaviour. We now develop
the theory a step further and examine the solidification of single-phase binary
alloys. Following this we then consider the solidification of eutectic and
peritectic alloys.
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4.3.1 Solidification of Single-Phase Alloys

The alloys of interest in this section are those such as X, in Fig. 4.19. This
phase diagram has been idealized by assuming that the solidus and liquidus
are straight lines. It is useful to define a partition coefficient k as

_ X
-3

where X5 and X1 are the mole fractions of solute in the solid and liquid in
equilibrium at a given temperature. For the simple case shown in Fig. 4.19, k
is independent of temperature.

The way in which such alloys solidify in practice depends in rather a
complex way on temperature gradients, cooling rates and growth rates.
Therefore let us simplify matters by considering the movement of a planar
solid/liquid interface along a bar of alloy as shown in Fig. 4.20a. Such
unidirectional solidification can be achieved in practice by passing the alloy in
a crucible through a steep temperature gradient in a specially constructed
furnace in which heat is confined to flow along the axis of the bar.

Let us examine three limiting cases:

k (4.32)

1. Infinitely slow (equilibrium) solidification

2. Solidification with no diffusion in the solid but perfect mixing in the
liquid

3. Solidification with no diffusion in the solid and only diffusional mixing in
the liquid

Equilibrium Solidification

Alloy X, in Fig. 4.19 begins to solidify at T; with the formation of a small
amount of solid with composition kX,. As the temperature is lowered more
solid forms and, provided cooling is slow enough to allow extensive solid-
state diffusion, the solid and liquid will always be homogeneous with com-
positions following the solidus and liquidus lines, Fig. 4.20b. The relative
amounts of solid and liquid at any temperature are simply given by the lever
rule. Note that, since solidification is one-dimensional, conservation of
solute requires the two shaded areas in Fig. 4.20b to be equal (ignoring the
differences in molar volume between the two phases). At T3 the last drop of
liquid will have a composition Xy/k and the bar of solid will have a com-
position X, along its entire length.

No Diffusion in Solid, Perfect Mixing in Liquid

Very often the rate of cooling will be too rapid to allow substantial diffusion in
the solid phase. Therefore let us assume no diffusion takes place in the solid
but that the liquid composition is kept homogeneous during solidification by
efficient stirring. Again, assuming unidirectional solidification, the first solid
will appear when the cooled end of the bar reaches T in Fig. 4.21a, at which
stage solid containing kX, mol of solute forms. Since kX, < X,, this first



Fig. 4.19 A hypothetical phase diagram. k = Xs/X] is constant.
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Fig. 420 Unidirectional solidification of alloy X; in Fig. 4.19. (a) A planar S/L
interface and axial heat flow. (b) Corresponding composition profile at T, assuming
complete equilibrium. Conservation of solute requires the two shaded areas to be

equal.



210 Solidification

solid will be purer than the liquid from which it forms so that solute is rejected
into the liquid and raises its concentration above Xj, Fig. 4.21b. The tem-
perature of the interface must therefore decrease below T, before further
solidification can occur, and the next layer of solid will be slightly richer in
solute than the first. As this sequence of events continues the liquid becomes
progressively richer in solute and solidification takes place at progressively
lower temperatures, Fig. 4.21c. At any stage during solidification local
equilibrium can be assumed to exist at the solid/liquid interface, i.e. for a
given interface temperature the compositions of the solid and liquid in contact
with one another will be given by the equilibrium phase diagram. However,

Ml 2>

(a) Xo max X

Xsolute -

Fig. 4.21 Planar front solidification of alloy X, in Fig. 4.19 assuming no diffusion in
the solid, but complete mixing in the liquid. (a) As Fig. 4.19, but including the mean
composition of the solid. (b) Composition profile just under T;. (c) Composition
profile at T, (compare with the profile and fraction solidified in Fig. 4.20b.
(d) Composition profile at the eutectic temperature and below.
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Fig. 4.21 (continued)

since there is no diffusion in the solid, the separate layers of solid retain their
original compositions. Thus the mean composition of the solid (Xs) is always
lower than the composition at the solid/liquid interface, as shown by the
dashed line in Fig. 4.21a. The relative amounts of solid and liquid for a given
interface temperature are thus given by the lever rule using X and X . It
follows that the liquid can become much richer in solute than X,/k and it may
even reach a eutectic composition, Xg, for example. Solidification will thus
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tend to terminate close to Tg with the formation of a eutectic structure of
a + B. The completely solidified bar will then have a solute distribution as
shown in Fig. 4.21d with Xg = X,.

The variation of X along the solidified bar can be obtained by equating the
solute rejected into the liquid when a small amount of solid forms with the
resulting solute increase in the liquid. Ignoring the difference in molar volume
between the solid and liquid this gives

(XL — Xg)dfs = (1 - fo)dXL

where fs is the volume fraction solidified. Integrating this equation using the
boundary condition Xg = kX, when fg = 0 gives

Xs = kXo(1 - f)* 7P
and
Xy = Xof Y (4.33)

These equations are known as the non-equilibrium lever rule or the Scheil
equations.

Note that for k < 1 these equations predict that when there is no diffusion
in the solid there will always be some eutectic in the last drop of liquid to
solidify, no matter how little solute is present. Also the equation is quite
generally applicable even for non-planar solid/liquid interfaces provided
the liquid composition is uniform and that the Gibbs—Thomson effect is
negligible.

No Diffusion in Solid, Diffusional Mixing in Liquid
If there is no stirring or convection in the liquid phase the solute rejected from
the solid will only be transported away by diffusion. Hence there will be a
rapid build up of solute ahead of the solid and a correspondingly rapid
increase in the composition of the solid formed, Fig. 4.22a. This is known as
the initial transient. If solidification is made to occur at a constant rate, v, it
can be shown that a steady state is finally obtained when the interface
temperature reaches T3 in Fig. 4.19°. The liquid adjacent to the solid then has
a composition Xy/k and the solid forms with the bulk composition X .

During steady-state growth the concentration profile in the liquid must be
such that the rate at which solute diffuses down the concentration gradient
away from the interface is balanced by the rate at which solute is rejected
from the solidifying liquid, i.e.

—DCy = v(CL — Cs) (4.34)

where D is diffusivity in the liquid, Cy stands for dC; /dx at the interface, C,
and Cs are the solute concentrations of the liquid and solid in equilibrium at

the interface (units: m~>). Note the similarity of this equation to that de-
scribing the rate at which solidification occurs in pure metals, Equation 4.29.
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Fig. 4.22 Planar front solidification of alloy X, in Fig. 4.19 assuming no diffusion in
the solid and no stirring in the liquid. (a) Composition profile when S/L interface
temperature is between 7, and T3; in Fig. 4.19. (b) Steady-state solidification at T5.
The composition solidifying equals the composition of the liquid far ahead of the solid
(Xo). (c) Composition profile at T and below, showing the final transient.
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If the diffusion equation is solved for steady-state solidification it can be
shown that the concentration profile in the liquid is given by

X, = Xo{l . - kexp[ (Dx/v)} } (4.35)

i.e. X, decreases exponentially from X,/k at x = 0, the interface, to X, at
large distances from the interface. The concentration profile has a characteris-
tic width of D/v.

When the solid/liquid interface is within ~D/v of the end of the bar the
bow-wave of solute is compressed into a very small volume and the interface
composition rises rapidly leading to a final transient and eutectic formation,
Fig. 4.22c.

In practice alloy solidification will usually possess features from all three of
the cases discussed above. There will usually be some stirring either due to
liquid turbulence caused by pouring, or because of convection currents, or
gravity effects. However, stirring will not usually be sufficiently effective to
prevent the formation of a boundary layer and some liquid diffusion will
therefore be involved. Partial stirring does, however, have the effect of
reducing the boundary layer thickness. The concentration profiles found in
practice may thus exhibit features between those shown in Fig. 4.21d and
4.22c. In many cases diffusion in the solid must also be taken into account,
e.g. when interstitial atoms or bcc metals are involved. In this case solute can
diffuse away from the solidifying interface back into the solid as well as into
the liquid, with the result that after solidification the alloy is more
homogeneous.

Even when solidification is not unidirectional the above ideas can still often
be applied at a microscopic level as will be discussed below. Unidirectional
solidification has commercial importance in, for example, the production of
creep resistant aligned microstructures for gas turbine blades. It is also used in
the production of extremely pure metals (zone refining)’.

Cellular and Dendritic Solidification

So far we have considered solidification in which the growth front is planar.
However, the diffusion of solute into the liquid during solidification of an
alloy is analogous to the conduction of latent heat into the liquid during the
solidification of a pure metal. At first sight therefore it would seem that the
planar front should break up into dendrites. The problem is complicated,
however, by the possibility of temperature gradients in the liquid.

Consider steady-state solidification at a planar interface as shown in
Fig. 4.23. As a result of the varying solute concentration ahead of the solidi-
fication front there is a corresponding variation of the equilibrium solidifica-
tion temperature, i.e. the liquidus temperature, as given by the line T, in
Fig. 4.23b. However, apart from the temperature of the interface, which is
fixed by local equilibrium requirements, the actual temperature of the liquid
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Fig. 4.23 The origin of constitutional supercooling ahead of a planar solidification
front. (a) Composition profile across the solid/liquid interface during steady-state
solidification. The dashed line shows d X /dx at the S/L interface. (b) The tempera-
ture of the liquid ahead of the solidification front follows line 7 . The equilibrium
liquidus temperature for the liquid adjacent to the interface varies as T.. Constitu-
tional supercooling arises when Ty lies under the critical gradient.

can follow any line such as 7} . At the interface Ty = T, = T; (defined in
Fig. 4.19). If the temperature gradient is less than the critical value shown in
Fig. 4.23b the liquid in front of the solidification front exists below its equilib-
rium freezing temperature, i.e. it is supercooled. Since the supercooling arises
from compositional, or constitutional effects it is known as constitutional
supercooling.
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A necessary condition for the formation of stable protrusions on a planar
interface is that there must exist a region of constitutional supercooling in the
liquid. Assuming the T} variation in Fig. 4.23b the temperature at the tip of
any protrusion that forms will be higher than that of the surrounding inter-
face. (In contrast to pure metals the interface in alloys need not be isother-
mal.) However, provided the tip remains below the local liquidus tempera-
ture (7.) solidification is still possible and the protrusion can develop. On the
other hand if the temperature gradient ahead of the interface is steeper than
the critical gradient in Fig. 4.23b the tip will be raised above the liquidus
temperature and the protrusion will melt back.

Under steady-state growth the critical gradient can be seen from Fig. 4.23
to be given by (T; — T3)/(D/v) where T, and T; are the liquidus and solidus
temperatures for the bulk composition X, Fig. 4.19. The condition for a
stable planar interface is therefore

(I - Ty)
(D/v)

where T} stands for (d7)/dx) at the interface. Or, regrouping the ex-
perimentally adjustable parameters T} and v, the condition for no constitu-
tional supercooling is

(Tr/v) >(Ty - T3)/D (4.36)

(T, — T3) is known as the equilibrium freezing range of the alloy. Clearly
planar front solidification is most difficult for alloys with a large soldification
range and high rates of solidification. Except under well-controlled ex-
perimental conditions alloys rarely solidify with planar solid/liquid interfaces.
Normally the temperature gradients and growth rates are not individually
controllable but are determined by the rate at which heat is conducted away
from the solidifying alloy.

Ty >

(a) (b) (c)

/
X

Fig. 424 The breakdown of an initially planar solidification front into cells.
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Fig. 4.25 Temperature and solute distributions associated with cellular solidification.
Note that solute enrichment in the liquid between the cells, and coring in the cells with
eutectic in the cell walls.

If the temperature gradient ahead of an initially planar interface is gradu-
ally reduced below the critical value the first stage in the breakdown of the
interface is the formation of a cellular structure, Fig. 4.24. The formation of
the first protrusion causes solute to be rejected laterally and pile up at the root
of the protrusion (b). This lowers the equilibrium soldification temperature
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Fig. 4.26 Cellular microstructures. (a) A decanted interface of a cellularly solidified
Pb-Sn alloy (X 120) (after J.W. Rutter in Liquid Metals and Solidification, American
Society for Metals, 1958, p. 243). (b) Longitudinal view of cells in carbon tetrabro-
mide (X 100) (after K.A. Jackson and J.D. Hunt, Acta Metallurgica 13 (1965) 1212).
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Fig. 4.27 Cellular dendrites in carbon tetrabromide. (After L.R. Morris and W.C.
Winegard, Journal of Crystal Growth 6 (1969) 61.)

causing recesses to form (c), which in turn trigger the formation of other
protrusions (d). Eventually the protrusions develop into long arms or cells
growing parallel to the direction of heat flow (e). The solute rejected from the
solidifying liquid concentrates into the cell walls which solidify at the lowest
temperatures. The tips of the cells, however, grow into the hottest liquid and
therefore contain the least solute. Even if X, < X, (Fig. 4.19) the liquid
between the cells may reach the eutectic composition in which case the cell
walls will contain a second phase. The interaction between temperature
gradient, cell shape and solute segregation is shown in Fig. 4.25. Figure 4.26
shows the appearance of the cellular structure. Note that each cell has
virtually the same orientation as its neighbours and together they form a
single grain.

Cellular microstructures are only stable for a certain range of temperature
gradients. At sufficiently low temperature gradients the cells, or primary arms
of solid, are observed to develop secondary arms, and at still lower tempera-
ture gradients tertiary arms develop, i.e. dendrites form. Concomitant with
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Fig. 4.28 Columnar dendrites in a transparent organic alloy. (After K.A. Jackson
in Solidification, American Society for Metals, 1971, p. 121.)

this change in morphology there is a change in the direction of the primary
arms away from the direction of heat flow into the crystallographically pre-
ferred directions such as (100) for cubic metals. The change in morphology
from cells to dendrites can be seen in Figs. 4.26b, 4.27 and 4.28. These
pictures have been taken during in situ solidification of special transparent



Alloy solidification 221

organic compounds using a transmission light microscope®. The compounds
used have low entropies of melting and solidify in the same way as metais.
Alloys have been simulated by suitable combinations of such compounds.

In general the tendency to form dendrites increases as the solidification
range increases. Therefore the effectiveness of different solutes can vary
widely. For solutes with a very small partition coefficient (k) cellular or
dendritic growth can be caused by the addition of a very small fraction of a
per cent solute.

The reason for the change from cells to dendrites is not fully understood.
However it is probably associated with the creation of constitutional super-
cooling in the liquid between the cells causing interface instabilities in the
transverse direction. Note that for unidirectional solidification there is
approximately no temperature gradient perpendicular to the growth direc-
tion. The cell or dendrite arm spacing developing is probably that which
reduces the constitutional supercooling in the intervening liquid to a very low
level. This would be consistent with the observation that cell and dendrite
arm spacings both decrease with increasing cooling rate: higher cooling rates
allow less time for lateral diffusion of the rejected solute and therefore
require smaller cell or dendrite arm spacings to avoid constitutional super-
cooling.

Fig. 4.29 Al-Cu Al, lamellar eutectic normal to the growth direction (X 680).
(Courtesy of J. Strid, University of Luled, Sweden.)
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Fig. 4.30 Rod-like eutectic. AlgFe rods in Al matrix. Transverse section. Trans-
mission electron micrograph (x 70000). (Courtesy of J. Strid, University of Lule3,
Sweden.)

Finally it should be noted that although the discussion of alloy solidification
has been limited to the case k < 1, similar arguments can be advanced for the
case of k > 1. (See exercise 4.13.)

4.3.2  Eutectic Solidification®

In the solidification of a binary eutectic composition two solid phases form
cooperatively from the liquid, i.e. L - o + B. Various different types of
eutectic solidification are possible and these are usually classified as normal
and anomalous. In normal structures the two phases appear either as alter-
nate lamellae, Fig. 4.29, or as rods of the minor phase embedded in the other
phase, Fig. 4.30. During solidification both phases grow simultaneously be-
hind an essentially planar solid/liquid interface. Normal structures occur
when both phases have low entropies of fusion. Anomalous structures, on the
other hand, occur in systems when one of the solid phases is capable of
faceting, i.e. has a high entropy of melting. There are many variants of these
structures the most important commercially being the flake structure of
Al—Si alloys. This section will only be concerned with normal structures, and
deal mainly with lamellar morphologies.
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Fig. 4.31 Interdiffusion in the liquid ahead of a eutectic front.

Fig. 4.32 Molar free energy diagram at a temperature AT, below the eutectic
temperature, for the case A = \*.

Growth of Lamellar Eutectics

Figure 4.31 shows how two phases can grow cooperatively behind an essen-
tially planar solidification front. As the A-rich o phase solidifies excess B
diffuses a short distance laterally where it is incorporated in the B-rich
phase. Similarly the A atoms rejected ahead of the B diffuse to the tips of the
adjacent a lamellae. The rate at which the eutectic grows will depend on how
fast this diffusion can occur and this in turn will depend on the interlamellar
spacing A. Thus small interlamellar spacings should lead to rapid growth.
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However there is a lower limit to A determined by the need to supply the a/B
interfacial energy, voa-

For an interlamellar spacing, \, there is a total of (2/\) m? of o/ interface
per m® of eutectic. Thus the free energy change associated with the solidifica-
tion of 1 mol of liquid is given by

AG() = ~AG(s) + ZloErm @)

where V, is the molar volume of the eutectic and AG() is the free energy
decrease for very large values of \. Since solidification will not take place if
AG(\) is positive, AG(«) must be large enough to compensate for the interfa-
cial energy term, i.e. the eutectic/liquid interface must be undercooled below
the equilibrium eutectic temperature Tg, Fig. 4.32. If the total undercooling
is ATy it can be shown that AG() is then given approximately by

AH - AT,
Tg

where AH is an enthalpy term. The minimum possible spacing (A*) is
obtained by using the relation AG(\*) = 0, whence

_ WapVmTE (4.39)
AH - AT,

When the eutectic has this spacing the free energy of the liquid and eutectic is
the same, i.e. all three phases are in equilibrium. This is because the o/B
interface raises the free energies of the a and B from G*(») and GP(«) to
G*(\*) and GP(\*) as shown in Fig. 4.32. The cause of the increase is the
curvature of the o/L and B/L interfaces arising from the need to balance the
interfacial tensions at the a/B/L triple point, Fig. 4.31. In general, therefore,
the increase will be different for the two phases, but for simple cases it can be
shown to be 2vy,gVn/\ for both, Fig. 4.32.

Let us now turn to the mechanism of growth. If solidification is to occur at a
finite rate there must be a flux of atoms between the tips of the a and B
lamellae and this requires a finite composition difference. For example the
concentration of B must be higher ahead of the a phase than ahead of the B
phase so that B rejected from the o can diffuse to the tips of the growing B. If
A = \* growth will be infinitely slow because the liquid in contact with both
phases has the same composition, Xg in Fig. 4.32. However if the chosen
spacing is greater than A* less free energy is locked in the interfaces and G*
and GP are correspondingly reduced, Fig. 4.33a. Under these circumstances
the liquid in local equilibrium with the o has a composition X5/ which is
richer in B than the composition in equilibrium with the § phase X§/®.

If the /L and B/L interfaces are highly mobile it is reasonable to assume
that growth is diffusion controlled in which case the eutectic growth rate (v)
should be proportional to the flux of solute through the liquid. This in turn
will vary as D dC/dl where D is the liquid diffusivity and dC/d! is the

AG(x) = (4.38)

K*
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G @ T-AT,

(b)
Fig. 4.33 (a) Molar free energy diagram at (Tg — AT,) for the case \* < \ < o,
showing the composition difference available to drive diffusion through the liquid
(AX). (b) Model used to calculate the growth rate.

concentration gradient driving the diffusion. (/ is measured along the direc-
tion of diffusion as shown in Fig. 4.33b. In practice dC/d/ will not have a
single value but will vary from place to place within the diffusion zone.) dC/d!
should be roughly proportional to the maximum composition difference
(X5/* — X§/P) and inversely proportional to the effective diffusion distance,
which, in turn, will be linearly related to the interlamellar spacing (\). Thus
we can write
AX

v = le T (440)
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Fig. 4.34 Eutectic phase diagram showing the relationship between AX and AX,
(exaggerated for clarity).

where k, is a proportionality constant and AX = X5/* — X5/ as given in
Fig. 4.33.

AX will itself depend on X for when A = \*, AX = 0, and as A increases AX
will tend to a maximum value, AXj, say. Therefore it is reasonable to write

X*
AX = AXO(I - T) (4.41)
The magnitude of AX, can be obtained by extrapolating the equilibrium
liquidus lines of the phase diagram (A = «) as shown in Fig. 4.34. For small
undercoolings

AX, < AT, (4.42)

The dashed lines in Fig. 4.34 are the liquidus lines for A* < A < ». AX is
simply given by the extrapolation of these lines as shown. Combining the
above equations gives

1 \*
= “(1-= 4.43
v = koDAT, (1 }\) (4.43)



Alloy solidification 227

Fig. 4.35 (a) Cellular eutectic solidification front in a transparent organic alloy.
(After J.D. Hunt and K.A. Jackson, Transactions of the Metallurgical Society of
AIME 236 (1966) 843. (b) Transverse section through the cellular structure of an
Al-AlgFe rod eutectic (X 3500). (Courtesy of J. Strid, University of Lule&, Sweden.)
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where k; is another proportionality constant. This equation shows that by
varying the interface undercooling (AT)) it is possible to vary the growth rate
(v) and spacing (\) independently. It is therefore impossible to predict the
spacing that will be observed for a given growth rate. However, controlled
growth experiments show that a specific value of \ is always associated with a
given growth rate. Examination of Equation 4.43 shows that when A = 2\*,
the growth rate is a maximum for a given undercooling, or, alternatively, the
required undercooling is a minimum for a given growth rate. If it is assumed
that growth occurs under these optimum conditions the observed spacing
Ao = 2\* and the observed growth rate is given by

Vo = kzDATo/Z)\*

However, from Equation 4.39, it is seen that AT, « 1/\* so that the following
relationships are predicted:

VoAS = ks (constant) (4.44)
and
Vo
-(~A—T—0)—2 = k4 (constant) (4.45)

There is in fact no physical basis for choosing A = 2\* and similar expressions
can also be obtained using other assumptions concerning the spacing.
Equations 4.44 and 4.45 are often found to be obeyed experimentally. For
example measurements on the lamellar eutectic in the Pb—Sn system'® show
that k3 ~ 33 wm® s™! and k, ~ 1 pm s™! K2, Therefore for a solidification
rate of 1 pms™!, Ao ~ 5 wm and AT, ~ 1 K.

The total undercooling at the eutectic front (AT,) has two contributions,
ie.
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Fig. 436 Composition profiles across the cells in Fig. 4.35b.
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AT, is the undercooling required to overcome the interfacial curvature effects
and ATp is the undercooling required to give a sufficient composition differ-
ence to drive the diffusion. (Strictly speaking a AT; term should also be added
since a driving force is required to move the atoms across the interfaces, but
this is negligible for high mobility interfaces.) A better theoretical treatment
of eutectic solidification should take into account the fact that the composi-
tion of the liquid in contact with the interface and therefore ATy vary
continuously from the middle of the a to the middle of the B lamellae. Since
the interface is essentially isothermal (AT, constant) the variation of ATp
must be compensated by a variation in AT, i.e. the interface curvature will
change across the interface'’.

A planar eutectic front is not always stable. If for example the binary
eutectic alloy contains impurities, or if other alloying elements are present,
the interface tends to break up to form a cellular morphology. The solidifica-
tion direction thus changes as the cell walls are approached and the lamellar
or rod structure fans out and may even change to an irregular structure,
Fig. 4.35. The impurity elements diffuse laterally and concentrate at the cell
walls. In the case of the AlgFe—Al rod-like eutectic shown in Fig. 4.35 the
impurity causing the cellular structure is mainly copper. Figure 4.36 shows
how the concentration of copper and iron in the aluminium matrix increases
in the cell walls and boundary nodes.

Cell formation in eutectic structures is analogous to that in single-phase
solidification, and under controlled conditions it is possible to stabilize a
planar interface by solidifying in a sufficiently high temperature gradient.

4.3.3 Off-Eutectic Alloys

When the bulk alloy composition (Xj) deviates from the equilibrium eutectic
composition (Xg) as shown in Fig. 4.37 solidification usually begins close to
T, with the formation of primary (a) dendrites. As the dendrites thicken
solute is rejected into the remaining liquid until its composition reaches Xg and
the eutectic solidifies. Under steady-state unidirectional solidification condi-
tions in the presence of a shallow temperature gradient the solidification front
could appear as in Fig. 4.37b. The tips of the dendrites are close to T; and the
eutectic front, most probably cellular, close to Tg . Similar behaviour is found
during the solidification of castings and ingots. In the absence of solid-state
diffusion the centres of the dendrites, which solidified close to T, will contain
less solute than the outer layers that solidify at progressively lower tempera-
tures. This leads to what is known as coring in the final microstructure,
Fig. 4.38. The eutectic does not always solidify as a two-phase mixture. When
the volume fraction of one of the phases in the microstructure is very small it
can form a so-called divorced eutectic. The minor phase then often appears as
isolated islands and the other phase forms by the thickening of the dendrites.
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eutectic
Fig. 4.38 Transverse section through a dendrite in Fig. 4.37.

Under controlled solidification conditions, e.g. in unidirectional solidifica-
tion experiments, it is possible to solidify an off-eutectic alloy without permit-
ting the formation of the primary dendritic phase. If the temperature gradient
in the liquid is raised above a critical level the dendrite tips are overgrown by
the eutectic and the alloy solidifies as 100% ‘eutectic’ with an overall composi-
tion X, instead of Xg. A similar change can be brought about if the growth
rate is raised above a critical level. In both cases the reason for the disappear-
ance of the primary dendrites is that for a given growth velocity the eutectic is
able to grow at a higher temperature than the dendrite tips'?. This phe-
nomenon is of special interest in the production of in situ composite materials
because the volume fraction of the two phases in the composite can be
controlled by the choice of X,'3.

4.3.4 Peritectic Solidification'*

A typical phase diagram containing a peritectic reaction, i.e. L + a — B, is
shown in Fig. 4.39a. During equilibrium solidification solid a with composi-
tion ‘a’ and liquid with composition ‘c’ react at the peritectic temperature T,
to give solid B of composition ‘b’. However, the transformation rarely goes to
completion in practice.

Consider for example the solidification of an alloy X, at a finite velocity in a
shallow temperature gradient, Fig. 4.39b and c. As the temperature de-
creases the first phase to appear is o with the composition ~kX, at a tempera-
ture close to T;. a grows dendritically with successive layers solidifying at
compositions determined by the local temperature and the o solidus. If
diffusion in the dendrites is slow the liquid will eventually reach point ¢ in
Fig. 4.39a and on further cooling it reacts with the a to produce a layer of B.
However, the o dendrites are then often effectively isolated from further
reaction and are retained to lower temperatures. Meanwhile the $ phase
continues to precipitate from the liquid at compositions which follow the line
bd. Again if there is no diffusion in the solid the liquid will finally reach point
e and solidify as a  + <y eutectic. The final solidified microstructure will then
consist of cored o dendrites surrounded by a layer of B and islands of B + vy
eutectic, or divorced eutectic.
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If alloy X, were directionally solidified at increasing values of (T'L/v) the
temperature of the dendrite tips would progressively fall from T; towards
T, (Fig. 4.39a) while the temperature at which the last liquid solidifies would
increase towards T,. Finally, solidification would take place behind a planar
front at a temperature T, as discussed earlier in Section 4.3.1.

Planar-front solidification can also be obtained for alloys beyond ‘a’ in
Fig. 4.39, provided a sufficiently high temperature—gradient/velocity ratio is
used. Alloys between a and b then solidify with a ‘eutectic-like’ a +
structure. (The structure is better described as composite to avoid confusion
concerning the term eutectic). Between b and d single-phase § forms, and
beyond d B + vy eutectic-like structures can be formed.

The Fe—C phase diagram also contains a peritectic, Fig. 4.53a. However
due to the high diffusivity of carbon at these high temperatures the peritectic
reaction is very rapid and is able to convert all of the primary (3) dendrites
into the more stable austenite.

4.4 Solidification of Ingots and Castings

This section is concerned with technological applications of the theory of
solidification, as developed earlier. Two of the most important applications
are casting and weld solidification and we shall first consider these. In modern
constructions there is a tendency towards the use of stronger, heavier sections
welded with higher energy techniques and faster speeds. It is thus important
for the physical metallurgist to consider the effect of the various solidification
parameters on the microstructure and properties of fusion welds. This will
then be followed by some selected case studies of as-solidified or as-welded
engineering alloys and weld metals.

Most engineering alloys begin by being poured or cast into a fireproof
container or mould. If the as-cast pieces are permitted to retain their shape
afterwards, or are reshaped by machining, they are called castings. If they are
later to be worked, e.g. by rolling, extrusion or forging, the pieces are called
ingots, or blanks if they are relatively small. In either case the principles of
solidification, and the requirements for high density and strength are the
same. The moulds used in casting are often made of a material that can be
remoulded or discarded after a casting series, such as sand. In the case of long
casting series or ingot casting, however, the mould is of a more permanent
material such as cast iron. The technological aspects of pouring and casting
will not be dealt with here, but we shall confine our discussion simply to the
mechanics of solidification of metals in a mould.

4.4.1 Ingot Structure

Generally speaking three different zones can be distinguished in solidified
alloy ingots, Fig. 4.40. These are (i) an outer chill zone of equiaxed crystals,
(ii) a columnar zone of elongated or column-like grains, and (iii) a central
equiaxed zone.
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Fig. 4.40 Schematic cast grain structure. (After M.C. Flemings, Solidification Pro-
cessing, McGraw-Hill, New York, 1974.)

Chill Zone

During pouring the liquid in contact with the cold mould wall is rapidly cooled
below the liquidus temperature. Many solid nuclei then form on the mould
wall and begin to grow into the liquid, Fig. 4.41. As the mould wall warms up
it is possible for many of these solidified crystals to break away from the wall
under the influence of the turbulent melt. If the pouring temperature is low
the whole of the liquid will be rapidly cooled below the liquidus temperature
and the crystals swept into the melt may be able to continue to grow. This is
known as ‘big-bang’ nucleation since the liquid is immediately filled with a
myriad of crystals. This produces an entirely equiaxed ingot structure, i.e. no
columnar zone forms. If the pouring temperature is high, on the other hand,
the liquid in the centre of the ingot will remain above the liquidus tempera-
ture for a long time and consequently the majority of crystals soon remelt
after breaking away from the mould wall. Only those crystals remaining close
to the wall will be able to grow to form the chill zone.
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Fig. 4.41 Competitive growth soon after pouring. Dendrites with primary arms
normal to the mould wall, i.e. parallel to the maximum temperature gradient, outgrow
less favourably oriented neighbours.

Columnar Zone

Very soon after pouring the temperature gradient at the mould walls de-
creases and the crystals in the chill zone grow dendritically in certain crystal-
lographic directions, e.g. (100) in the case of cubic metals. Those crystals with
a (100) direction close to the direction of heat flow, i.e. perpendicular to the
mould walls, grow fastest and are able to outgrow less favourably oriented
neighbours, Fig. 4.42. This leads to the formation of the columnar grains all

Fig. 4.42 Favourably oriented dendrites develop into columnar grains. Each colum-
nar grain originates from the same heterogeneous nucleation site, but can contain many
primary dendrite arms.
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with (100) almost parallel to the column axis. Note that each columnar crystal
contains many primary dendrite arms. As the diameter of these grains in-
creases additional primary dendrite arms appear by a mechanism in which
some tertiary arms grow ahead of their neighbours as shown in the figure.
The volume fraction of the melt solidified increases with increasing distance
behind the tips of the dendrites and, when the structure is mainly single-phase,
the secondary and tertiary arms of adjacent dendrites can link up to form
walls of solid containing many primary dendrite arms. The region between
the tips of the dendrites and the point where the last drop of liquid is
solidifying is known as the mushy or pasty zone. The length of this zone
depends on the temperature gradient and the non-equilibrium freezing range
of the alloy. In general it is found that the secondary arms become coarser
with distance behind the primary dendrite tips. This effect can be seen in
Fig. 4.28. The primary and secondary dendrite arm spacing is also often
found to increase with increasing distance from the mould wall. This is simply
due to a corresponding decrease in the cooling rate with time after pouring.

Equiaxed Zone

The equiaxed zone consists of equiaxed grains randomly oriented in the
centre of the ingot. An important origin of these grains is thought to be
melted-off dendrite side-arms. It can be seen from Fig. 4.28 that the side-
arms are narrowest at their roots. Therefore, if the temperature around the
dendrite increases after it has formed, it will begin to melt and may become
detached from the main stem. Provided the temperature falls again before the
arm completely disappears it can then act as a ‘seed’ for a new dendrite. An
effective source of suitable temperature pulses is provided by the turbulent
convection currents in the liquid brought about by the temperature differ-
ences across the remaining melt. Convection currents also provide a means of
carrying the melted-off arms away to where they can develop uninhibited into
equiaxed dendrites. If convection is reduced fewer seed crystals are created
causing a larger final grain size and a greater preponderance of columnar
grains. Convection also plays a dominant role in the formation of the outer
chill zone. The mechanism whereby crystals are melted away from the mould
walls is thought to be similar to the detachment of side-arms'® and when
convection is absent no chill zone is observed.

Shrinkage Effects
Most metals shrink on solidification and this has important consequences for
the final ingot structure. In alloys with a narrow freezing range the mushy
zone is also narrow and as the outer shell of solid thickens the level of the
remaining liquid continually decreases until finally when solidification is com-
plete the ingot contains a deep central cavity or pipe.

In alloys with a wide freezing range the mushy zone can occupy the whole
of the ingot. In this case no central pipe is formed. Instead the liquid level
gradually falls across the width of the ingot as liquid flows down to compen-
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sate for the shrinkage of the dendrites. However, as the interdendritic chan-
nels close up this liquid flow is inhibited so that the last pools of liquid to
solidify leave small voids or pores.

4.4.2 Segregation in Ingots and Castings

Two types of segregation can be distinguished in solidified structures. There is
macrosegregation, i.e. composition changes over distances comparable to the
size of the specimen, and there is microsegregation that occurs on the scale of
the secondary dendrite arm spacing.

It has already been shown that large differences in composition can arise
across the dendrites due to coring and the formation of non-equilibrium
phases in the last solidifying drops of liquid. Experimentally it is found that
while cooling rate affects the spacing of the dendrites it does not substantially
alter the amplitude of the solute concentration profiles provided the dendrite
morphology does not change and that diffusion in the solid is negligible. This
result often applies to quite a wide range of practical cooling rates.

There are four important factors that can lead to macrosegregation in
ingots. These are: (i) shrinkage due to solidification and thermal contraction;
(ii) density differences in the interdendritic liquid; (iii) density differences
between the solid and liquid; and (iv) convection currents driven by tempera-
ture-induced density differences in the liquid. All of these factors can induce
macrosegregation by causing mass flow over large distances during solidifica-
tion.

Shrinkage effects can give rise to what is known as inverse segregation. As
the columnar dendrites thicken solute-rich liquid (assuming & < 1) must flow
back between the dendrites to compensate for shrinkage and this raises the
solute content of the outer parts of the ingot relative to the centre. The effect
is particularly marked in alloys with a wide freezing range, e.g. Al-Cu and
Cu-Sn alloys.

Interdendritic liquid flow can also be induced by gravity effects. For exam-
ple during the solidification of Al-Cu alloys the copper rejected into the
liquid raises its density and causes it to sink. The effect can be reinforced by
convection currents driven by temperature differences in the ingot.

Gravity effects can also be observed when equiaxed crystals are forming.
The solid is usually denser than the liquid and sinks carrying with it less solute
than the bulk composition (assuming kK < 1). This can, therefore, lead to a
region of negative segregation near the bottom of the ingot.

The combination of all the above effects can lead to complex patterns of
macrosegregation. Fig. 4.43 for example illustrates the segregation patterns
found in large steel ingots'®.

In general segregation is undesirable as it has marked deleterious effects on
mechanical properties. The effects of microsegregation can be mitigated by
subsequent homogenization heat treatment, but diffusion in the solid is far too
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Fig. 443 Segregation pattern in a large killed steel ingot. + positive, — negative
segregation. (After M.C. Flemings, Scandinavian Journal of Metallurgy 5 (1976) 1.)

slow to be able to remove macrosegregation which can only be combated by good
control of the solidification process.

4.4.3 Continuous Casting

A number of industrial processes are nowadays employed in which casting is
essentially a dynamic rather than a static process. In these cases, the molten
metal is poured continuously into a water-cooled mould (e.g. copper) from
which the solidified metal is continuously withdrawn in plate or rod form.
This process is illustrated schematically in Fig. 4.44.

It is seen that the speed of withdrawal is such that the solid-liquid interface
is maintained in the shape and position illustrated. Ideally, the flow behaviour
of the liquid should be vertically downwards, and if flow is maintained in this
way the final composition across the ingot will be kept uniform. In practice,
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From ladle

Water-cooled
copper mould

Fig. 4.44 Schematic illustration of a continuous casting process.

hydrodynamic effects do not allow this simple type of flow and there is a
tendency for the flow lines to fan outwards (as shown by the arrows) produc-
ing negative segregation near the centre. Solidification follows the maximum
temperature gradient in the melt as given by the normals to the isotherms. In
certain respects weld solidification has much in common with continuous
casting in that it is also a dynamic process. As illustrated in Fig. 4.45 the main
difference is of course that in continuous casting the heat source (as defined
by the mould) does not move, whereas in welding the heat source (the
electrode) is moving. We shall now consider the latter case in more detail, but
it will be found that certain conclusions concerning weld solidification be-
haviour can well be applied to both processes.

Heat Flow in Welding and Continuous Casting

As discussed earlier, there are many factors concerning heat distribution at
the melt zone and the dynamics of the process, which are essentially fairly
similar in both continuous casting and welding. As an example we shall first
consider the welding process and then discuss how the results may be applied
to continuous casting. In contrast to continuous casting, weld solidification
involves a ‘mould’ that has approximately the same composition as the melt.
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Fig. 4.45 Illustrating the essential equivalence of isotherms about the heat sources in
fusion welding and continuous casting.

The most important variables in weld solidification or continuous casting are
thus:

1. The rate of heat input, g (determined by type of weld process, weld size,
etc.); in terms of continuous casting g is represented effectively by the
volume and temperature of the melt.

2. Speed of arc movement along join, v; in continuous casting, v is the
velocity of plate withdrawal.

3. Thermal conductivity of the metal being welded or cast, K.

4. Thickness of plate being welded or cast, ¢.

In the case of welding, assuming that the arc moves along the x coordinate,
the resulting heat distribution in a three-dimensional solid plate is given by
the solution to the heat flow equation’®:
#*T T o°T aT
o+ D m ke (4.47)
x> dy* 9z a(x — vt)

where x, y, z are defined in Fig. 4.45 and ¢ is time.

Solving this equation gives the temperature distribution about the moving
heat source in the form of isotherms in the solid metal, in which the distance
between the isotherms in a given direction (x, y, z) is approximately given by:

q
X(x!)"!z) « K—sv_t (4'48)

Gray et al. (1975) have solved Equation 4.47 and plotted isotherms for a
number of different materials and welding speeds and some of their results
are summarized in Fig. 4.46.

Assuming a similar isotherm distribution in the melt, it is likely that the
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parameters K, v, t and ¢ will largely determine solidification morphology, in
that dendrites always try to grow in directions as near normal to isotherms as
their crystallography allows. It is seen in the above figure, for example, that
holding g, v and ¢ constant (Fig. 4.46a), the distance between isotherms, A,
increases substantially as a function of the change of heat conductivity, K;, of
the different materials: aluminium, carbon (ferritic) steel, and austenitic
steel. If the plate thickness is increased (Fig. 4.46b), or the weld speed is
higher (Fig. 4.46c), \ also decreases proportionally.

These results can also be applied to continuous casting, in that the isotherm
distributions shown in Fig. 4.46 are affected in a similar way by the conductiv-
ity of the solidifying metal and its speed of withdrawal from the mould. This
means, for example, that the depth of the liquid pool in continuous casting is
much greater for steel than for aluminium alloys under comparable condi-

Fig. 4.46 Effect of various parameters in Equation 5.36 on the isotherm distribution
at a point heat source. (a) Effect of changes in thermal conductivity, Ks. (b) Effect
of changes in plate thickness, ¢. (c) Effect of changes in movement of heat source, v.
(After T.G. Gray, J. Spence and T.H. North, Rational Welding Design, Newnes-
Butterworth, London, 1975.)
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q=3.1kJ/s; t=3mm

(c) carbon steel
Fig. 4.46 (continued)

tions. This implies that in practice the maximum casting speed and billet
cross-section are less for steel than for aluminium or copper. Another practi-
cal difficulty resulting from a large depth of liquid is that the billet can not be
cut until it reaches a point well beyond the solidus line (see Fig. 4.44), which
requires in fact a very tall installation for high speed casting.

4.5 Solidification of Fusion Welds

Contact between the weld melt and the base metal will initially cause melting
back of the base material and dilution of the filler metal as illustrated in
Fig. 4.47. The amount of dilution involved is not insignificant. Jesseman
(1975)"7 reports for example that in microalloyed steel welds, the weld metal
may contain 50-70% of the amount of Nb, Ti or V as analysed in the base
material. The effect of dilution is in fact threefold, and affects the weld metal

Base
metal

Fig. 447 Illustrating the effect of dilution. In high-energy welds, the weld metal
typically exhibits 50-70% of the analysis of microalloying elements of the base metal
through dilution.
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as follows:

1. The composition of the melt is changed.

2. The surface oxide layer of the base metal is removed (also into the
melt).

3. It cools down the melt.

Depending upon the type of material being welded as well as plate thickness,
the base metal behaves as a very efficient heat sink, and already at T = T,
solidification nuclei form at the oxide-free surface of the melted-back base
material. Since the melt has approximately the same composition as the base
metal, ‘wetting’ of the base metal is very efficient and 6 = 0 (see Fig. 4.7).
This implies in turn that there is almost no nucleation barrier to solidification
and hence very little undercooling occurs. Solidification is thus predicted to
occur epitaxially, i.e. nuclei will have the same lattice structure and orienta-
tion as the grains at the solid-liquid surface of the base metal, and this is what
is observed in practice.

Since the temperature of the melt beneath the arc is so high and the base
material is such an efficient heat sink there is initially a steep temperature
gradient in the liquid and consequently the degree of constitutional super-
cooling is low. The actual thermal gradient is of course dependent upon the
welding process and the plate thickness (Equation 4.48). For example TIG
welding of thin plates will give steeper thermal gradients than submerged arc

Fig. 4.48 Illustrating the growth of columnar crystals in the weld, and how growth
continues to occur approximately normal to the isotherms.
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welding of thick plates, the latter process having the higher heat input. Since
certain grains at the base metal are better oriented than others for (100)
growth with respect to the isotherms of the melt, these quickly predominate
and widen at the expense of the others. However, the general coarseness of
the microstructure is largely determined at this stage by the grain size of the
base metal. Unfortunately, the base metal at the transition zone receives
the most severe thermal cycle and after high-energy welding in particular the
grains in this zone tend to grow and become relatively coarse. The weld
microstructure is thus inherently coarse grained.

Welding is essentially a dynamic process in which the heat source is con-
tinuously moving. This means that the maximum temperature gradients are
constantly changing direction as the heat source moves away. The growing
columnar crystals are thus faced with the necessity of trying to follow the
maximum temperature gradients while still maintaining their preferred (100)
growth direction. This often results in sudden changes in growth direction, as
illustrated in Fig. 4.48a and b.

Few of the grains originating at the base metal survive to reach the weld
centre line. The mechanism by which sudden changes in (100) growth direc-
tion are brought about is not fully understood. One suggestion is that renu-
cleation occurs by the help of dendritic fragments which have broken away
from the growing interface due to turbulence in the weld pool, or simply from
melted-off dendrite arms.

Influence of Welding Speed
An important effect of increasing the welding speed is that the shape of the
weld pool changes from an elliptical shape to a narrower, pear shape (see,

Fig. 4.49 Illustrating the effect of increasing welding speed on the shape of the melt
pool and crystal growth in fusion welds.
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Fig. 4.50 (a) TIG weld of nickel, illustrating low crystal growth speed x 25 (by Gudrun
Keikkala, University of Luled, Sweden). (b) Submerged arc weld of steel, illustrating high
growth speed X 24 (by H. Astrom, University of Luled, Sweden).

Fig. 4.51 Illustrating the relationship between crystal growth speed and welding
speed in terms of rate vectors.
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e.g. Fig. 4.49). Since growing crystals try to follow the steepest temperature
gradients, the effect of changing the welding speed is to alter the solidification
behaviour as illustrated in Fig. 4.49. As shown in 4.49b, the pear-shaped weld
pool maintains fairly constant thermal gradients up to the weld centre-line,
corresponding to the more angular geometry of the melt in this case. On this
basis growing crystals are not required to change growth direction as at slower
speeds (Fig. 4.49a). Instead, appropriately oriented crystals stabilize and
widen outgrowing crystals of less favourable orientation. The crystal mor-
phology shown in Fig. 4.49b is in fact fairly typical of the high production rate
welds based on modern submerged arc welding. An example of a submerged
arc weld is shown in Fig. 4.50b, and of a TIG weld of nickel in 4.50a.

/// COLUMNAR
i{iﬁﬂﬁ }/EQUIAXED

\ DENDR[TE

Fig. 4.52 Measurements of crystal growth rate in stainless steel as a function of per
cent of weld solidified. (After T. Senda et al., Technical Report, Osaka University 20
(1970) 932.)
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While fairly linear dendritic growth is seen to predominate in this figure, it
is also observed that dendrites suddenly change direction at the centre of the
weld by as much as 60°. This feature of high-speed welding will now be
clarified.

Geometry of Crystal Growth

Consider a welding process in which the arc is moving at a speed v. Crystal
growth must occur such that it is able to keep pace with the welding speed,
and this is illustrated in Fig. 4.51. It is seen that for crystal growth rate, R, to
keep pace with the welding speed, v, the condition must be met that:

R =vcos 6 (4.49)

In the figure, the arrows represent vectors of speed. The vector representing
the welding speed, or the speed of movement of the isotherms, is constant.
On the other hand, the vector representing crystal growth rate must con-
tinuously adjust itself as growth proceeds towards the weld centre-line. It thus
follows from Equation 4.49 that the solidification rate is greatest when 6 = 0,
i.e. at the weld centre-line, and lowest at the weld edge where 0 is a
maximum. On this basis the sudden change in crystal growth direction at the
weld centre line illustrated in Fig. 4.50 is associated with high growth rates as
solidification attempts to keep pace with the moving arc. In addition, the
initial low rates of crystal growth are associated with a relatively planar
solidification front, and as the growth rate increases, the morphology of the
front changes to cellular and then cellular dendritic.

An example of weld solidification rates as measured on stainless steel as a
function of different welding speeds is shown in Fig. 4.52. In confirmation of
Equation 4.49, it was found that completion of weld solidification
(y = 100%) corresponds to the highest growth rates. However, the higher
welding speeds were associated with a transition from predominantly colum-
nar crystal growth to equiaxed growth at the final stage of solidification. This
transition is thought to be due to the high amounts of segregation associated
with the final stages of weld solidification. This, coupled with the shallow
thermal gradient at this stage leads to high degrees of constitutional super-
cooling and therefore the driving force for random dendritic growth to occur
is large. However, it should be noted that in general dendritic and cellular
substructures in welds tend to be on a finer scale than in casting, and this is
mainly due to the comparatively high solidification rates of weld metal. Since
higher welding speeds or thicker base metal give larger rates of solidification,
it follows that the finest substructures are associated with these welds (see
Equation 4.48).

When the arc is switched off at the completion of a weld run, an elliptical
molten pool is left to solidify with a comparatively shallow thermal gradient.
This leads to large constitutional supercooling and marked segregation. The
final substructure of these weld ‘craters’ is thus usually equiaxed—dendritic.

Summarizing, weld solidification has the following features:
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1. Solidification initially occurs epitaxially at the melted-back grains of the
base metal.

2. To begin with crystal growth is relatively slow, forming first a planar and
then a fine cellular substructure.

3. The intermediate stage of crystal growth is cellular-dendritic leading to
coarse columnar crystal growth in the (100) direction in the case of cubic
crystals.

4. Final solidification at the centre-line is associated with rapid crystal
growth and marked segregation. Depending on welding conditions, final
dendritic structure can be equiaxed.

In many ways, therefore, weld solidification and even continuous casting
exhibit essentially different features to those of ingot casting (problem 4.22).

4.6 Solidification during Quenching from the Melt

The treatment of solidification presented in this chapter has been applicable
for cooling rates of less than about 10° K/s. However, solidification can also
occur at much higher rates of 10* — 107 K/s in such processes as liquid metal
atomization, melt spinning, roller-quenching or plasma spraying, as well as
laser or electron beam surface treatment. By quenching melts it is possible to
achieve various metastable solid states not predicted by equilibrium phase
diagrams: solid phases with extended solute solubility, new metastable
crystalline phases or, if the cooling rate is fast enough, amorphous metallic
glasses. Crystalline solidification can occur without microsegregation or with
cells or secondary dendrites spaced much more finely than in conventional
solidification processes. Whether the solid is crystalline or amorphous,
rapid solidification processing offers a way of producing new materials with
improved magnetic or mechanical properties.

One consequence of rapid cooling can be that local equilibrium at the
solid/liquid interface breaks down. Melts can solidify with no change in
composition, i.e. partitionless solidification or solute trapping can occur.
The thermodynamic principles involved in partitionless solidification are
similar to those for the massive transformation in solids to be treated in
Section 5.9.

4.7 Case Studies of some Practical Castings and Welds

4.7.1 Casting of Carbon and Low-Alloy Steels
Typical composition ranges:

C: 0.1-1.0 wt%
Si: 0.1-0.4 wt% carbon steels
Mn: 0.3-1.5 wt%
Cr: 1.0-1.6 wt%
Ni: 1.0-3.5 wt%
Mo: 0.1-0.4 wt%

low-alloy steels
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Casting processes: Castings, ingots, continuous casting.
Relevant phase diagrams: See Fig. 4.53.
Solidification transformations:

L—->3d+L
8+ L—>38+y+ L (peritectic: d + L — 1)
8+y+L—oy

Atomic percentage carbon
1580 ! 2 3
1560

017

Temperature, °C
B
~
o

. Austenite
1394
1380

1360

Fe 0-05 610 015 020 025 030 035 040 0%5 0:50 055060 065 070 075
Weight percentage carbon

(a)

A

o (/1180 1460 LTT7AN
Fe 10 20 30 40 50 60 Fe 10 20 30 40 50 60\
(b) Weight percentage nickel () Weight percentage nickel

Fig. 4.53 (a) Part of the iron-carbon phase diagram. (b) Liquidus projection for the
Fe—Cr—Ni system, (c) isothermal section (650 °C) for the Fe—Cr—Ni system. (From Metals
Handbook, 8th edn., Vol. 8, American Society for Metals, 1973, pp. 276 and 425.)
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Subsequent transformations:

y— a + Fe;C  (equilibrium structure at ambient temperature)

Microstructures: See Fig. 4.54.

Comments: Figure 4.53 shows that alloying with the relatively small
amounts of Ni and Cr used in low-alloy steels has little effect on solidification
temperature and that the equilibrium structure of the alloy is a(+Fe;C).
Figure 4.54a shows that quenching from the (-y, 8 + L) field leaves a structure
with considerable residual melt between solidified dendrites. As discussed
earlier, in practical alloys, the presence of residual melt between dendrite
arms is largely due to impurity segregation. The completely solidified struc-
ture shown in Fig. 4.54b exhibits a residual eutectic between a-Fe dendrites
of y/Fe;P/Fe;C, suggesting that the last liquid to solidify was rich in P and C.
The retention of some y-Fe in the eutectic is possibly due to the high carbon
content of the residual iron (the solubility of P in y-Fe is very low), which,
together with the stabilizing effect of Ni, may help to retard the y — «
transformation. Slower rates of cooling would probably reduce the amount of
retained austenite still further. The presence of Mn induces the reaction:
Mn + S — MnS (see Fig. 4.54b). However, this is certainly preferred to FeS,
which tends to wet dendrite boundaries more extensively than MnS and is a
prime cause of hot cracking.

4.7.2  Casting of High-Speed Steels

Typical composition ranges:

C: 0.5-1.0 wt%
Cr: 0.5-4.0 wt%
Mo: 0.5-9.5 wt%
W: 1.5-6.0 wt%
V: 0.5-2.0 wt%

Casting processes: Ingot

Special properties: Hard, tough, wear-resistent at elevated temperatures.
Relevant phase diagrams: See Fig. 4.55.

Solidification transformations:

L>L+a
L+a—=L+a++y (peritecticL + 38— v)
L+a+y—>L+a+vy+MC
L+a+vy+MC—y+MC (eventually: - a + M,C)

Microstructures: See Fig. 4.56.
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Fig. 4.54 (a) Alloy quenched from (3, y + L) field (x 25). (b) Cooled to 20 °C.
E refers to y/FesP/FesC eutectic (X 1000). (From Guide to the Solidification of Steels,
Jernkontoret, Stockholm, 1977.)
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Fig. 4.55 (a) Phase diagram for steel with approx 4wt% Cr, 5wt% Mo, 6wt% W
and 2wt% V (after E. Horn and H. Brandis, DEW-Techn. Ber. 11 (1971) 147). (b)
Effect of W on v field of steel (from Metals Handbook, 8th edn., Vol. 8, American
Society for Metals, 1973, p. 416).
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Comments: Reference to the phase diagrams (Fig. 4.55) shows that the
presence of W, V and the other main alloying elements produces a cascade of
polyphase fields during cooling of these castings. Solidification occurs initially
with the formation of o dendrites, but the v fields are so extensive that rapid
quenching from the a + L field can not suppress the nucleation and growth of
austenite (Fig. 4.56a). As expected, the C segregates strongly when a forms,
but W, Cr and V are not expected to segregate so markedly in a-Fe. It seems
likely that the early formation of vy through the reaction: « + L — vy + L in
these castings is the main cause of the extensive segregation of W, Cr and V as
observed in Fig. 4.56b and c. As seen in Fig. 4.56b, it is possible that the
a — <y reaction occurs through the rejection of dissolved M back to the melt.
Reference to the Fe-Cr, Fe-V, and Fe-W binary phase diagrams shows in all
cases very low high-temperature solubility of these elements in y-Fe. The
resulting as-solidified structure (Fig. 4.56c) thus consists of a dendrites (fol-
lowing the y — a solid-state transformation during cooling) with marked

Fig. 456 (a) Quenched from the (L + o (ord) + v) field at 1335°C (x 150).
(b) Quenched from 1245 °C (x 150). (c) Same alloy after mechanical and thermal
heat treatments (X 750). (a-c from A Guide to the Solidification of Steel, Jernkon-
toret, Stockholm, 1977, and d from Metals Handbook, 8th edn., Vol. 7, American
Society for Metals, 1972, p. 121.)
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Fig. 4.56b & c (continued)

interdendritic segregation. The latter appears in the form of a y/M,C eutec-
tic, where M,C refers to mixed carbides of WC, Cr,C, VC, etc. The final
structure of this type of tool steel (Fig. 4.56d) is only reached after further

extensive plastic working to break up the eutectic, followed by austenitizing
and double-tempering treatments.
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4.7.3 Stainless Steel Weld Metal

Electrode composition range:

Cr: 17-19 wt%
Ni: 8 -10 wt%
C: 0.05-0.1 wt%
Si: 0.5-1.0 wt%

Mn: 0.5-1.5 wt%

P:]traces
S:
Welding process: Manual metal arc, gas metal arc.
Relevant phase diagrams: See Fig. 4.57.
Phase transformations:
L->3%+L
8+ L—> 3+ vy (approx. peritectic).

Microstructures: See Fig. 4.58.

Comments:

(a) Phase equilibria. Figure 4.57a is the 18% Cr vertical section of the
Fe—Cr-Ni ternary diagram. The effect of these and other alloying elements
on the final microstructure, assuming fairly high quench rates typical of
welding, can be predicted with the help of the Shaeffler diagram 4.57b. From
this diagram it can be seen that if the Ni or Cr contents are reduced much
below the nominal analyses given, there is a risk that martensite forms. The
most important feature of these alloys with respect to welding, is that some
d-Fe is retained even at ambient temperatures (see 4.57b).

There has been much discussion in the literature as to which phase solidifies
first after welding. According to Fig. 4.57a it appears that solidification
should initiate with the nucleation of 3-Fe. However, if the base metal is fully
austenitic at the transition zone, this phase should nucleate first because of
the requirement of epitaxial growth (see previous discussion). Unfortunately
the situation is complicated in practice by the presence of carbon and nit-
rogen, both of which tend to move the peritectic composition towards higher
Ni content. An example of the effect of N being admitted to the weld pool is
shown in Fig. 4.58a illustrating a single run weld which has remained fully
austenitic. The result of this is fairly catastrophic, causing hot cracking at the
austenite grain boundaries due to increased sulphur and phosphorus segrega-
tion in the austenite during solidification.

(b) Microstructure. It is thought that the first phase to solidify in this alloy is
8-Fe, enriched in Cr and impoverished in Ni, the tendency in either case being
to stabilize the ferrite. Further cooling causes y-Fe to nucleate in the Ni-rich
liquid between the 8-Fe dendrites. With the development of this duplex y + &
structure the peritectic reaction: L — vy + 8 continues to completion. Cool-
ing of the weld metal to ambient temperature causes the y-Fe phase to grow
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Fig. 4.57 (a) 18% Cr section of the Fe-Cr-Ni system. (b) Schaeffler diagram
indicating the alloy concerned. (NI)eq = %Ni + 30 X %C + 0.5 X %Mn.
(Cr)eq = %Cr + %Mo + 1.5 X %Si + 0.5 X %Nb. A, austenite; F, ferrite; M,
martensite. (After R.J. Castro and J.J. de Cadenet, Welding Metallurgy of Stainless
and Heat Resistant Steels, Cambridge University Press, Cambridge, 1974.)
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Fig. 4.58 (a) Illustrating hot cracking in the austenite region of a duplex stainless
steel weld deposit. (b) STEM-EDX microanalysis of y and 3-Fe and an inclusion.
(After H. Astrom et al., Metal Science Journal, July 1976, p. 225.)

at the expense of 3-Fe until only a fine network of 3-Fe remains. The
STEM-based X-ray spectrometer microanalysis of the vy, 3 and inclusion
phases (Fig. 4.58b) indicates that the Cr-rich ferrite has dissolved the phos-
phorus (one of the danger elements in hot cracking), while the sulphur is
bound up in the inclusion. In this respect Mn has a double role: both as a
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deoxidizer and to absorb S through forming MnS. If the weld solidifies
directly to y-Fe, all the Mn remains in solution and thus cannot prevent FeS
forming at cell boundaries. The fine duplex y + 3 structure of stainless steel
welds thus refines and strengthens the microstructure, and effectively renders
S and P harmless. It should be pointed out, however, that the 6-8 vol%
retained 3-Fe at ambient temperature should not be exceeded, since higher
volume fractions reduce the ductility and toughness of this alloy. In this
respect, the Shaeffler diagram (Fig. 4.57b) is a useful guide for estimating
d-Fe as a function of equivalent Cr and Ni content. The amount of 3-Fe can
also be measured magnetically or metallographically. If the presence of
nitrogen is to be accounted for, a modified form of Shaeffler diagram (the
Del.ong diagram) can be employed (see, e.g. Castro and Cadenet, 1974)'8.
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Exercises

4.1 Show that differentiation of Equation 4.4 leads to Equations 4.5 and
4.6.

4.2 Use Equations 4.4 and 4.10 to estimate the number of crystal-like
clusters in 1 mm® of copper at its melting point for spherical clusters
containing (a) 10 atoms, (b) 60 atoms. What volume of liquid copper is
likely to contain one cluster of 100 atoms? The atomic volume of liquid
copper is 1.6 X 1072° m?, yg; is 0.177 T m™2, k = 1.38 x 1072 J K,
T, = 1356 K.

4.3 Why does ry,y in Fig. 4.5 vary with AT?

4.4 Calculate the homogeneous nucleation rate in liquid copper at under-
coolings of 180, 200 and 220 K, using the following data:
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L=188x10°Jm>3, T, = 1356 K, vysr. = 0.177 I m™2,
fo=10"s71 Cy =6 x 10 atoms m™>, k = 1.38 x 1072 J K",
Show that Equation 4.23 applies to homogeneous nucleation and heter-
ogeneous nucleation on a flat mould wall.

Show that Equation 4.16 follows from 4.15 using the following rela-
tionships for a spherical cap:

ASL = 21'"'2 (1 — COS 9)
Agy = mr® sin® 0
Vs = mr® (2 + cos 8)(1 — cos 0)%/3

Of what importance is the angle of a mould-wall crack in hetero-
geneous nucleation? Of what importance is the width of the crack at
its mouth?

Under what conditions can solid metal be retained in a mould-wall

crevice above T,,?

If a single crystal is melted by heating to slightly above its melting point

and then cooled it subsequently solidifies with the previous orientation.

Likewise a polycrystalline specimen reverts to its original grain size. Can

you suggest an explanation for this effect? (See B. Chalmers, Principles

of Solidification, Wiley, 1964, p. 85).

(a) Show that surface melting is to be expected below T, in gold
(1336 K) given yg;. = 0.132, v,y = 1.128, ygy = 1.400 J m 2.

(b) Given that the latent heat of fusion of gold is 1.2 x 10° J m™
estimate whether sensible liquid layer thicknesses are feasible at
measurably lower temperatures than T,,,.

Use nucleation theory to derive quantitative expressions for the velocity

of an atomically smooth interface as a function of undercooling (a) for

repeated surface nucleation, (b) for spiral growth. (See Burton et al.,

Philosophical Transactions, A243:299 (1950)).

Draw diagrams to show how the solid/liquid interface temperature

varies as a function of position along the bar for Figs. 4.20, 4.21 and

4.22.

Draw figures corresponding to Figs. 4.21 and 4.22 for a dilute binary

alloy with & > 1.

Show that Equation 4.35 satisfies 4.34.

The Al-Cu phase diagram is similar to that shown in Fig. 4.19 with

T, (Al) = 660 °C, Tg = 548 °C, Xmax = 5.65 wt%, and

Xg = 33 wt% Cu. The diffusion coefficient for the liquid

Dy =3 x 107 m?s™!. If an Al-0.5 wt% Cu alloy is solidified with no

convection and a planar solid/liquid interface at 5 pm s~

(a) What is the interface temperature in the steady state?

(b) What is the thickness of the diffusion layer?

(c) What temperature gradient will be required to maintain a planar
interface?
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4.16

4.17

4.18

4.19

4.20

4.21

4.22

4.23

Solidification

(d) Answer (a), (b) and (c) for an Al-2 wt% Cu alloy solidified under
the same conditions.

(a) Using Equation 4.33 and the data in problem 4.15 plot the variation
of copper concentration along a unidirectionally solidified bar of an
Al-2 wt% Cu alloy assuming no diffusion in the solid and perfect
mixing in the liquid. '

(b) What fraction of the bar will solidify to a eutectic structure?

(c) How much eutectic would form in an Al-0.5 wt% Cu alloy soli-
dified under the same conditions?

Explain the experimental observation that in the presence of a convec-

tion current cells grow upstream.

Sketch a possible solidification-front structure for the solidification of an

Fe—0.25 wt% C alloy in a shallow temperature gradient. Consider the

temperature range 1440-1540 °C. Assume very rapid diffusion of car-

bon in 3-Fe.

Show that the condition A = 2\* gives (i) the maximum eutectic growth

rate for a given undercooling, and (ii) a minimum undercooling for a

given growth rate (Equation 4.43).

Calculate the depression of the eutectic temperature for a lamellar

eutectic with A = 0.2 pm and A = 1.0 pm, if yos = 400 mJ m™2,

AH/V, =800 % 10°T m~3, Tg = 1000 K.

If it is assumed that the choice of a rod or lamellar eutectic is governed

by the minimization of the total a/B interfacial energy it can be shown

that for a given A there is a critical volume fraction of the g phase ( f,)

below which B should be rod like, and above which it should be lamel-

lar. Assuming the rods are hexagonally arranged and that v,g is isotro-

pic, calculate the value of f..

Compare the processes of ingot casting and weld solidification, and

show they are in many ways quite different solidification processes. How

would you compare continuous casting in this respect?

What is the influence of welding speed on the solidification structure of

welds? How is welding speed likely to affect segregation problems?



5
Diffusional Transformations in Solids

The majority of phase transformations that occur in the solid state take place
by thermally activated atomic movements. The transformations that will be
dealt with in this chapter are those that are induced by a change of tempera-
ture of an alloy that has a fixed bulk composition. Usually we will be
concerned with the transformations caused by a temperature change from a
single-phase region of a (binary) phase diagram to a region where one or
more other phases are stable. The different types of phase transformations
that are possible can be roughly divided into the following groups: (a) pre-
cipitation reactions, (b) eutectoid transformations, (c) ordering reactions,
(d) massive transformations, and (e) polymorphic changes. Figure 5.1 shows
several different types of binary phase diagrams that are representative of
these transformations.
Precipitation transformations can be expressed in reaction terms as follows
a > a+p (5.1)
where o’ is a metastable supersaturated solid solution, B is a stable or meta-
stable precipitate, and « is a more stable solid solution with the same crystal
structure as o', but with a composition closer to equilibrium, see Fig. 5.1a.
Eutectoid transformations involve the replacement of a metastable phase
(y) by a more stable mixture of two other phases (o + B) and can be
expressed as

y—=>a+tp (52)
This reaction is characteristic of phase diagrams such as that shown in
Fig. 5.1b.

Both precipitation and eutectoid transformations involve the formation of
phases with a different composition to the matrix and therefore long-range
diffusion is required. The remaining reaction types can, however, proceed
without any composition change or long-range diffusion. Figure 5.1c shows
phase diagrams where ordering reactions can occur. In this case the reaction
can be simply written

a(disordered) — o'(ordered) (5.3)

In a massive transformation the original phase decomposes into one or
more new phases which have the same composition as the parent phase, but
different crystal structures. Figure 5.1d illustrates two simple examples of the
type

B—a 5.4)
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a

(e) A

Fig. 5.1 Examples of different categories of diffusional phase transformations:
(a) precipitation; (b) eutectoid; (c) ordering; (d) massive; (e) polymorphic (single
component).
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where only one new phase results. Note that the new B phase can either be
stable (Fig. 5.1d(i)) or metastable (Fig. 5.1d(ii)).

Polymorphic transformations occur in single component systems when
different crystal structures are stable over different temperature ranges,
Fig. 5.1e. The most well-known of these in metallurgy are the transforma-
tions between fcc- and bee-Fe. In practice, however, such transformations are
of little practical interest and have not been extensively studied.

Apart from a few exceptions the above transformations all take place by
diffusional nucleation and growth. As with solidification, nucleation is usually
heterogeneous, but for the sake of simplicity let us begin by considering
homogeneous nucleation.

5.1 Homogeneous Nucleation in Solids

To take a specific example consider the precipitation of B-rich B from a
supersaturated A-rich o solid solution as shown in Fig. 5.1a(i). For the
nucleation of 3, B-atoms within the o matrix must first diffuse together to form
a small volume with the B composition, and then, if necessary, the atoms must
rearrange into the B crystal structure. As with the liquid — solid transforma-
tion an o/ interface must be created during the process and this leads to an
activation energy barrier.

The free energy change associated with the nucleation process will have the
following three contributions.

1. At temperatures where the 8 phase is stable, the creation of a volume V
of B will cause a volume free energy reduction of VAG, .

2. Assuming for the moment that the a/ interfacial energy is isotropic the
creation of an area A of interface will give a free energy increase of Avy.

3. In general the transformed volume will not fit perfectly into the space
originally occupied by the matrix and this gives rise to a misfit strain
energy AG, per unit volume of B. (It was shown in Chapter 3 that, for
both coherent and incoherent inclusions, AG; is proportional to the
volume of the inclusion.) Summing all of these gives the total free
energy change as

AG = —VAG, + Ay + VAG; (5.9)

Apart from the misfit strain energy term, Equation 5.5 is very similar to that
derived for the formation of a solid nucleus in a liquid. With solid/liquid
interfaces y can be treated as roughly the same for all interfaces, but for
nucleation in solids y can vary widely from very low values for coherent
interfaces to high values for incoherent interfaces. Therefore the Ay term in
Equation 5.5 should really be replaced by a summation over all surfaces
of the nucleus 3v;A;.
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If we ignore the variation of y with interface orientation and assume the
nucleus is spherical with a radius of curvature r Equation 5.5 becomes

4
AG = —§1Tr3(AGV — AG,) + 4mr?y (5.6)

This is shown as a function of 7 in Fig. 5.2. Note that the effect of the misfit
strain energy is to reduce the effective driving force for the transformation to
(AG, — AG:). Similar curves would in fact be obtained for any nucleus shape
as a function of its size. Differentiation of Equation 5.6 yields
2y
* R
" T (aG, - AG)) 5.7)
167>

R e L ——
AG 3(AG, - AG,)

(5.8)

which is very similar to the expressions for solidification, except now the
chemical driving force AG, is reduced by a positive strain energy term.

s}

Ayecr?

AG

-V (8G;AG )< I

Fig. 5.2 The variation of AG with r for a homogeneous nucleus. There is an
activation energy barrier AG*.
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As discussed in Chapter 4 the concentration of critical-sized nuclei C* will
be given by

C* = Cy exp (—AG*/kT) (5.9

where C is the number of atoms per unit volume in the phase. If each nucleus
can be made supercritical at a rate of f per second the homogeneous nuclea-
tion rate will be given by

Npom = fC* (5.10)

f depends on how frequently a critical nucleus can receive an atom from the «
matrix. This will depend on the surface area of the nucleus and the rate at
which diffusion can occur. If the activation energy for atomic migration is
AG,, per atom, f can be written as w exp (—AG,,/kT) where w is a factor that
includes the vibration frequency of the atoms and the area of the critical
nucleus. The nucleation rate will therefore be of the form

AG, AG*
Nuom = 0Cy exp (—-ﬁ> exp (— T ) (5.11)

This is essentially identical to Equation 4.12 except that the temperature
dependence of f has been taken into account. In order to evaluate this
equation as a function of temperature w and AG,, can be assumed to be
constant, but AG* will be strongly temperature dependent. The main factor
controlling AG* is the driving force for precipitation AG,, Equation 5.8.
Since composition is variable the magnitude of AG, must be obtained from
the free energy—composition diagram.

If the alloy X, in Fig. 5.3, is solution treated at T; and then cooled rapidly
to T, it will become supersaturated with B and will try to precipitate 3. When
the transformation to a + 8 is complete the free energy of the alloy will have
decreased by an amount AG,, per mole as shown in Fig. 5.3b. AG is therefore
the total driving force for the transformation. However, it is not the driving
force for nucleation. This is because the first nuclei to appear do not signifi-
cantly change the a composition from X,. The free energy released per mole
of nuclei formed can be obtained as follows.

If a small amount of material with the nucleus composition (X% ) is removed
from the a phase, the total free energy of the system will decrease by AG;
where

AG, = pa X% + X8 (per mol B removed) (5.12)

This follows simply from the definition of chemical potential given by
Equation 1.29. AG, is a quantity represented by point P in Fig. 5.3b. If these
atoms are now rearranged into the (B crystal structure and replaced, the total
free energy of the system will increase by an amount

AG, = pB X8 + pBXE (per mol B formed) (5.13)
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T >
1'_ 9
a %Te
AT
Tz— A X —e l arp P
(@ A Xe Xo Xg—> xP 8

(b 0 Xg—> 1

Fig. 5.3 Free energy changes during precipitation. The driving force for the first
precipitates to nucleate is AG, = AG,V,,. AG, is the total decrease in free energy
when precipitation is complete and equilibrium has been reached.

which is given by point Q. Therefore the driving force for nucleation
AG, = AG, — AG; per mol of B (5.14)

which is just the length PQ in Fig. 5.3b. The volume free energy decrease
associated with the nucleation event is therefore simply given by

AG,
AG, = V. per unit volume of B (5.15)

where V,, is the molar volume of B. For dilute solutions it can be shown that
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approximately

AG, x AX (5.16)
where

AX = X, - X, (5.17)

From Fig. 5.3a therefore it can be seen that the driving force for precipitation
increases with increasing undercooling (AT) below the equilibrium solvus
temperature 7.

It is now possible to evaluate Equation 5.11 for alloy X, as a function of
temperature. The variation of AG, with temperature is shown schematically
in Fig. 5.4b. After taking into account the misfit strain energy term AG, the

Fig. 5.4 How the rate of homogeneous nucleation varies with undercooling for alloy
X,. (a) The phase diagram. (b) The effective driving force (AG, — AG;) and the
resultant energy barrier AG*. (c) The two exponential terms that determine N as
shown in {d).
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effective driving force becomes (AG, — AG;) and the effective equilibrium
temperature is reduced to T,,. Knowing (AG, — AG;) the activation energy
AG* can be calculated from Equation 5.8 as shown. Figure 5.4c shows the
two exponential terms in Equation 5.11; exp (—AG*/kT) is essentially the
potential concentration of nuclei and, as with nucleation in liquids, this is
essentially zero until a critical undercooling AT, is reached, after which it
rises very rapidly. The other term, exp (—AG,,/kT), is essentially the atomic
mobility. Since AG,, is constant this decreases rapidly with decreasing
temperature. The combination of these terms, i.e. the homogeneous nuclea-
tion rate is shown in Fig. 5.4d. Note that at undercoolings smaller than AT,
N is negligible because the driving force AG, is too small, whereas at very
high undercoolings N is negligible because diffusion is too slow. A maximum
nucleation rate is obtained at intermediate undercoolings. For alloys contain-
ing less solute the critical supercooling will not be reached until lower abso-
lute temperatures where diffusion is slower. The resultant variation of N with
T in these alloys will therefore appear as shown in Fig. 5.5.

In the above treatment of nucleation it has been assumed that the nuclea-
tion rate is constant. In practice however the nucleation rate will initially be
low, then gradually rise, and finally decrease again as the first nuclei to form
start growing and thereby reduce the supersaturation of the remaining a.

It has also been assumed that the nuclei are spherical with the equilibrium
composition and structure of the B phase. However, in practice nucleation
will be dominated by whatever nucleus has the minimum activation energy
barrier AG*. Equation 5.8 shows that by far the most effective way of mini-
mizing AG* is by the formation of nuclei with the smallest total interfacial
energy. In fact this criterion is dominating in nucleation processes. Incoherent
nuclei have such a high value of vy that incoherent homogeneous nucleation is
virtually impossible. If, however, the nucleus has an orientation relationship
with the matrix, and coherent interfaces are formed, AG* is greatly reduced

T‘ a Te(1)
)
N@) N
a+f
0 @ M x, O N

Fig. 5.5 The effect of alloy composition on the nucleation rate. The nucleation rate
in alloy 2 is always less than in alloy 1.
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and homogeneous nucleation becomes feasible. The formation of a coherent
nucleus will of course increase AG, which decreases T.. But below T, the
decrease in vy resulting from coherency can more than compensate for the in-
crease in AG,. Also, by choosing a suitable shape it is often possible to
minimize AG; as discussed in Section 3.4.3.

In most systems the o and B phases have such different crystal structures
that it is impossible to form coherent low-energy interfaces and homogeneous
nucleation of the equilibrium  phase is then impossible. However, it is often
possible to form a coherent nucleus of some other, metastable phase (B')
which is not present in the equilibrium phase diagram. The most common
example of this is the formation of GP zones which will be discussed in
more detail later.

There are a few systems in which the equilibrium phase may nucleate
homogeneously. For example in the Cu—-Co system Cu alloys containing
1-3% Co can be solution treated and quenched to a temperature where Co
precipitates. Both Cu and Co are fcc with only a 2% difference in lattice
parameter. Therefore very little coherency strain is associated with the forma-
tion of coherent Co particles. The interfacial energy is about 200 mJ m~2 and
the critical undercooling for measurable homogeneous nucleation is about
40 °C. This system has been used to experimentally test the theories of
homogeneous nucleation and reasonably close agreement was found®.

Another system in which the equilibrium phase is probably formed
homogeneously at a few tens of degrees undercooling is the precipitation of
Ni;Al in many Ni-rich alloys. Depending on the system the misfit varies up to
a maximum of 2%, and vy is probably less than 30 mJ m~2. Most other
examples of homogeneous nucleation, however, are limited to metastable
phases, usually GP zones. (See Section 5.5.1.)

5.2 Heterogeneous Nucleation

Nucleation in solids, as in liquids, is almost always heterogeneous. Suitable
nucleation sites are non-equilibrium defects such as excess vacancies, disloca-
tions, grain boundaries, stacking faults, inclusions, and free surfaces, all of
which increase the free energy of the material. If the creation of a nucleus
results in the destruction of a defect, some free energy (AG,) will be released
thereby reducing (or even removing) the activation energy barrier. The
equivalent to Equation 5.5 for heterogeneous nucleation is

AGhet = _V(AGV - AGS) + A'Y - AGd (5.18)

Nucleation on Grain Boundaries

Ignoring any misfit strain energy, the optimum embryo shape should be that
which minimizes the total interfacial free energy. The optimum shape for an
incoherent grain-boundary nucleus will consequently be two abutted spherical
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caps as shown in Fig. 5.6, with 6 given by
COS 0 = Yo0/2YVap (5.19)

(assuming ,g is isotropic and equal for both grains). The excess free energy
associated with the embryo will be given by

AG = —VAG, + ApYap — AacVaa (5.20)

where V is the volume of the embryo, A,g is the area of /B interface of
energy Yop created, and A,, the area of a/a grain boundary of energy vy,
destroyed during the process. The last term of the above equation is simply
AG4 in Equation 5.18.

a YaB

Yaa A

. *
a radius r

»*
volume V
Fig. 5.6 The critical nucleus size (V*) for grain boundary nucleation.

It can be seen that grain boundary nucleation is analogous to solidification
on a substrate (Section 4.1.3) and the same results will apply. Again the
critical radius of the spherical caps will be independent of the grain boundary
and given by

r* = 2v,s/AG, (5.21)

and the activation energy barrier for heterogeneous nucleation will be given
by

AGhet _ Vie

—= = —— = 5(8) (5.22)

%*
A(;hom hom

where S(0) is a shape factor given by
1
S(8) = 5(2 + cos 0)(1 — cos 0)? (5.23)

The ability of a grain boundary to reduce AGy,, i.e. its potency as a
nucleation site, depends on cos 6, i.e. on the ratio yqq/2Yqp.

V* and AG* can be reduced even further by nucleation on a grain edge ar
grain corner, Figs. 5.7 and 5.8. Figure 5.9 shows how AGp../AGhom depends
on cos 0 for the various grain boundary nucleation sites.

High-angle grain boundaries are particularly effective nucleation sites for
incoherent precipitates with high v,g. If the matrix and precipitate are suf-
ficiently compatible to allow the formation of lower energy facets then V* and
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Fig. 5.7 Critical nucleus shape for nucleation on a grain edge.

Fig. 5.8 Critical nucleus shape for nucleation on a grain corner.

Fig. 5.9 The effect of 6 on the activation energy for grain boundary nucleation
relative to homogeneous nucleation. (After J.W. Cahn, Acta Metallurgia 4 (1956)
449.)

AG¢,, can be further reduced as shown in Fig. 5.10. The nucleus will then
have an orientation relationship with one of the grains. Such nuclei are to be
expected whenever possible, since the most successful nuclei, i.e. those which
form most rapidly, will have the smallest nucleation barrier.

Other planar defects such as inclusion/matrix interfaces, stacking faults
and free surfaces can behave in a similar way to grain boundaries in reducing
AG*. Note, however, that stacking faults are much less potent sites due to
their lower energy in comparison to high-angle boundaries.
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Fig. 5.10 The critical nucleus size can be reduced even further by forming a
low-energy coherent interface with one grain.

Dislocations

The lattice distortion in the vicinity of a dislocation can assist nucleation in
several ways. The main effect of dislocations is to reduce the AG,-contribution
to AG* by reducing the total strain energy of the embryo. A coherent nucleus
with a negative misfit, i.e. a smaller volume than the matrix, can reduce its
AG* by forming in the region of compressive strain above an edge disloca-
tion, whereas if the misfit is positive it is energetically favourable for it to form
below the dislocation.

Nucleation on dislocations may also be assisted by solute segregation which
can raise the composition of the matrix to nearer that of the precipitate. The
dislocation can also assist in growth of an embryo beyond the critical size by
providing a diffusion pipe with a lower AG,.

Dislocations are not very effective for reducing the interfacial energy con-
tribution to AG*. This means that nucleation on dislocations usually requires
rather good matching between precipitate and matrix on at least one plane,
so that low-energy coherent or semicoherent interfaces can form. Ignoring
strain energy effects, the minimum AG* is then achieved when the nucleus
shape is the equilibrium shape given by the Wulff construction. When the
precipitate and matrix have different crystal structures the critical nucleus
should therefore be disc-like or needle-like as discussed in Section 3.4.2.

In fcc crystals the 4(110) unit dislocations can dissociate to produce a ribbon
of stacking fault, e.g.

a a a._ ..
2[110] — 6[121] + 6[211]

giving a stacking fault on (111) separated by two Shockley partials. Since the
stacking fault is in effect four close-packed layers of hcp crystal (Fig 3.59b) it
can act as a very potent nucleation site for an hcp precipitate. This type of
nucleation has been observed for the precipitation of the hexagonal transition
phase y' in Al-Ag alloys. Nucleation is achieved simply by the diffusion of
silver atoms to the fault. Thus there will automatically be an orientation
relationship between the v’ precipitate (fault) and the matrix of the type

(OOOI)Vr//(lil)a
[1120],.//[110],

which ensures good matching and low energy interfaces.
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It should be noted that even in annealed specimens dislocation densities are
often sufficiently high to account for any precipitate dispersion that is resolv-
able in the light microscope, i.e. ~1 pm™2. Figure 5.11 shows an example of
niobium carbonitride precipitates on dislocations in a ferritic iron matrix. This
is a so-called dark-field electron microscope micrograph in which the precipi-
tates are imaged bright and the matrix dark. The precipitates lie in rows along
dislocations.

Excess Vacancies
When an age-hardening alloy is quenched from a high temperature, excess
vacancies are retained during the quench. These vacancies can assist nuclea-
tion by increasing diffusion rates, or by relieving misfit strain energies. They
may influence nucleation either individually or collectively by grouping into
small clusters.

Since AGy is relatively small for vacancies, nucleation will only take place
when a reasonable combination of the following conditions is met: low
interfacial energy (i.e. fully coherent nuclei), small volume strain energy, and

Fig. 5.11 Rows of niobium carbonitride precipitates on dislocations in ferrite
(X 108 000). (Dark-field electron micrograph in which the precipitates show up
bright.)
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high driving force. These are essentially the same conditions that must be
fulfilled for homogeneous nucleation. Since individual vacancies or small
clusters cannot be resolved with conventional transmission electron micros-
copy, evidence for the role of vacancies as hetergenous nucleation sites is
indirect (discussed later).

5.2.1 Rate of Heterogeneous Nucleation

If the various nucleation sites are arranged in order of increasing AGy, i.e.
decreasing AG*, the sequence would be roughly

homogeneous sites

vacancies

dislocations

stacking faults

grain boundaries and interphase boundaries
free surfaces.

SNk L

Nucleation should always occur most rapidly on sites near the bottom of the
list. However the relative importance of these sites in determining the overall
rate at which the alloy will transform also depends on the relative concentra-
tions of the sites. For homogeneous nucleation every atom is a potential
nucleation site, whereas only those atoms on grain boundaries, for example,
can take part in boundary-assisted nucleation.

If the concentration of heterogeneous nucleation sites is C; per unit volume,
the heterogeneous nucleation rate will be given by an equation of the form

AG*
exp (—- T ) nuclei m 35! (5.24)

This is plotted as a function of temperature in Fig. 5.12. Note that, as with
heterogeneous nucleation in liquids, measurably high nucleation rates can be

AG,
Nper = @C; exp (_TT—) ’

74 Z_ Te — Te

AGT (het)

a+ B

. ]
0 X, Xy O

Fig. 5.12 The rate of heterogeneous nucleation during precipitation of 8 in alloy X
as a function of undercooling.
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obtained at very small driving forces. The relative magnitudes of the hetero-
geneous and homogeneous volume nucleation rates can be obtained by divid-
ing Equation 5.11 by 5.24 giving

T (5.25)

& _ Q (AG;;om - AGltet)
exp | ———————

(Differences in o and AG,, are not so important and have been ignored.)
Since AG* is always smallest for heterogeneous nucleation the exponential
factor in the above equation is always a large quantity which favours a high
heterogeneous nucleation rate. However, the factor (C;/C,) must also be
taken into account, i.e. the number of atoms on heterogeneous sites relative
to the number within the matrix. For grain boundary nucleation

G_23 (5.26)

C D
where 8 is the boundary thickness and D is the grain size. For nucleation on
grain edges and corners (C;/C,) becomes reduced even further to (5/D)? and
(3/D)*. Therefore for a 50 wm grain size taking & as 0.5 nm gives
8/D = 107°. Consequently grain boundary nucleation will dominate over
homogeneous nucleation if the boundary is sufficiently potent to make the
exponential term in Equation 5.23 greater than 10°. Values for C;/C, for
other sites are listed in Table 5.1.

In general the type of site which gives the highest volume nucleation rate
will depend on the driving force (AG,). At very small driving forces, when
activation energy barriers for nucleation are high, the highest nucleation rates
will be produced by grain-corner nucleation. As the driving force increases,
however, grain edges and then boundaries will dominate the transformation.
At very high driving forces it may be possible for the (C;/Cy) term to
dominate and then homogeneous nucleation provides the highest nucleation
rates. Similar considerations will apply to the relative importance of other
heterogeneous nucleation sites.

The above comments concerned nucleation during isothermal transforma-
tions when the specimen is held at a constant temperature. If nucleation
occurs during continuous cooling the driving force for nucleation will increase
with time. Under these conditions the initial stages of the transformation will
be dominated by those nucleation sites which can first produce a measurable
volume nucleation rate. Considering only grain boundaries again, if Yoq/Yag
is high, noticeable transformation will begin first at the grain corners, whereas
if the grain boundary is less potent (Yaa/Vop Smaller) nucleation may not be
possible until such high driving forces are reached that less favourable hetero-
geneous or even homogeneous nucleation sites dominate. This will not of
course exclude precipitation on potent heterogeneous sites, but they will
make only a very small contribution to the total nucleation rate.
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5.3 Precipitate Growth

As explained above, the successful critical nuclei are those with the smallest
nucleation barrier, i.e. the smallest critical volume. In thé absence of strain-
energy effects the precipitate shape satisfying this criterion is that which
minimizes the total interfacial free energy. Thus nuclei will usually be
bounded by a combination of coherent or semicoherent facets and smoothly
curved incoherent interfaces. For the precipitate to grow these interfaces
must migrate and the shape that develops during growth will be determined
by the relative migration rates. As explained in Section 3.5.1, when the two
phases have different crystal structures semicoherent interfaces have very low
mobility and are forced to migrate by a ledge mechanism. Incoherent inter-
faces on the other hand are highly mobile. If there are problems in maintain-
ing a constant supply of ledges the incoherent interfaces will be able to
advance faster than the semicoherent interface and a nucleus with one plane
of good matching should grow into a thin disc or plate as shown in Fig. 5.13.
This is the origin of the so-called Widmanstitten morphology*?.

The next few sections will be concerned with developing an approximate
quantitative treatment for the ledge mechanism and for the rate of migration
of curved incoherent interfaces, but before treating these two cases it is useful
to begin with the simpler case of a planar incoherent interface.

Slow
A

B ( ) —] —>Fast

Fig. 5.13 The effect of interface type on the morphology of a growing precipitate.
(A) Low-mobility semicoherent interfaces. (B) High-mobility incoherent interfaces.

5.3.1 Growth behind Planar Incoherent Interfaces

It will be apparent from the above discussion that planar interfaces in crystal-
line solids will usually not be incoherent. However, one situation where
approximately planar incoherent interfaces may be found is after grain-
boundary nucleation. If many incoherent nuclei form on a grain boundary
they might subsequently grow together to form a slab of B precipitate as
shown in Fig. 5.14.

Imagine that such a slab of solute-rich precipitate has grown from zero
thickness and that the instantaneous growth rate is v. Since the concentration
of solute in the precipitate (Cg) is higher than in the bulk (C;) the matrix
adjacent to the precipitate will be depleted of solute as shown. Also since the
interface is incoherent diffusion-controlled growth and local equilibrium at
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Fig. 5.14 Diffusion-controlled thickening of a precipitate plate.

the interface can be assumed, i.e. the solute concentration in the matrix
adjacent to the B will be the equilibrium value C,. The growth rate (v) will
depend on the concentration gradient at the interface dC/dx.

For unit area of interface to advance a distance dx a volume of material
1 - dx must be converted from a containing C, to 8 containing Cg moles of B
per unit volume, i.e. (Cg — C.)dx moles of B must be supplied by diffusion
through the o. The flux of B through unit area in time dt is given by
D(dC/dx)dt, where D is the interdiffusion coefficient (or interstitial diffusion
coefficient). Equating these two quantities gives

_dx__ D dc 5.27
"TaTC -G ax (-27)

As the precipitate grows solute must be depleted from an ever-increasing
volume of matrix so that dC/dx in the above equation decreases with time.
To make this quantitative, consider a simplified approach originally due to
Zener?. If the concentration profile is simplified to that shown in Fig. 5.15
dC/dx is given by ACy/L where ACy = C, — C,. The width of the diffusion
zone L can be obtained by noting that the conservation of solute requires the
two shaded areas in Fig. 5.15 to be equal, i.e.

(CB - Co)x = LACO/Z
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Fig. 5.15 A simplification of the concentration profile.

where x is the thickness of the slab. The growth rate therefore becomes

b D(AC,)?
T 2Cy - C)(Cp — Copx

If it is assumed that the molar volume (V) is a constant, the concentrations in
the above equation can be replaced by mole fractions (X = CVy). Further-
more, for the sake of simplicity it can often be assumed that
Cs — Gy = Cg — C.. Integration of Equation 5.28 then gives

(5.28)

=% iy (5.29
¥ {-(XB - Xe) ' )
and
_ AX, D
v = “—2()(6 ~X) \/7 (5.30)

where AX, = X, — X, (Fig. 5.16) is the supersaturation prior to precipita-
tion.

Fig. 5.16 The effect of temperature and position on growth rate, v.
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The following points are important to note regarding these equations.

1. x = /(Dt), i.e. precipitate thickening obeys a parabolic growth law.

2. v «x AXj, i.e. for a given time the growth rate is proportional to the
supersaturation.

3. v J(D/t).

The effect of alloy composition and temperature on growth rate is illus-
trated in Fig. 5.16. Growth rates are low at small undercoolings due to small
supersaturation AX, but are also low at large undercoolings due to slow
diffusion. A maximum growth rate will occur at some intermediate under-
cooling.

When the diffusion fields of separate precipitates begin to overlap
Equation 5.30 will no longer apply, but growth will decelerate more rapidly
and finally cease when the matrix concentration is X, everywhere, Fig. 5.17.

Although these equations are only approximate and were derived for a
planar interface, the conclusions are not significantly altered by more thor-
ough treatments or by allowing curved interfaces. Thus it can be shown that

Fig. 5.17 (a) Interference of growing precipitates due to overlapping diffusion fields
at later stage of growth. (b) Precipitate has stopped growing.
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any linear dimension of a spheroidal precipitate increases as J(Dt) provided
all interfaces migrate under volume diffusion control.

Usually grain boundary precipitates do not form a continuous layer along
the boundary but remain as isolated particles. The growth of such precipitates
can occur at rates far greater than allowed by volume diffusion. The reason
for this is that the grain boundary can act as a collector plate for solute as
shown in Fig. 5.18.%2 Growth of such a so-called grain-boundary allotrio-
morph involves three steps: (1) volume diffusion of solute to the grain
boundary; (2) diffusion of solute along the grain boundary with some at-
tachment at the precipitate rim; and (3) diffusion along the o/p interfaces
allowing accelerated thickening. This mechanism is of greatest significance
when substitutional diffusion is involved. In the case of interstitial solutions
diffusion short circuits are comparatively unimportant due to the high volume
diffusion rates.

Solute
a
~
v N ,V Y Grain
A 4 \ / A A boundary
1

Fig. 5.18 Grain-boundary diffusion can lead to rapid lengthening and thickening of
grain boundary precipitates.

5.3.2 Diffusion-Controlled Lengthening of Plates or Needles

Imagine now that the B precipitate is a plate of constant thickness having a
cylindrically curved incoherent edge of radius r as shown in Fig. 5.19a. Again
the concentration profile across the curved interface will appear as shown in
Fig. 5.19b, but now, due to the Gibbs-Thomson effect, the equilibrium con-
centration in the matrix adjacent to the edge will be increased to C,. The
concentration gradient available to drive diffusion to the advancing edge is
therefore reduced to AC/L where AC = Cy — C, and L is a characteristic
diffusion distance. The diffusion problem in this case is more complex as
diffusion occurs radially. However, solution of the relevant equations shows
that L is given by kr where k is a numerical constant (~1). By analogy with
Equation 5.27, therefore, the lengthening rate will be given by

D ac
CB - Cr kr

The composition difference available to drive diffusion will depend on the
tip radius as shown in Fig. 5.20. With certain simplifying assumptions it can

y =

(5.31)
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Fig. 5.19 (a) The edge of a plate-like precipitate. (b) A concentration profile along
AA' in (a).

be shown that
r*
AX = AXO(l - ;) (5.32)

where AY = X, — X;, AXy; = Xy — X, and r* is the critical nucleus radius,
i.e. the value of r required to reduce AX to zero. Again, assuming constant
molar volume, the above equations can be combined to give

DAX, 1( i r*)

Tk - x) A\ 7

(5.33)

This equation will apply as long as there is no decrease in supersaturation far
from the interface due to other precipitates. The difference between this
equation and Equation 5.30 is that for a given plate thickness the lengthening
rate should be constant, i.e. x « ¢ (linear growth).

Although the above equations were developed for the lengthening of a
plate, the same equations can be derived for the lengthening of a needle under
diffusion-controlled growth. The only difference is that the edge of a needle
has a spherical tip so that the Gibbs-Thomson increase in free energy is
2yV,/r instead of yV,,/r. The value of r* in Equation 5.33 will, therefore,
be different for a plate and a needle.
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Fig. 5.20 The Gibbs-Thomson effect. (a) Free energy curves at 7;. (b) Corres-
ponding phase diagram.

The above treatment only applies to plates or needles that lengthen by a
volume diffusion-controlled continuous growth process. This is a reasonable
assumption for the curved ends of needles, but in the case of plate-like
precipitates the edges are often faceted and are observed to migrate by a
ledge mechanism. Atoms can then only attach at the ledges and new
equations must be derived as discussed below.

Another source of deviation between theory and practice is if solute can be
transported to the advancing precipitate edges by short-circuit diffusion in the
broad faces of the precipitate plate.

5.3.3 Thickening of Plate-like Precipitates

The treatment given in Section 5.3.1 for a planar incoherent interface is only
valid for interfaces with high accommodation factors. In general this will not
be the case for the broad faces of plate-like precipitates which are semicoher-
ent and are restricted to migrate by the lateral movement of ledges.

For simplicity, imagine a plate-like precipitate that is thickening by the
lateral movement of linear ledges of constant spacing A and height A,
Fig. 5.21. It can readily be seen that the half-thickness of the plate should
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Fig. 5.21 Thickening of plate-like precipitates by ledge mechanism.

increase at a rate v given by

_uk

- (5.34)

1%

where u is the rate of lateral migration.

The problem of ledge migration is very similar to that of plate lengthening.
The necessary composition changes required for precipitate growth must be
achieved by long-range diffusion to and from the ledges as shown in Fig. 5.21.
If the edges of the ledges are incoherent the mairix composition in contact
with the ledges will be X, and growth will be diffusion controlled. A similar
treatment to that given in Section 5.3.2 then gives the rate of lateral migration

as®

_ DAX,
k(X — X)h
This is essentially the same as Equation 5.33 for the lengthening of a plate

with h =r and X, = X, i.e. no Gibbs-Thomson effect. Combining the

above equations shows that the thickening rate is independent of 4 and given
by

u (5.35)

_ DAX,
"7 k(X — XX

Thus, provided the diffusion fields of different precipitates do not overlap, the
rate at which plates thicken will be inversely proportional to the interledge
spacing . The validity of Equation 5.36 is dependent on there being a
constant supply of ledges. As with faceted solid/liquid interfaces, new ledges
can be generated by various mechanisms such as repeated surface nucleation,
spiral growth, nucleation at the precipitate edges, or from intersections with
other precipitates. With the exception of spiral growth, however, none of
these mechanisms can maintain a supply of ledges with constant \.

By using hot-stage transmission electron microscopy it is possible to mea-
sure the thickering rates of individual precipitate plates. Figure 5.22 shows
results obtained from a v plate in the Al-Ag system®. It can be seen that there

(5.36)
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Fig. 5.22  The thickening of a vy plate in an Al-15 wt% Ag alloy at 400 °C. (From
C. Laird and H.I. Aaronson, Acta Metallurgica 17 (1969) 505.)

are appreciable intervals of time when there is no perceptible increase in plate
thickness followed by periods when the thickness increases rapidly as an
interfacial ledge passes. The two smooth lines in the figure are upper and
lower limits for the rate of thickening for a planar incoherent interface in the
same system, assuming diffusion control. The ledge mechanism is clearly a
very different process. The fact that there is no perceptible increase in
thickness except when ledges pass is strong evidence in favour of the immobil-
ity of semicoherent interfaces. It can also be seen that the thickening rate is
not constant implying that ledge nucleation is rate controlling.

Measurements on precipitates in other systems indicate that even within
the same system the thickness/time relationship can vary greatly from plate to
plate, presumably depending on differences in the ease of nucleation of new
ledges.

5.4 Overall Transformation Kinetics—TTT Diagrams

The progress of an isothermal phase transformation can be conveniently
represented by plotting the fraction transformation (f) as a function of time
and temperature, i.e. a TTT diagram as shown in Fig. 5.23a for example. For
transformations of the type o — B, fis just the volume fraction of  at any
time. For precipitation reactions o’ — a + B, f can be defined as the volume
of B at time ¢ divided by the final volume of B. In both cases f varies from 0 to
1 from the beginning to the end of the transformation, Fig. 5.23b.

Among the factors that determine f(¢, T) are the nucleation rate, the
growth rate, the density and distribution of nucleation sites, the overlap of
diffusion fields from adjacent transformed volumes, and the impingement of
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Fig. 5.23 The percentage transformation versus time for different transformation
temperatures.

adjacent transformed volumes. Some of the problems involved are illustrated
in Fig. 5.24. After quenching to the transformation temperature the meta-
stable a phase will contain many nucleation sites (usually heterogeneous).
One possible sequences of events, Fig. 5.24a, is that nuclei form throughout
the transformation so that a wide range of particle sizes exists at any time.
Another possibility is that all nuclei form right at the beginning of transforma-
tion, Fig. 5.24b. If all potential nucleation sites are consumed in the process
this is known as site saturation. In Fig. 5.24a, f will depend on the nucleation
rate and the growth rate. In Fig. 5.24b, f will only depend on the number of
nucleation sites and the growth rate. For transformations of the type o — B
or a = B + vy (known collectively as cellular transformations) all of the
parent phase is consumed by the transformation product, Fig. 5.24c. In these
cases the transformation does not terminate by the gradual reduction in the
growth rate, but by the impingement of adjacent cells growing with a constant
velocity. Pearlite, cellular precipitation, massive transformations and recrys-
tallization belong to this category.
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Fig. 5.24 (a) Nucleation at a constant rate during the whole transformation.
(b) Site saturation—all nucleation occurs at the beginning of transformation. (c) A
cellular transformation.

As a simple example of the derivation of f(¢, T) consider a cellular trans-
formation (e — B) in which B cells are continuously nucleated throughout the
transformation at a constant rate N°. If the cells grow as spheres at a constant
rate v, the volume of a cell nucleated at time zero will be given by

4 4
e — o J— 3
31'rr3 31'r(vt)
A cell which does not nucleate until time T will have a volume

4
V= g‘rrv3(t - 1)

The number of nuclei that formed in a time increment of dr will be Ndr per
unit volume of untransformed «. Thus if the particles do not impinge on one
another, for a unit total volume

4 t
f=3v' = §1TNV3 J (t—7)1dr
0
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i.e.
f= ; N3 (5.37)

This equation will only be valid for f < 1. As time passes the B cells will
eventually impinge on one another and the rate of transformation will de-
crease again. The equation valid for randomly distributed nuclei for both long
and short times is®

f=1-exp (—%T Nv3t4) (5:38)

Note that this is the same as Equation 5.37 for short times, since
1 — exp (—z) = z when z < 1. It is also reasonable for long times since as
t— o f—1,

‘Equation 5.38 is known as a Johnson— Mehl-Avrami equation. In general,
depending on the assumptions made regarding the nucleation and growth
processes, a variety of similar equations can be obtained with the form

f=1-—exp (—kt" (5.39)

where n is a numerical exponent whose value can vary from ~1 to 4. Provided
there is no change in the nucleation mechanism, » is independent of tempera-
ture. k, on the other hand, depends on the nucleation and growth rates and
is therefore very sensitive to temperature. For example, in the case above,
k = wNv*/3 and both N and v are very temperature sensitive.

Since exp (—0.7) = 0.5 the time for 50% transformation (f, s) is given by

ktgs = 0.7

i.e.
0.7
For the case discussed above
0.9
los = N1/4,374 (5.41)

Consequently it can be seen that rapid transformations are associated with
large values of k, i.e. rapid nucleation and growth rates, as expected.

Civilian transformations that occur on cooling are typified by C-shaped
TTT curves as shown in Fig. 5.23a. This can be explained on the basis of the
variation of nucleation and growth rates with increasing undercooling. At
temperatures close to T the driving force for transformation is very small so
that both nucleation and subsequent growth rates are slow and a long time is
required for transformation. When AT is very large, on the other hand, slow
diffusion rates limit the rate of transformation. A maximum rate is, therefore,
obtained at intermediate temperatures.
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5.5 Precipitation in Age-Hardening Alloys

The theory of nucleation and growth that has been described above is able to
provide general guidelines for understanding civilian transformations. Let us
now turn to a consideration of some examples of the great variety of civilian
transformations that can occur in solids, and begin with alloys that can be
age-hardened. These alloys are characterized by phase diagrams such as that
shown in Fig. 5.1a(i). Two extensively researched and illustrative examples
are aluminium-copper and aluminium-silver alloys.

5.5.1 Precipitation in Aluminium-Copper Alloys

GP Zones

Figure 5.25 shows the Al-rich end of the Al-Cu phase diagram. If an alloy
with the composition Al-4 wt% Cu (1.7 atomic %) is heated to a tempera-
ture of about 540 °C all copper will be in solid solution as a stable fcc o phase,
and by quenching the specimen rapidly into water there is no time for any
transformation to occur so that the solid solution is retained largely un-
changed to room temperature. However, the solid solution is now supersatu-
rated with Cu and there is a driving force for precipitation of the equilibrium 6
phase, CuAl,.

Atomic percent Cu
700 P

600

500

400

300

Temperature °C

200

100

1 1 1

1 2 3 4 5
Weight percent Cu

Fig. 5.25 Al-Cu phase diagram showing the metastable GP zone, 6" and 6’ solvuses.
(Reproduced from G. Lorimer, Precipitation Processes in Solids, K.C. Russell and
H.I. Aaronson (Eds.), The Metallurgical Society of AMIE, 1978, p. 87.)
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If the alloy is now aged by holding for a period of time at room temperature
or some other temperature below about 180 °C it is found that the first
precipitate to nucleate is not 6 but coherent Cu-rich GP zones. (Copper-rich
zones in Al-Cu alloys were detected independently in 1938 by Guinier and
Preston from streaks in X-ray diffraction patterns.) The reason for this can be
understood on the basis of the relative activation energy barriers for nuclea-
tion as discussed earlier. GP zones are fully coherent with the matrix and
therefore have a very low interfacial energy, whereas the 6 phase has a
complex tetragonal crystal structure which can only form with high-energy
incoherent interfaces. In addition, the zones minimize their strain energy by
choosing a disc-shape perpendicular to the elastically soft (100) directions in
the fcc matrix, Fig. 5.26. Therefore, despite the fact that the driving force for
precipitation of GP zones (AG, — AGj) is less than for the equilibrium phase,
the barrier to nucleation (AG*) is still less, and the zones nucleate most
rapidly. The microstructure of an Al-Cu alloy aged to produce GP zones is
shown in Fig. 5.30a. These zones are about 2 atomic layers thick and 10 nm in
diameter with a spacing of ~10 nm. The zones themselves are not resolved.
The contrast in the image is due to the coherency misfit strain perpendicular
to the zones. This distorts the lattice causing local variations in the intensity of
electron diffraction, which in turn shows up as variations in the image intensity.
Microstructurally, the zones appear to be homogeneously nucleated,
however excess vacancies are thought to play an important role in their
formation. This point will be returned to later.

GP zones are formed as the first precipitate during low-temperature ageing
of many technologically important alloys, notably those based on aluminium
(see Tables 5.2 and 5.3). In dilute Al-Zn and Al-Ag alloys Zn-rich and
Ag-rich GP zones are found. In these cases there is very little misfit strain and
AG* is minimized by the formation of spherical zones with a minimum
interfacial energy, Fig. 3.39.

Transition Phases
The formation of GP zones is usually followed by the precipitation of so-
called transition phases. In the case of Al-Cu alloys the equilibrium 6 phase is

OAl eCu

Fig. 5.26 Section through a GP zone parallel to the (200) plane. (Based on the work
of V. Gerold: Zeitschrift fiir Metallkunde 45 (1954) 599.)
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Table 5.2 Some Precipitation-Hardening Sequences

(Mainly from J.W. Martin, Precipitation Hardening, Pergamon Press,
Oxford, 1968.)

Base metal  Alloy Precipitation sequence
Aluminium  Al-Ag GPZ (spheres) — ' (plates) — vy (Ag,Al)
Al-Cu GPZ (discs) — 6" (discs) — 0’ (plates)
— 6 (CuAly)
Al-Cu-Mg  GPZ (rods) — S’ (laths) — S (CuMgAl,)
(laths)

Al-Zn-Mg GPZ (spheres) — m' (plates) — m (MgZn,)
(plates or rods)
Al-Mg-Si GPZ (rods) — B’ (rods) — B(Mg,Si) (plates)

Copper Cu-Be GPZ (discs) = y' — v (CuBe)
Cu-Co GPZ (spheres) — B (Co) (plates)

Iron Fe-C e-carbide (discs) — Fe;C (plates)
Fe-N o (discs) — FeyN

Nickel Ni-Cr-Ti-Al ' (cubes or spheres)

preceded by 6” and 6'. The total precipitation process can be written
ap— a; + GPzones > o, + 0" > a3 + ' > oy + 0

where ay is the original supersaturated solid solution, a, is the composition of
the matrix in equilibrium with GP zones, a, the composition in equilibrium
with 0'' etc.

Figure 5.27 shows a schematic free energy diagram for the above phases.
Since GP zones and the matrix have the same crystal structure they lie on the
same free energy curve (ignoring strain energy effects—see Section 5.5.5).
The transition phases 6” and 6’ are less stable than the equilibrium 6 phase
and consequently have higher free energies as shown. The compositions
of the matrix in equilibrium with each phase—a,, o,, a3, ay—are given
by the common tangent construction. These compositions correspond to
points on the solvus lines for GP zones, 6'', 8’ and 6 shown in Fig. 5.25. The
free energy of the alloy undergoing the above precipitation sequence de-
creases as

Go— G—> G,—> G3—> Gy

as shown in Fig. 5.27. Transformation stops when the minimum free energy
equilibrium state G, is reached, i.e. ay + 6.

Transition phases form because, like GP zones, they have a lower activa-
tion energy barrier for nucleation than the equilibrium phase, Fig. 5.28a. The
free energy of the alloy therefore decreases more rapidly via the transition
phases than by direct transformation to the equilibrium phase, Fig. 5.28b.
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X[u‘——

Fig. 5.27 A schematic molar free energy diagram for the Al-Cu system.

The lower activation energy barriers are achieved because the crystal struc-
tures of the transition phases are intermediate between those of the matrix
and the equilibrium phase. In this way the transition phases can achieve a
high degree of coherence and thus a low interfacial energy contribution to
AG™. The equilibrium phase on the other hand usually has a complex crystal
structure that is incompatible with the matrix and results in high-energy
interfaces and high AG*.

The crystal structures of 8", 8’ and 6 are shown in Fig. 5.29 along with that
of the fcc matrix for comparison. 6’ has a tetragonal unit cell which is
essentially a distorted fcc structure in which the copper and aluminium atoms
are ordered on (001) planes as shown. Note that the atomic structure of the
(001) planes is identical to that in the matrix, and the (010) and (100) planes
are very similar, apart from a small distortion in the [001] direction. 8'' forms
as fully coherent plate-like precipitates with a {001}, habit plane and the
following orientation relationship to the matrix:

(001)¢-(|(001),
[100],-[I[100],

A high magnification transmission electron micrograph of an alloy aged to
produce 6’ precipitates is shown in Fig. 5.30b. Like the GP zones in
Fig. 5.30a, the 6" precipitates are visible by virtue of the coherency-strain
fields caused by the misfit perpendicular to the plates. §'’ precipitates are
larger than GP zones being up to ~10 nm thick and 100 nm in diameter.

8" is also tetragonal with an approximate composition CuAl, and again has
(001) planes that are identical with {001},. The (100) and (010) planes,
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Fig. 5.28 (a) The activation energy barrier to the formation of each transition phase
is very small in comparison to the barrier against the direct precipitation of the
equilibrium phase. (b) Schematic diagram showing the total free energy of the alloy
v. time.

however, have a different crystal structure to the matrix and a large misfit in
the [001] direction. 8’ therefore forms as plates on {001}, with the same
orientation relationship as 0'’. The broad faces of the plates are initially fully
coherent but lose coherency as the plates grow, while the edges of the plates
are either incoherent or have a complex semicoherent structure. A transmis-
sion electron micrograph of 0’ plates ~1 wm diameter is shown in Fig. 5.30c.
Note the presence of misfit dislocations in the broad faces of the precipitates.
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(100)
All sides coherent

1

e

(001) Coherent or
semicoherent

(«1)?%))} not coherent

Incoherent

a-matrix

Fig. 5.29 Structure and morphology of 8", 8’ and 6 in Al-Cu (O Al, @ Cu).

Note also that since the edges of the plates are not coherent there are no
long-range coherency-strain fields.

The equilibrium 6 phase has the approximate composition CuAl, and a
complex body-centred tetragonal structure as shown in Fig. 5.29. There are
no planes of good matching with 'the matrix and only incoherent, or at best
complex semicoherent interfaces are possible. The microstructure at this final
stage of ageing is shown in Fig. 5.30d. Note the large size and coarse distribu-
tion of the precipitates.

The transformation from GP zones to 6'’ occurs by the in situ transforma-
tion of the zones, which can be considered as very potent nucleation sites
for 6''. After longer ageing times the 6’ phase nucleates on matrix disloca-
tions with two orientations of 6’ plates on any one 4(110) dislocation. This is
because the strain field of such a dislocation is able to reduce the misfit in two
(100) matrix directions. Figure 5.31a shows 6’ plates that have nucleated on
dislocations. Note that as the 8’ grows the surrounding, less-stable 8” can be
seen to dissolve. After still longer ageing times the equilibrium 6 phase
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Fig. 5.30 Microstructures at different stages during ageing of Al-Cu alloys. (a) GP
zones X 720 000. (b) 8” X 63 000. (c) 6’ X 18 000. (d) 6 x 8000. [(a) After R.B.
Nicholson and J. Nutting, Philosophical Magazine 3 (1958) 531. (b) R.B. Nicholson,
G. Thomas and J. Nutting, Journal of the Institute of Metals 87 (1958-1959) 431.
(c) G.C. Weatherly and R.B. Nicholson, Philosophical Magazine 17 (1968) 813.
(d) G.A. Chadwick, Metallography of Phase Transformations, Butterworths, London,
1972, from C. Laird.]
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(a)

(b)

(c)

Fig. 531 Electron micrographs showing nucleation sites in Al-Cu alloys.
(a) 8" — 0'. 8" nucleates at dislocation (x 70 000). (b) 6 nucleation on grain bound-
ary (GB) (X 56 000). (c) 6’ — 8. 6 nucleates at 8’/ matrix interface (X 70 000).
(After P. Haasen, Physical Metallurgy, Cambridge University Press, Cambridge,
1978.)
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nucleates either on grain boundaries, Fig. 5.31b, or at 6’/matrix interfaces,
Fig. 5.31c. The choice of these nucleation sites is governed by the need to
reduce the large interfacial energy contribution to AG* for this phase.

The full sequence of GP zones and transition precipitates is only possible
when the alloy is aged at a temperature below the GP zones solvus. For
example, if ageing is carried out at a temperature above the 6" solvus but
below the 8’ solvus, Fig. 5.25, the first precipitate will be 8’, heterogeneously
nucleated on dislocations. If ageing is carried out above the 6’ solvus, the only
precipitate that is possible is 8 which nucleates and grows at grain boundaries.
Also, if an alloy containing GP zones is heated to above the GP zone solvus
the zones will dissolve. This is known as reversion.

The effect of ageing temperature on the sequence of precipitates is illus-
trated by a schematic TTT diagram in Fig. 5.32. The fastest transformation
rates are associated with the highest nucleation rates and therefore the finest
precipitate distributions. There is consequently an increasing coarseness of
microstructure through the sequence of precipitates as can be seen in
Fig. 5.30.

The mechanism whereby a more stable precipitate grows at the expense of
a less stable precipitate is illustrated in Fig. 5.33 for the case 6''/6’.
Figure 5.27 shows that the Cu concentration in the matrix close to the 6"’
precipitates (o) will be higher than that close to 6’(az). Therefore Cu will
tend to diffuse through the matrix away from 6'', which thereby dissolves, and
towards 6', which grows.
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Fig. 5.32 (a) Metastable solvus lines in Al-Cu (schematic). (b) Time for start of
precipitation at different temperatures for alloy X in (a).
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Fig. 5.33 Matrix in equilibrium with 6" (a;) contains more Cu than matrix in
equilibrium with 8’ (az). Cu diffuses as shown causing 6" to shrink and 8’ to grow.

5.5.2 Precipitation in Aluminium-Silver Alloys

Figure 5.34 shows the Al-Ag phase diagram. If alloys containing up to about
23 atomic % Ag are solution treated, quenched and given a low-temperature
ageing treatment the precipitation sequence is

ag—> a; + GPzones = a, + y' = o3 +
0 1 Y Y

Weight percent aluminium
0 10 20 30 40 5060 80 100
960-5° ' o

1000

1 | L
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100 1 1 ! 11”'1 1 1 ] 1
O 10 20 30 40 50 60 70 80 9 100
Ag Atomic percent aluminium Al

Fig. 5.34 Al-Ag phase diagram showing metastable two-phase field corresponding
to GP zones. (After R. Baur and V. Gerold, Zeitschrift fiir Metallkunde 52 (1961)
671.)
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’

As discussed earlier, the GP zones in this system are spherical. v’ is a
close-packed hexagonal transition phase with an orientation relationship to
the matrix of

(0001),,//(111),
[1120},//[110],

v’ is heterogeneously nucleated on helical dislocations by the enrichment of
stacking faults with silver as discussed in Section 5.2. The equilibrium -y phase
has the composition Ag,Al, is hexagonal and has the same orientation
relationship with the matrix as y'. It forms as plate-like precipitates with (111)
habit planes. y can be formed from vy’ by the latter acquiring misfit
dislocations. It can also be separately nucleated at grain boundaries and grow
by a cellular mechanism (see Section 5.7).

5.5.3 Quenched-in Vacancies

It was shown in Chapter 1 that the equilibrium concentration of vacancies
increases exponentially with temperature. Thus the equilibrium vacancy con-
centration will be relatively high at the solution treatment temperature and
much lower at the ageing temperature. However, when the alloy is rapidly
quenched from the high temperature there will be no time for the new
equilibrium concentration to be established and the high vacancy concentra-
tion becomes quenched-in. Given time, those vacancies in excess of the
equilibrium concentration will anneal out. There will be a tendency for
vacancies to be attracted together into vacancy clusters, and some clusters
collapse into dislocation loops which can grow by absorbing more vacancies.
The dislocations that are already present can also absorb vacancies by climb-
ing. In this way straight screw dislocations can become converted into longer
helical edge dislocations. There are many ways, therefore, in which excess
vacancies are able to provide heterogeneous nucleation sites.

Another effect of quenched-in vacancies is to greatly increase the rate at
which atoms can diffuse at the ageing temperatures. This in turn speeds up the
process of nucleation and growth. Indeed the only way of explaining the rapid
formation of GP zones at the relatively low ageing temperatures used is by the
presence of excess vacancies.

If GP zones are separated by a mean spacing A\, the mean diffusion distance
for the solute atoms is N\/2. Therefore, if the zones are observed to form in a
time ¢, the effective diffusion coefficient is roughly given by x?/¢, i.e.

A2
T H

If high-temperature diffusion data are extrapolated down to the ageing
temperature, the values obtained are orders of magnitude smaller than the
above value. The difference can, however, be explained by a quenched-in
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vacancy concentration that is orders of magnitude greater than the equilib-
rium value. In Al-Cu alloys, for example, GP zones can form by ageing at
room temperature, which would not be feasible without assistance from
excess vacancies.

There is other evidence for the role of quenched-in vacancies in enhancing
diffusion rates. If the alloy is quenched from different solution treatment
temperatures and aged at the same temperature, the initial rate of zone
formation is highest in the specimens quenched from the highest tempera-
tures. Also, if the quench is interrupted at an intermediate temperature, so
that a new equilibrium concentration can be established, the rate of trans-
formation is reduced. Reducing the rate of cooling from the solution treat-
ment temperature produces a similar effect by allowing more time for va-
cancies to be lost during the quench. This is important when large parts are
to be heat treated as the cooling rate varies greatly from the surface to the
centre when the specimen is water-quenched for example.

Apart from dislocations, the main sinks for excess vacancies are the grain
boundaries and other interfaces within the specimen. Since vacancies have
such a high diffusivity it is difficult to avoid losing vacancies in the vicinity of
grain boundaries and interfaces. This has important effects on the distribution
of precipitates that form in the vicinity of grain boundaries on subsequent
ageing. Figure 5.35a shows the vacancy concentration profiles that should be
produced by vacancy diffusion to grain boundaries during quenching. Close to
the boundary the vacancy concentration will be the equilibrium value for the
ageing temperature, while away from the boundary it will be that for the
solution treatment temperature. On ageing these alloys it is found that a
precipitate-free zone (PFZ) is formed as shown in Fig. 5.35b. The solute
concentration within the zone is largely unchanged, but no nucleation has
occurred. The reason for this is that a critical vacancy supersaturation must be
exceeded for nucleation to occur. The width of the PFZ is determined by the
vacancy concentration as shown in Fig. 5.35c. At low temperatures, where
the driving force for precipitation is high, the critical vacancy supersaturation
is lower and narrower PFZs are formed. High quench rates will also produce
narrow PFZs by reducing the width of the vacancy concentration profile.
Similar PFZs can also form at inclusions and dislocations.

Finally, it should be mentioned that another cause of PFZs can be the nu-
cleation and growth of grain boundary precipitates during cooling from the
solution treatment temperature. This causes solute to be drained from the
surrounding matrix and a PFZ results. An example of this type of PFZ is
shown in Fig. 5.36.

5.5.4 Age Hardening

The reason for the interest in alloy systems that show transition phase pre-
cipitation is that great improvements in the mechanical properties of these
alloys can be achieved by suitable solution treatment and ageing operations.
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Fig. 5.36 PFZs around grain boundaries in a high-strength commercial Al-Zn-Mg-
Cu alloy. Precipitates on grain boundaries have extracted solute from surrounding
matrix. (X359 200)

This is illustrated for various Al-Cu alloys in Fig. 5.37. The alloys were
solution treated in the single-phase a region of the phase diagram, quenched
to room temperature and aged at either 130 °C (Fig. 5.37a) or 190 °C
(Fig. 5.37b). The curves show how the hardness of the specimens varies as a
function of time and the range of time over which GP zones, '’ and 6’ appear
in the microstructure. Immediately after quenching the main resistance to
dislocation movement is solid solution hardening. The specimen is relatively
easily deformed at this stage and the hardness is low. As GP zones form the
hardness increases due to the extra stress required to force dislocations
through the coherent zones.

The hardness continues to increase with the formation of the coherent 6"’
precipitates because now the dislocations must also be forced through the
highly strained matrix that results from the misfit perpendicular to the 6"’
plates (see Fig. 5.30b). Eventually, with the formation of 6’ the spacing
between the precipitates becomes so large that the dislocations are able to
bow between the precipitates and the hardness begins to decrease. Maximum
hardness is associated with a combination of 6'' and 6'. Further ageing
increases the distance between the precipitates making dislocation bowing
easier and the hardness decreases. Specimens aged beyond peak hardness are
referred to as overaged.
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Fig. 5.37 Hardness v. time for various Al-Cu alloys at (a) 130 °C (b) 190 °C. (After
J.M. Silcock. T.J. Heal and H.K. Hardy, Journal of the Institute of Metals 82
(1953-1954) 239.

If Al-4.5 wt% Cu is aged at 190 °C,GP zones are unstable and the first
precipitate to form is 6’’. The volume fraction of '’ increases with time
causing the hardness to increase as shown in Fig. 5.37b. However, at 190 °C
the 8’ nucleates under the influence of a smaller driving force than at 130 °C
and the resultant precipitate dispersion is therefore coarser. Also the max-
imum volume fraction of '’ is reduced. Both of these factors contribute to a
lower peak hardness on ageing at the higher temperature (compare Fig. 5.37a
and b). However, diffusion rates are faster at higher temperatures and peak
hardness is therefore achieved after shorter ageing times.

It can be seen that at 130 °C peak hardness in the Al-4.5 wt% Cu alloy is
not reached for several tens of days. The temperatures that can be used in the
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heat treatment of commercial alloys are limited by economic considerations
to those which produce the desired properties within a reasonable period of
time, usually up to ~24 h. In some high-strength alloys use is, therefore,
made of a double ageing treatment whereby ageing is carried out in two steps:
first at a relatively low temperature below the GP zone solvus, and then at a
higher temperature. [n this way a fine dispersion of GP zones obtained during
the first stage can act as heterogeneous nucleation sites for precipitation at the
higher temperature. This type of treatment can lead to a finer precipitate
distribution than would be obtained from a single ageing treatment at the
higher temperature.

Another treatment used commercially is to give the alloy a controlled
deformation either before a single-stage age or between the two stages of a
double-ageing treatment. The strength of the alloy after this treatment can be
increased by a higher precipitate density, resulting from a higher nucleation
rate, and by the retained dislocation networks which also act as a barrier to
further deformation. However, deformation prior to ageing does not always
result in an improvement in properties. In some cases deformation can lead to
a coarser precipitate distribution.

Precipitation hardening is common to many alloy systems. Some of the
more important systems are listed in Table 5.2. Some commercial alloys are
listed in Table 5.3, along with their mechanical properties. In many of these
systems it is possible to come very close to the maximum theoretical strength
of the matrix, i.e. about ~p/30. However, engineering alloys are not heat
treated for maximum strength alone. Consideration must also be given to
toughness, stress corrosion resistance, fatigue, etc., when deciding on the best
heat treatment in practice.

5.5.5 Spinodal Decomposition

It was mentioned at the beginning of this chapter that there are certain
transformations where there is no barrier to nucleation. One of these is the
spinodal mode of transformation. Consider a phase diagram with a miscibility
gap as shown in Fig. 5.38a: If an alloy with composition Xj is solution treated
at a high temperature T and then quenched to a lower temperature T, the
composition will initially be the same everywhere and its free energy will be
Gy on the G curve in Fig. 5.38b. However, the alloy will be immediately
unstable because small fluctuations in composition that produce A-rich and
B-rich regions will cause the total free energy to decrease. Therefore ‘up-hill’
diffusion takes place as shown in Fig. 5.39 until the equilibrium compositions
X, and X, are reached.
The above process can occur for any alloy composition where the free

energy curve has a negative curvature, i.e.

d&’G

Xz <0 (5.42)



Precipitation in age-hardening alloys 309

: Chemical

G ()

(b)

|
Fig. 5.38 Alloys between the spinodal points are unstable and can decompose into
two coherent phases a; and a, without overcoming an activation energy barrier.

Alloys between the coherent miscibility gaps and the spinodal are metastable and can
decompose only after nucleation of the other phase.

Therefore the alloy must lie between the two points of inflection on the free
energy curve. The locus of the points on the phase diagram, Fig. 5.32a, is
known as the chemical spinodal.

If the alloy lies outside the spinodal, small variations in composition lead to
an increase in free energy and the alloy is therefore metastable. The free
energy of the system can only be decreased in this case if nuclei are formed
with a composition very different from the matrix. Therefore, outside the
spinodal the transformation must proceed by a process of nucleation and
growth. Normal down-hill diffusion occurs in this case as shown in Fig. 5.40.

The rate of spinodal transformation is controlled by the interdiffusion
coefficient, D. Within the spinodal D < 0 and the composition fluctuations
shown in Fig. 5.39 will therefore increase exponentially with time, with a
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Fig. 5.39 Schematic composition profiles at increasing times in an alloy quenched
into the spinodal region (X, in Fig. 5.38).

characteristic time constant 1 = —\?/4%?D, where \ is the wavelength of the
composition modulations (assumed one-dimensional). The rate of trans-
formation can therefore become very high by making A as small as possible.
However, as will be shown below, there is a minimum value of \ below which
spinodal decomposition cannot occur.

In order to be able to calculate the wavelength of the composition fluctua-
tions that develop in practice it is necessary to consider two important factors
that have been omitted from the above discussion: (1) interfacial energy
effects, and (2) coherency strain energy effects.

If a homogeneous alloy of composition X, decomposes into two parts one
with composition X, + AX and the other with composition Xy, — AX, it can
be shown that’ the total chemical free energy will change by an amount AG,
given by

1d%G
2 dx?

If, however, the two regions are finely dispersed and coherent with each

AG, = (AX)? (5.43)



Precipitation in age-hardening alloys 311

Fig. 5.40 Schematic composition profiles at increasing times in an alloy outside the
spinodal points (X in Fig. 5.38).

other there will be an additional energy change due to interfacial energy
effects. Although, during the early stages of spinodal decomposition, the
interface between A-rich and B-rich regions is not sharp but very diffuse,
there is still an effective interfacial energy contribution. The magnitude of this
energy depends on the composition gradient across the interface, and for this
reason it is known as a ‘gradient energy’. In solid solutions which tend to
cluster the energy of like atom-pairs is less than that of unlike pairs. Thus the
origin of the gradient energy is the increased number of unlike nearest
neighbours in a solution containing composition gradients compared to a
homogeneous solution. For a sinusoidal composition modulation of
wavelength \ and amplitude AX the maximum composition gradient is pro-
portional to (AX/\) and the gradient energy term AG, is given by

AG, =K (éé) (5.44)

where K is a proportionality constant dependent on the difference in the bond
energies of like and unlike atom pairs.
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If the sizes of the atoms making up the solid solution are different, the
generation of composition differences will introduce a coherency strain en-
ergy term, AG;. If the misfit between the A-rich and B-rich regions is 5,
AG, = E where E is Young’s modulus. For a total composition difference
AX, & will be given by (da/dX)AX/a, where a is the lattice parameter. An
exact treatment of the elastic strain energy shows that

AG, = W(AX)*E'V,, (5.45)
where

S s

=l (5.46)

i.e. m is the fractional change in lattice parameter per unit composition
change. E' = E/(1 — v), where v is Poisson’s ratio, and V,, is the molar
volume. Note that AG; is independent of A.

If all of the above contributions to the total free energy change accompany-
ing the formation of a composition fluctuation are summed we have

d’G 2K ] (AX)?

d—X-i + —)\7 + ZT]ZE'Vm 2 (5.47)
It can be seen therefore that the condition for a homogeneous solid solution
to be unstable and decompose spinodally is that

d&°G _ 2K

TN
Thus the limits of temperature and composition within which spinodal decom-
position is possible are given by the conditions A = « and

d’G

o -20’E'V,, (5.49)
The line in the phase diagram defined by this condition is known as the
coherent spinodal and it lies entirely within the chemical spinodal
(d*G/dX?* = 0) as shown in Fig. 5.41. It can be seen from Equation 5.48 that
the wavelength of the composition modulations that can develop inside the
coherent spinodal must satisfy the condition

s6 -

+ 20°E'Vp, (5.48)

2 d2G 25
V> -2K d—X—2+21nEVm (5.50)

Thus the minimum possible wavelength decreases with increasing undercool-
ing below the coherent spinodal.

Figure 5.41 also shows the coherent miscibility gap. This is the line defining
the equilibrium compositions of the coherent phases that result from spinodal
decomposition (X; and X, in Fig. 5.39). The miscibility gap that normally
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Fig. 5.41 Schematic phase diagram for a clustering system. Region 1: homogeneous
a stable. Region 2: homogeneous o metastable, only incoherent phases can nucleate.
Region 3: homogeneous a metastable, coherent phases can nucleate. Region 4:
homogeneous o unstable , no nucleation barrier, spinodal decomposition occurs.

appears on an equilibrium phase diagram is the incoherent (or equilibrium)
miscibility gap. This corresponds to the equilibrium compositions of incoher-
ent phases, i.e. in the absence of strain fields. The chemical spinodal is also
shown in Fig. 5.41 for comparison, but it is of no practical importance.

Spinodal decomposition is not only limited to systems containing a stable
miscibility gap. All systems in which GP zones form, for example, contain a
metastable coherent miscibility gap, i.e. the GP zone solvus (see the Al-Ag
system in Fig. 5.34 for example). Thus it is possible that at high supersatura-
tions GP zones are able to form by the spinodal mechanism. If ageing is
carried out below the coherent solvus but outside the spinodal, GP zones can
only form by a process of nucleation and growth, Fig. 5.40. Between the
incoherent and coherent miscibility gap, Fig. 5.41, AG, — AG, < 0 and only
incoherent strain-free nuclei can form.

The difference in temperature between the coherent and incoherent mis-
cibility gaps, or the chemical and coherent spinodals in Fig. 5.41, is depend-
ent on the magnitude of |n|. When there is a large atomic size difference |n| is
large and a large undercooling is required to overcome the strain energy
effects. As discussed earlier large values of |n| in cubic metals can be mitigated
if the misfit strains are accommodated in the elastically soft (100) directions.
This is achieved by the composition modulations building up parallel to {100}.
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Figure 5.42 shows a spinodal structure in a specimen of Al-22.5 Zn-
0.1 Mg (atomic %) solution treated at 400 °C and aged 20 h at 100 °C. The
wavelength in the structure is 25 nm, but this is greater than the initial
microstructure due to coarsening which occurs on holding long times at high
temperatures.

5.5.6 Particle Coarsening®

The microstructure of a two-phase alloy is always unstable if the total interfa-
cial free energy is not a minimum. Therefore a high density of small precipi-
tates will tend to coarsen into a lower density of larger particles with a smaller
total interfacial area. However, such coarsening often produces an undesir-
able degradation of properties such as a loss of strength or the disappearance
of grain-boundary pinning effects (see Section 3.3.5). As with grain growth,
the rate of coarsening increases with temperature and is of particular concern
in the design of materials for high temperature applications.

Fig. 5.42 A coarsened spinodal microstructure in Al-22.5 at% Zn-0.1 at% Mg
solution treated 2 h at 400 °C and aged 20 h at 100 °C. Thin foil electron micrograph
(x 314 000). (After K.B. Rundman, Metals Handbook, 8th edn., Vol. 8, American
Society for Metals, 1973, p. 184.)
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In any precipitation-hardened specimen there will be a range of particle
sizes due to differences in the time of nucleation and rate of growth. Consider
two adjacent spherical precipitates’ with different diameters as shown in
Fig. 5.43. Due to the Gibbs—Thomson effect, the solute concentration in the
matrix adjacent to a particle will increase as the radius of curvature decreases,
Fig. 5.43b. Therefore there will be concentration gradients in the matrix
which will cause solute to diffuse in the direction of the largest particles away
from the smallest, so that the small particles shrink and disappear while large
particles grow. The overall result is that the total number of particles de-
creases and the mean radius (7) increases with time. By assuming volume
diffusion is the rate controlling factor it has been shown!® that the following
relationship should be obeyed:

(7 = ro = kt (5.51)
where
k « DyX,

ro is the mean radius at time ¢t = 0, D is the diffusion coefficient, vy is the
interfacial energy and X, is the equilibrium solubility of very large particles.
Since D and X, increase exponentially with temperature, the rate of coarsen-
ing will increase rapidly with increasing temperature, Fig. 5.44. Note that the
rate of coarsening

~— B~

. \/ ¢te)

(b) | |
X1 X2 XB D
Fig. 5.43 The origin of particle coarsening. 3 with a small radius of curvature (r;) has

a higher molar free energy than B with a large radius of curvature (r;). The
concentration of solute is therefore highest outside the smallest particles.
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Fig. 5.44 Schematic diagram illustrating how the mean particle radius 7 increases
with time at different temperatures.

dr k
a7 (5.52)
so that distributions of small precipitates coarsen most rapidly.

In practice the rate at which particles coarsen may not follow a linear r>~t
relationship. Deviations from this relationship can be caused by diffusion
short-circuits such as dislocations, or grain boundaries. Also the coarsening
rate may be interface controlled. Nevertheless, apart from the case of inter-
face control, the rate of coarsening should depend on the product DyX,, (k in
Equation 5.51). Therefore high temperature alloys whose strength depends
on a fine precipitate dispersion must have a low value for at least one of y, X,
or D. Let us consider examples of each of these.

Low vy

The heat-resistant Nimonic alloys based on Ni—Cr with additions of Al and Ti
obtain their high strength from a fine dispersion of the ordered fcc phase Nij,
(TiAl) (v") which precipitates in the fcc Ni-rich matrix. The Ni/v’ interfaces
are fully coherent and the interfacial energy is exceptionally low (~10-
30 mJ m~?) which enables the alloys to maintain a fine structure at high
temperature. The misfit between the precipitates and matrix varies between
zero and about 0.2% depending on composition. It is interesting that the total
creep—rupture life of these alloys can be increased by a factor of 50x by
careful control of composition to give zero misfit as compared to 0.2% misfit.
The reason for this may be that during creep deformation the particles with
the slightly higher misfits lose coherency with the result that v is increased
thereby increasing the rate of coarsening.

Low X,
High strength at high temperatures can also be obtained with fine oxide
dispersions in a metal matrix. For example W and Ni can be strengthened for
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high temperature use by fine dispersions of thoria ThO,. In general, oxides
are very insoluble in metals and the stability of these microstructures at high
temperatures can be attributed to a low value of X, in the product DyX,.

Low D

Cementite dispersions in tempered steels coarsen very quickly due to the high
diffusivity of interstitial carbon. However, if the steel contains a substitutional
alloying element that segregates to the carbide, the rate of coarsening becomes
limited by the much slower rate at which substitutional diffusion can occur. If
the carbide-forming element is present in high concentrations more stable
carbides are formed which have the additional advantage of a lower solubility
(X.). Therefore low-alloy steels used for medium temperature creep resist-
ance often have additions of strong carbide-forming elements.

5.6 The Precipitation of Ferrite from Austenite

In this section we will be concerned with phase transformations in which
the first phase to appear is that given by the equilibrium phase diagram. The
discussion will be illustrated by reference to the diffusional transformation of
Fe-C-austenite into ferrite. However, many of the principles are quite
general and have analogues in other systems where the equilibrium phases are
not preceded by the precipitation of transition phases. Under these conditions
the most important nucleation sites are grain boundaries and the surfaces of
inclusions.

Consider an Fe-0.15 wt% C alloy which, after austenitizing, is allowed to
partially transform to ferrite at various temperatures below A5 (Fig. 5.45) and
then quenched into water. The resultant microstructures are shown in
Fig. 5.46. The white areas are ferrite (o). The grey areas are martensite that
formed from the untransformed austenite (y) during quenching. At small
undercooling below Aj, Fig. 5.46a, the ferrite nucleates on austenite grain
boundaries and grows in a ‘blockey’ manner to form what are known as
grain-boundary allotriomorphs. Note that both smoothly curved, presumably
incoherent, o/y interfaces as well as faceted, semicoherent interfaces are
present. At larger undercoolings there is an increasing tendency for the ferrite
to grow from the grain boundaries as plates, so-called Widmanstitten side-
plates, which become finer with increasing undercooling, Fig. 5.46b, c and d.

Experimental measurements on Widmanstitten ferrite in other ferrous
alloys show that the habit planes are irrational, scattered 4 to 20° from {111},,
and that orientation relationships close to the Nishiyama—Wasserman or
Kurdjumov-Sachs type are usually found. High resolution transmission
electron microscopy has also shown that the habit planes have a complex
semicoherent structure, containing structural ledges and misfit dislocations,
similar to that described in Section 3.4.1'L.
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As explained previously, the need to minimize AG* leads to the creation of
semicoherent interfaces and orientation relationships, even in the case of
grain-boundary nucleation. A critical nucleus could therefore appear as
shown in Fig. 3.45b with faceted (planar) coherent (or semicoherent) inter-
faces and smoothly curved incoherent interfaces. For certain misorientations
across the grain boundary it may even be possible for low-energy facets to
form with both grains. Due to their low mobility faceted interfaces will tend
to persist during growth while incoherent interfaces will be able to grow
continuously and thereby retain a smooth curvature. Thus it is possible to
explain the presence of smoothly curved and faceted interfaces in Fig. 5.46a.

The reason for the transition from grain boundary allotriomorphs to Wid-
manstatten side-plates with increasing undercooling is not fully understood. It
has been suggested by Aaronson and co-workers'? that the relative rates at
which semicoherent and incoherent interfaces can migrate vary with under-
cooling as shown in Fig. 5.47. At small undercoolings it is proposed that both
semicoherent and incoherent interfaces can migrate at similar rates, while at
large undercoolings only incoherent interfaces can make full use of the
increased driving force. Consideration of Fig. 5.13 thus shows that approxi-
mately equiaxed morphologies should develop at low undercoolings while
plate-like morphologies, with ever-increasing aspect ratios, should develop at
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Fig. 5.46 Microstructures of an Fe-0-15% C alloy. The specimens were austenitized,
held at an intermediate temperature to give some ferrite, and then quenched to room
temperature. The ferrite is white. The grey, fine constituent is a mixture of ferrite and
carbide formed on quenching. All photographs are X 100 except (d). (a) 800 °C for
150 s—primarily ferrite allotriomorphs with a few plates. (b) 750 °C for 40 s—
many more plates, mostly growing from grain boundaries. (c) 650 °C for 9 s—
relatively fine. Note common direction of plates along each boundary. (d) 550 °C
for 2 s (x 300) (After P.G. Shewmon, Transformations in Metals, McGraw-Hill, New
York, 1969, after H.I. Aaronson.)
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Fig. 5.47 A possible variation of the relative velocity of incoherent and semicoherent
interfaces at different undercoolings. Above a certain ratio Widmanstitten morpholo-
gies should develop, as shown in Fig. 5.13. (After H.I. Aaronson, in Decomposition of
Austenite by Diffusional Processes, V.F. Zackay and H.I. Aaronson (Eds.), 1962, by
permission of The Metallurgical Society of AIME.)

high undercoolings. Another factor which may contribute to the increased
fineness of the Widmanstitten morphologies with decreasing temperature is
that the minimum plate-tip radius r* is inversely proportional to the under-
cooling.

It can be seen in Fig. 5.46 that ferrite can also precipitate within the
austenite grains (intragranular ferrite). Suitable heterogeneous nucleation
sites are thought to be inclusions and dislocations. These precipitates are
generally equiaxed at low undercoolings and more plate-like at higher
undercoolings.

In general the nucleation rate within grains will be less than on grain
boundaries. Therefore, whether or not intragranular precipitates are ob-
served depends on the grain size of the specimen. In fine-grained austenite,
for example, the ferrite that forms on grain boundaries will rapidly raise the
carbon concentration within the middle of the grains, thereby reducing the
undercooling and making nucleation even more difficult. In a large-grained
specimen, however, it takes a longer time for the carbon rejected from the
ferrite to reach the centres of the grains and meanwhile there will be time
for nucleation to occur on the less favourable intragranular sites.

A TTT diagram for the precipitation of ferrite in a hypoeutectoid steel will
have a typical C shape as shown in Fig. 5.48. The y — « transformation
should be approximately described by Equation 5.39 and the time for a given
percentage transformation will decrease as the constant k increases, e.g.
Equation 5.40. As usual, k increases with small increases in 7 due to
increased nucleation and growth rates—x is also raised by an increase in the
total number of nucleation sites. Thus decreasing the austenite grain size has
the effect of shifting the C curve to shorter transformation times.

It is possible to mark a temperature T,, below which the ferrite forms as
predominantly Widmanstitten plates and above which it is mainly in the form
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Fig. 5.48 (a) Typical TTT curve for vy — «a transformation. (b) Temperature—
composition regions in which the various morphologies are dominant at late reaction
times in specimens with ASTM grain size Nos. 0-1. GBA = grain boundary allot-
riomorphs, W = Widmanstétten sideplates and/or intragranular plates, M = massive
ferrite, see Section 5.9. (After H.I. Aaronson, in Decomposition of Austenite by
Diffusional Processes, V.F. Zackay and H.I. Aaronson (Eds.), 1962, by permission of
The Metallurgical Society of AIME.)

of grain boundary allotriomorphs. For alloys of different carbon content A3
and T,, vary as shown on the phase diagram in Fig. 5.48b.

During practical heat treatments, such as normalizing or annealing, trans-
formation occurs continuously during cooling. Under these circumstances the
final microstructure will depend on the cooling rate. If the specimen is cooled
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very slowly there will be time for nucleation to occur at small undercoolings
on grain corners, edges and boundaries. As these nuclei grow the carbon
rejected into the austenite will have time to diffuse over large distances and
the austenite grain should maintain a uniform composition given by the
equilibrium phase diagram. Finally the austenite reaches the eutectoid
composition and transforms to pearlite. Furnace cooling corresponds fairly
closely to these conditions and an example is shown in Fig. 5.49¢c. The final
proportions of ferrite and pearlite should be as determined by the equilibrium
phase diagram.

The microstructure that results from more rapid cooling will depend on the
grain size and the cooling rate. If the rate of cooling is moderately high the
specimen will not remain long enough at high temperatures for nucleation to
occur. Thus nuclei will not be formed until higher supersaturations are
reached. The nucleation rate will then be rapid and large areas of grain
boundary will become covered with nuclei. If the temperature is below T, the
ferrite will grow into the austenite as Widmanstétten side-plates with a
spacing that becomes finer with decreasing temperature.

The nuclei that form at the highest temperatures will be on grain corners
which will be followed by edges at lower temperatures and finally grain
boundaries at still lower temperatures. In a small-grained specimen where
there are a large number of grain corner and edge sites a large number of
nuclei can be formed above the T, temperature and grow as grain-boundary
allotriomorphs. In a larged-grained specimen, on the other hand, relatively
few nuclei will form at high temperatures and the austenite far from these
particles will remain supersaturated until lower temperatures, below T, ,
when ferrite will be able to nucleate on grain boundary sites and grow as
Widmanstétten side-plates. The effect of cooling rate and grain size is illus-
trated in Fig. 5.49. Note also that the total volume fraction of ferrite de-
creases as the transformation temperature decreases. This point will be
returned to later.

If the austenite contains more than about 0.8wt% C, the first phase to
form will be cementite. This also nucleates and grows with an orientation
relationship to the austenite, producing similar morphologies to ferrite—
grain boundary allotriomorphs at high temperatures and Widmanstitten
side-plates at lower temperatures as shown in Fig. 5.48b.

5.7 Cellular Precipitation

Grain-boundary precipitation does not always result in grain-boundary allot-
riomorphs or Widmanstétten side-plates or needles. In some cases it can
result in a different mode of transformation, known as cellular precipitation.
The essential feature of this type of transformation is that the boundary
moves with the growing tips of the precipitates as shown in Fig. 5.50. Mor-
phologically the transformation is very similar to the eutectoid reaction.
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Fig. 5.49 Microstructures obtained from different heat treatments in plain carbon
steels (X 60). 0.23wt% C 1.2% Mn air-cooled, showing influence of prior austenite
grain size: (a) austenitized at 900 °C (b) austenitized at 1150 °C. 0.4% C showing
effect of cooling rate for same grain size: (c) furnace cooled (annealed), (d) air
cooled (normalized). (After P.G. Shewmon, Transformations in Metals, McGraw-
Hill, New York. 1969: (a) and (b) after R. Yoe, (c) and (d) after K. Zurlippe.)



324 Diffusional transformations in solids

(a) (b) (c)
Fig. 5.50 A schematic diagram showing a possible sequence of steps during the
development of cellular precipitation.

However, in this case the reaction can be written
a—>a+p

where a' is the supersaturatgd matrix, a is the same phase but with a lower
thermodynamic excess of solute, and B is the equilibrium precipitate. The
mechanism whereby grain-boundary nucleation develops into cellular pre-
cipitation differs from one alloy to another and is not always fully understood.
The reason why cells develop in some alloys and not in others is also unclear.

Figure 5.51 shows an example of cellular precipitation in a Mg-
9 atomic % Al alloy. The B phase in this case is the equilibrium precipitate
Mg,7Al; indicated in the phase diagram, Fig. 5.52. It can be seen in Fig. 5.51
that the Mg;,Al;, forms as lamellae embedded in a Mg-rich matrix. The grain
boundary between grains I and II was originally straight along AA but has
been displaced, and the cell matrix and grain I are the same grain.

Figure 5.53 shows another specimen which has been given a two-stage heat
treatment. After solution treating at 410 °C the specimen was quenched to a
temperature of 220 °C for 20 min followed by 90.s at 277 °C and finally water
quenched. It is apparent that the mean interlamellar spacing is higher at
higher ageing temperatures. As with eutectic solidification this is because
less free energy is available for the formation of o/p interfaces when the total
driving force for transformation is reduced.



Cellular precipitation 325

Fig. 5.51 Cellular precipitation of Mg;;Aly; in an Mg-9 at% Al alloy solution
treated and aged 1 h at 220 °C followed by 2 min at 310 °C. Some general Mg;;Al;;
precipitation has also occurred on dislocations within the grains.

The growth of cellular precipitates requires the partitioning of solute to the
tips of the precipitates in contact with the advancing grain boundary. This can
occur in one of two ways: either by diffusion through the lattice ahead of the
advancing cell front, or by diffusion in the moving boundary. Partitioning by
lattice diffusion would require solute concentration gradients ahead of the cell
front while, if the grain boundary is the most effective diffusion route, the
matrix composition should remain unchanged right up to the cell front. In
the case of the Mg—Al alloy it has been possible to do microanalysis with
sufficiently high spatial resolution to resolve these possibilities directly. (The
technique used was electron energy loss spectroscopy using plasmon losses'3.)
The results of such measurements, Fig. 5.54a, clearly indicate that the matrix
composition remains unchanged to within 10 nm of the advancing cell front so
that partitioning must be taking place within the boundary itself. This is to be
expected since precipitation is occurring at relatively low temperatures where
solute transport tends to become more effective via grain boundaries than
through the lattice.

Figure 5.54b shows the aluminium concentration in the a matrix along a
line between the B (Mgy;Aly,) lamellae. This is essentially a replica of a
similar concentration profile that must exist within the advancing grain
boundary. Therefore apart from the matrix in contact with the B precipitate,
the cell matrix is still supersaturated with respect to equilibrium.
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Fig. 5.52 The relevant part of the Mg—Al phase diagram.

Cellular precipitation is also known as discontinuous precipitation because
the composition of the matrix changes discontinuously as the cell front passes.
Precipitation that is not cellular is referred to as general or continuous
because it occurs generally throughout the matrix on dislocations or grain
boundaries, etc. and the matrix composition at a given point decreases
continuously with time. Often general precipitation leads to a finely distri-
buted intermediate precipitate that is associated with good mechanical
properties. The cellular reaction is then unwanted because the intermediate
precipitates will dissolve as they are overgrown and replaced by the coarse
equilibrium precipitates within the cells.

5.8 Eutectoid Transformations
5.8.1 The Pearlite Reaction in Fe-C Alloys

When austenite containing about 0.8wt% C is cooled below the A; tem-
perature it becomes simultaneously supersaturated with respect to ferrite
and cementite and a eutectoid transformation results, i.e.

y— a + FesC
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Fig. 5.53 A cell formed during ageing at two temperatures; 30 min at 220 °C
followed by 30 min at 277 °C and water quenched. Note the change in interlamellar
spacing caused by the change in undercooling.

The manner in which this reaction occurs is very similar to a eutectic trans-
formation where the original phase is a liquid instead of a solid. In the case of
Fe—C alloys the resultant microstructure comprises lamellae, or sheets, of
cementite embedded in ferrite as shown in Fig. 5.55. This is known as
pearlite. Both cementite and ferrite form directly in contact with the austenite
as shown.

Pearlite nodules nucleate on grain boundaries and grow with a roughly
constant radial velocity into the surrounding austenite grains. At small under-
coolings below A, the number of pearlite nodules that nucleate is relatively
small, and the nodules can grow as hemispheres or spheres without interfer-
ing with each other. At larger undercoolings the nucleation rate is much
higher and site saturation occurs, that is all boundaries become quickly cov-
ered with nodules which grow together forming layers of pearlite outlining the
prior austenite grain boundaries, Fig. 5.56.

Nucleation of Pearlite

The first stage in the formation of pearlite is the nucleation of either cement-
ite or ferrite on an austenite grain boundary. Which phase nucleates first will
depend on the grain-boundary structure and composition. Suppose that it is
cementite. The cementite will try to minimize the activation energy barrier to
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Fig. 5.54 (a) The variation of aluminium concentration across an advancing grain
boundary midway between two precipitate lamellae. (b) A similar profile along a line
such as S in Fig. 5.53.

nucleation by forming with an orientation relationship to one of the austenite
grains, v; in Fig. 5.57a. (The crystal structure of cementite is orthorhombic
and the orientation relationship is close to (100).//(111),, (010).// (110),,
(001).//(112),.) Therefore the nucleus will have a semicoherent, low-
mobility interface with y; and an incoherent mobile interface with vy,. The
austenite surrounding this nucleus will become depleted of carbon which will
increase the driving force for the precipitation of ferrite, and a ferrite nucleus
forms adjacent to the cementite nucleus also with an orientation relationship
to vy; (the Kurdjumov—Sachs relationship). This process can be repeated
causing the colony to spread sideways along the grain boundary. After nu-
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Fig. 5.55 A pearlite colony advancing into an austenite grain. (After L.S. Darken
and R.M. Fisher in Decomposition of Austenite by Diffusional Processes, V.F. Zackay
and H.I. Aaronson (Eds.), by permission of The Metallurgical Society of AIME.

cleation of both phases the colony can grow edgewise by the movement of the
incoherent interfaces, that is pearlite grows into the austenite grain with which
it does not have an orientation relationship. The carbon rejected from the
growing ferrite diffuses through the austenite to in front of the cementite, as
with eutectic solidification.

If the alloy composition does not perfectly correspond to the eutectoid
composition the grain boundaries may already be covered with a proeutectoid
ferrite or cementite phase. If, for example, the grain boundary already
contains a layer of cementite, the first ferrite nucleus will form with an
orientation relationship to this cementite on the mobile incoherent side of the
allotriomorphs as shown in Fig. 5.57b. Again due to the higher mobility of
the incoherent interfaces the pearlite will grow into the austenite with which
there is no orientation relationship.

Whatever the pearlite nucleation mechanism, new cementite lamellae are
able to form by the branching of a single lamella into two new lamellae as
shown in Fig. 5.57a(iv) or c. The resultant pearlite colony is effectively two
interpenetrating single crystals.

It can be seen that the nucleation of pearlite requires the establishment of
cooperative growth of the two phases. It takes time for this cooperation to be
established and the rate of colony nucleation therefore increases with time. In



Fig. 5.56 A partially transformed eutectoid steel. Pearlite has nucleated on grain
boundaries and inclusions (X 100). (After J.W. Cahn and W.C. Hagel in Decomposi-
tion of Austenite by Diffusional Processes, V.F. Zackay and H.I. Aaronson (Eds.),
1962, by permission of The Metallurgical Society of AIME.)

some cases cooperation is not established and the ferrite and cementite grow
in a non-lamellar manner producing so-called degenerate pearlite'*.

Pearlite Growth

The growth of pearlite in binary Fe—C alloys is analogous to the growth of a
lamellar eutectic with austenite replacing the liquid. Carbon can diffuse
interstitially through the austenite to the tips of the advancing cementite
lamellae so that the equations developed in Section 4.3.2 should apply
equally well to pearlite. Consequently the minimum possible interlamellar
spacing ($*) should vary inversely with undercooling below the eutectoid
temperature (A,), and assuming the observed spacing (S,) is proportional to
S* gives

Sy o §* o (AT) ™! (5.53)

Similarly the growth rate of pearlite colonies should be constant and given by
a relationship of the type

v = kDY(AT)? (5.54)

where k is a thermodynamic term which is roughly constant.
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Fig. 5.57 Nucleation and growth of pearlite. (a) On a ‘clean’ grain boundary.
(i) Cementite nucleates on grain boundary with coherent interface and orientation
relationship with vy, and incoherent interface with +y,. (ii) a nucleates adjacent to
cementite also with a coherent interface and orientation relationship with y;. (This
also produces an orientation relationship between the cementite and ferrite.)
(i) The nucleation process repeats sideways, while incoherent interfaces grow into vy, .
(iv) New plates can also form by a branching mechanism. (b) When a proeutectoid
phase (cementite or ferrite) already exists on that boundary, pearlite will nucleate and
grow on the incoherent side. A different orientation relationship between the
cementite and ferrite results in this case. (c) A pearlite colony at a later stage of
growth.
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Observed spacings are found to obey Equation 5.53, varying from ~1 um at
high temperatures to ~0.1 um at the lowest temperatures of growth'’.
However, it is found that S, is usually greater than 25*, i.e. the observed
spacing is not determined by the maximum growth rate criterion. Instead it
may be determined by the need to create new cementite lamellae as the
perimeter of the pearlite nodules increases. This can occur either by the
nucleation of new cementite lamellae, or by the branching of existing lamel-
lae, Fig. 5.57c.

In the case of binary Fe—C alloys, observed growth rates are found to agree
rather well with the assumption that the growth velocity is controlled by the
diffusion of carbon in the austenite. Figure 5.58 shows measured and calcu-
lated growth rates as a function of temperature. The calculated line is based
on an equation similar to Equation 5.54 and shows that the measured growth
rates are reasonably consistent with volume-diffusion control. However, it is
also possible that some carbon diffusion takes place through the y/a and
v/cementite interfaces, which could account for the fact that the predicted
growth rates shown in Fig. 5.58 are consistently too low.

A schematic TTT diagram for the pearlite reaction in eutectoid Fe-C alloys
is shown in Fig. 5.59. Note the ‘C’ shape typical of diffusional transformations
that occur on cooling. The maximum rate of transformation occurs at about
550°C. At lower temperatures another type of transformation product,
namely Bainite, can grow faster than pearlite. This transformation is dealt
with in the next section.

Eutectoid transformations are found in many alloys besides Fe—C. In alloys
where all elements are in substitutional solid solution, lattice diffusion is found
to be too slow to account for observed growth rates. In these cases diffusion
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Fig. 5.58 Pearlite growth rate v. temperature for plain carbon steels. (After M.P.
Puls and J.S. Kirkaldy, Metallurgical Transactions 3 (1972) 2777, © American Society
for Metals and the Metallurgical Society of AIME, 1972.)
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Fig. 5.59 Schematic diagram showing relative positions of the transformation curves
for pearlite and bainite in plain carbon eutectoid steels.

occurs instead through the colony/matrix interface. Consideration of the
diffusion problem in this case leads to a relationship of the type

v = kDg(AT)? (5.55)

where k is a thermodynamic constant and Dy is the boundary diffusion
coefficient.

Pearlite in Off-Eutectoid Fe—C Alloys

When austenite containing more or less carbon than the eutectoid composi-
tion is isothermally transformed below the A; temperature the formation of
pearlite is usually preceded by the precipitation of proeutectoid ferrite or
cementite. However, if the undercooling is large enough and the departure
from the eutectoid composition is not too great it is possible for austenite of
non-eutectoid composition to transform directly to pearlite. The region in
which this is possible corresponds approximately to the condition that the
austenite is simultaneously saturated with respect to both cementite and
ferrite, i.e. the hatched region in Fig. 5.60. (See also Fig. 5.48). Thus a
0.6% C alloy, for example can be transformed to ~100% pearlite provided
the temperature is low enough to bring the austenite into the hatched region
of Fig. 5.60 (but not so low that bainite forms). At intermediate undercool-
ings some proeutectoid ferrite will form but less than predicted by the equilib-
rium phase diagram.
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Fig. 5.60 Effect of transformation temperature on the volume fraction of proeutec-
toid ferrite.

Similar considerations apply to transformations during continuous cool-
ing—Ilarger grain sizes and faster cooling rates favour low volume fractions of
ferrite. Compare Fig. 5.49¢c and d.

5.8.2 The Bainite Transformation

When austenite is cooled to large supersaturations below the nose of the
pearlite transformation curve a new eutectoid product called bainite is pro-
duced. Like pearlite, bainite is a mixture of ferrite and carbide, but it is
microstructurally quite distinct from pearlite and can be characterized by its
own C curve on a TTT diagram. In plain carbon steels this curve overlaps with
the pearlite curve (Fig. 5.59) so that at temperatures around 500 °C both
pearlite and bainite form competitively. In some alloy steels, however, the
two curves are separated as shown in Fig. 5.65.

The microstructure of bainite depends mainly on the temperature at which

it forms'®.

Upper Bainite

At high temperatures (350 °C-550 °C) bainite consists of needles or laths of
ferrite with cementite precipitates between the laths as shown in Fig. 5.61.
This is known as upper bainite. Figure 5.61a shows the ferrite laths growing
into partially transformed austenite. The light contrast is due to the cemen-
tite. Figure 5.61b illustrates schematically how this microstructure is thought
to develop. The ferrite laths grow into the austenite in a similar way to
Widmanstétten side-plates. The ferrite nucleates on a grain boundary with a
Kurdjumov—Sachs orientation relationship with one of the austenite grains,
Y2, say. Since the undercooling is very large the nucleus grows most rapidly
into the y, grain forming ferrite laths with low energy semicoherent inter-
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N =

(c)

Fig. 5.61 (a) Upper bainite in medium-carbon steel (replica x 13 000) (by permis-
sion of the Metals Society). (b) Schematic of growth mechanism. Widmanstatten
ferrite laths growth into vy,. (o and vy, have Kurdjumov—-Sachs orientation rela-
tionship.) Cementite plates nucleate in carbon-enriched austenite. (c) Illustrating
the shape of a ‘lath’.
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faces. This takes place at several sites along the boundary so that a group of
finely spaced laths develops. As the laths thicken the carbon content of the
austenite increases and finally reaches such a level that cementite nucleates
and grows.

At the higher temperatures of formation upper bainite closely resembles
finely spaced Widmanstatten side-plates, Fig. 5.46d. As the temperature
decreases the bainitic laths become narrower so that individual laths may only
be resolved by electron microscopy.

At the highest temperatures where pearlite and bainite grow competitively
in the same specimen it can be difficult to distinguish the pearlite colonies
from the upper bainite. Both appear as alternate layers of cementite in
ferrite. The discontinuous nature of the bainitic carbides does not reveal the
difference since pearlitic cementite can also appear as broken lamellae.
However, the two microstructures have formed in quite different ways. The
greatest difference between the two constituents lies in their crystallography.
In the case of pearlite the cementite and ferrite have no specific orientation
relationship to the austenite grain in which they are growing, whereas the
cementite and ferrite in bainite do have an orientation relationship with the
grain in which they are growing. This point is illustrated in Fig. 5.62. The
micrograph is from a hypoeutectoid steel (0.6% C) which has been partially
transformed at 710 °C and then quenched to room temperature, whereupon
the untransformed austenite was converted into martensite. The quench,
however, -was not fast enough to prevent further transformation at the y/a
interface. The dark constituent is very fine pearlite which was nucleated on
the incoherent o/ interface, across which there is no orientation relationship.
The ferrite and lower austenite grain, however, have an orientation rela-
tionship which has led to bainite formation.

Fig. 5.62 Hypoeutectoid steel (0.6% C) partially transformed for 30 min at 710 °C,
inefficiently quenched. Bainitic growth into lower grain of austenite and pearlitic
growth into upper grain during quench (X 1800). (After M. Hillert in Decomposition
of Austenite by Diffusional Processes, V.F. Zackay and H.I. Aaronson (Eds.), 1962,
by permission of the Metallurgical Society of AIME.)
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Lower Bainite
At sufficiently low temperatures the microstructure of bainite changes from
laths into plates and the carbide dispersion becomes much finer, rather like
in tempered martensite. The temperature at which the transition to lower
bainite occurs depends on the carbon content in a complex manner. For
carbon levels below about 0.5wt% the transition temperature increases with
increasing carbon, from 0.5-0.7wt% C it decreases and above approxi-
mately 0.7wt% C it is constant at about 350 °C. At the temperatures where
lower bainite forms the diffusion of carbon is slow, especially in the aus-
tenite and carbides precipitate in the ferrite with an orientation relationship.
The carbides are either cementite or metastable transition carbides such as
e-carbide and they are an aligned at approximately the same angle to the
plane of the ferrite plate (Fig. 5.63). The habit plane of the ferrite plates in
lower bainite is the same as that of the martensite that forms at lower
temperatures in the same alloy. As with upper bainite, some carbides can
also be found between the ferrite plates.

The different modes of formation of upper and lower bainite result in
different transformation kinetics and separate C curves on the TTT diagram.
An example, the case of a low-alloy steel, is shown in Fig. 5.68.

Transformation Shears

If a polished specimen of austenite is transformed to bainite (upper or lower)
it is found that the growth of bainite laths or plates produces a surface relief
effect like that of martensite plates. For example Fig. 5.64 shows the surface
tilts that result from the growth of lower bainite plates. This has been
interpreted as suggesting that the bainite plates form by a shear mechanism in
the same way as the growth of martensite plates (see Chapter 6). In other
words it is supposed that the iron atoms are transferred across the
ferrite/austenite interface in an ordered military manner. However, the
growth rate of the bainite plates is controlled by the rate at which carbon can
diffuse away from the interface, or by the rate at which carbides can
precipitate behind the interface, whereas martensite plates are able to
advance without any carbon diffusion, and the plates can grow as fast as the
glissile interfaces can advance.

There is, however, much uncertainty regarding the mechanism by which
bainitic ferrite grows, and the nature of the austenite—ferrite interface in
martensite and bainite. In fact the formation of Widmanstatten side-plates
also leads to surface tilts of the type produced by a shear transformation. Also
the phenomenological theory of martensite is able to account for the observed
orientation relationships and habit planes found in Widmanstatten plates as
well as bainite and martensite. It can be seen, therefore, that some phase
transformations are not exclusively military or civilian, but show characteris-
tics common to both types of transformation. For a detailed review of the
bainite transformation the reader should consult the article by Bhadeshia
and Christian, given in the Further Reading section at the end of this
chapter.
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5.8.3 The Effect of Alloying Elements on Hardenability

The primary aim of adding alloying elements to steels is to increase the
hardenability, that is, to delay the time required for the decomposition into

Fig. 5.63 (a) Lower bainite in 0.69wt% C low-alloy steel (replica X 1100). (After
R.F. Heheman in Metals Handbook, 8th edn., Vol. 8, American Society for Metals,
1973, p. 196.) (b) A possible growth mechanism. a/y interface advances as fast as
carbides precipitate at interface thereby removing the excess carbon in front of the a.
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(b)
Fig. 5.63 (continued)

ferrite and pearlite. This allows slower cooling rates to produce fully mar-
tensitic structures. Figure 5.65 shows some examples of TTT diagrams for
various low-alloy steels containing Mn, Cr, Mo and Ni in various combina-
tions and concentrations. Note the appearance of two separate C curves for
pearlite and bainite, and the increasing time for transformation as the alloy
content increases.

Basically there are two ways in which alloying elements can reduce the rate
of austenite decomposition. They can reduce either the growth rate or the
nucleation rate of ferrite, pearlite, or bainite.

The main factor limiting hardenability is the rate of formation of pearlite at
the nose of the C curve in the TTT diagram. To discuss the effects of alloy
elements on pearlite growth it is necessary to distinguish between austenite
stabilizers (e.g. Mn, Ni, Cu) and ferrite stabilizers (e.g. Cr, Mo, Si). Aus-
tenite stabilizers depress the A; temperature, while ferrite stabilizers have the
opposite effect. All of these elements are -substitutionally dissolved in the
austenite and ferrite.

At equilibrium an alloy element X will have different concentrations in
cementite and ferrite, i.e. it will partition between the two phases. Carbide-
forming elements such as Cr, Mo, Mn will concentrate in the carbide while
elements like Si will concentrate in the ferrite. When pearlite forms close to
the A; temperature the driving force for growth will only be positive if the
equilibrium partitioning occurs. Since X will be homogeneously distributed
within the austenite, the pearlite will only be able to grow as fast as substitu-
tional diffusion of X allows partitioning to occur. The most likely diffusion
route for substitutional elements is through the y/a and y/cementite inter-
faces. However, it will be much slower than the interstitial diffusion of carbon
and will therefore reduce the pearlite growth rate.



("ANIV Jo K19100S [eo13in|[eld|y 2y ], jo uorssiuiad
£q ‘7961 ‘(‘spd) uosuoiey ‘I'H Pue AejoeZ "J'A ‘Sassado4d puoisnffiq £q anuaisny
Jo uoyisodwiodsq ut ‘yoradg YO 101V) "utw 7'61 (p) ‘urw gz'L1 (9) ‘urw z'97 (q)
‘urw G741 (8) "JaI[a1 90BJINS 01 NP SI ISBNUO0D YT, D, 0SE 18 sare|d aj1ureq jo yimoid
pue uonespnu 9y} Sumoys adossomorwu 3Fels-joy e PIM udyel sojoyd $9°S ‘S



Fig. 5.65 TTT diagrams for four commercial low-alloy steels all of which contain
roughly 0.4% C and 1% Mn. In addition (b) contains 0.9% Cr, (c) contains
1.0% Crand 0.2% Mo, and (d) contains 0.8% Cr, 0.3% Mo, and 1.8% Ni. Note the
tendency to form two distinct knees, one for pearlite formation and one for bainite
formation. (From Atlas of Isothermal Transformation and Cooling Transformation
Diagrams, American Society for Metals, 1977.)
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When X is a ferrite stabilizer there are thermodynamic considerations that
suggest that X will partition even at large undercoolings close to the nose of
the C curve. Thus Si, for example, will increase the hardenability by diffusing
along the austenite/pearlite interface into the ferrite. The partitioning of
alloying elements in an Fe—0.6 wt% C-0.85% Cr-0.66% Mn-0.26% Si steel
transformed at 597 °C for 2 min is shown in Fig. 5.66.

When X is an austenite stabilizer such as Ni, it is possible, at sufficiently
high undercoolings, for pearlite to grow without partitioning. The ferrite and
cementite simply inherit the Ni content of the austenite and there is no need
for substitutional diffusion. Pearlite can then grow as fast as diffusion of
carbon allows. However, the growth rate will still be lower than in binary
Fe-C alloys since the non-equilibrium concentration of X in the ferrite and
cementite will raise their free energies, thereby lowering the eutectoid
temperature, Fig. 5.67, and reducing the total driving force. For the same
reasons zero-partitioning is only possible at temperatures below the meta-
stable eutectoid as shown in Fig. 5.67.

When X is a strong carbide-forming element such as Mo or Cr it has been
suggested'” that it can reduce the rate of growth of pearlite, as well as
proeutectoid ferrite, by a solute-drag effect on the moving y/a interface.
These elements also partition to cementite as shown in Fig. 5.66.

Hardenability is not solely due to growth-rate effects. It is also possible that
the alloying elements affect the rate of nucleation of cementite or ferrite. For

Fig. 5.66 Schematic diagram showing the measured variations of alloying elements
in pearlite. These measurements were made using a time-of-flight atom probe. (P.R.
Williams, M.K. Miller, P.A. Beavan and G.D.W. Smith, Phase Transformations, Vol.
2, Institute of Metallurgists, 1979, p. 98.)
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Fig. 5.67 Schematic phase diagram for Fe-C-X alloy where X is a substitutional
element. Between the solid and dashed lines, precipitation can occur in the austenite
only if X is partitioned between the phases.

example, it has been suggested'® that the ‘bay’ at ~500 °C in the TTT
diagrams of steels containing Cr, Mo and B (see Fig. 5.65) may be due to the
poisoning of ferrite nucleation sites by the precipitation of X-carbide clusters
in grain boundaries.

The diagrams shown in Fig. 5.65 are not entirely accurate especially with
regard to the bainite transformation at temperatures in the vicinity of the M,
temperatures. It has been found that below the M, temperature the bainite
transformation rate is greatly increased by the martensite-transformation
strains. The TTT diagram for the bainite transformation in Fig. 5.65d has
recently been redetermined using a new experimental technique based on
magnetic permeability measurements'® and the results are shown in Fig. 5.68.
The acceleration of the transformation close to M, and the existence of
separate C curves for upper and lower bainite are apparent.

5.8.4 Continuous Cooling Diagrams

Isothermal transformation (TTT) diagrams are obtained by rapidly quenching
to a given temperature and then measuring the volume fraction of the various
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constituents that form as a function of time at that temperature. Practical heat
treatments, however, are usually concerned with transformations that occur
during continuous cooling, and under these conditions TTT diagrams cannot
be used to give the times and temperatures of the various transformations. A
continuous cooling transformation (CCT) diagram must be used instead.

To a first approximation the CCT diagram is the TTT diagram shifted to
lower temperatures and longer times. This can be understood as follows. In a
specimen held at a constant temperature the transformation starts when the
product (Nt) reaches a certain value, a, say. In a continuously cooled sample,
time near the start of cooling is not very effective since N is low at low
supercoolings. Therefore when the cooling curve reaches the TTT start curve
the total value of Nt will be less than a and further time (and therefore
cooling) will be required before the start of the CCT diagram is reached.
Similarly the end of the reaction will be displaced to lower temperatures and
longer times. The relationship between a CCT and an TTT diagram for a
eutectoid steel is shown in Fig. 5.69. Note that whereas the TTT diagram is
interpreted by reading from left to right at a constant temperature the CCT
diagram is read along the cooling curves from the top left to bottom right. The
cooling curves in Fig. 5.69 refer to various distances from the quenched end
of a Jominy end-quench specimen. Transformation occurs along the hatched
parts of the lines. Figure 5.69 is in fact simplified and cooling along B would
lead to the production of some bainite. But otherwise it can be seen that point
B will transform partly to fine pearlite at high temperatures around 500-
450 °C. Between 450 and 200 °C the remaining austenite will be unable to
transform and below 200 °C transformation to martensite occurs.

The above relationship between TTT and CCT diagrams is only approxi-
mate. There are several features of CCT diagrams that have no counterpart in
TTT diagrams especially in alloy steels. These include the following: (i) a
depression of the M, temperature at slow cooling rates, (ii) the tempering of
martensite that takes place on cooling from M, to about 200 °C, (iii) a greater
variety of microstructures.

Figure 5.70 shows more complete CCT diagrams for a medium-carbon steel
with different Mn contents. These diagrams were obtained with a high-speed
dilatometer using programmed linear cooling rates for all except the highest
quench rates. For each cooling curve the cooling rate and volume fractions of
ferrite and pearlite are indicated. Note how the volume fraction of pearlite
increases as the cooling rate is increased from 2.5 to 2300 °F/min in the
low-Mn steel. In practical heat treatments the cooling curves will not be linear
but will depend on the transfer of heat from the specimen to the quenching
medium and the rate of release of latent heat during transformation. In
general, the evolution of latent heat reduces the rate of cooling during the
transformation range and can even lead to a rise in temperature, i.e. recales-
cence. Recalescence is often associated with the pearlite transformation when
the growth rate is very high, e.g. in unalloyed steels, but the effect can also be
seen quite clearly for a cooling rate of 4100 °F/min in Fig. 5.70a.
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Fig. 5.69 Correlation of continuous cooling and isothermal transformations with
end-quench hardenability test data for eutectoid carbon steel. (Atlas of Isothermal

Transformation and Cooling Transformation Diagrams, American Society for Metals,
1977, p. 376.)
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Fig. 5.70 CCT diagrams showing the influence of Mn on a 0.4 wt% C steel.
(a) 0.39 C, 0.72 Mn, 0.23 Si, 0.018 S, 0.010 P. Ac, = 728 °C, Ac; = 786 °C. Grain
size, ASTM No. 7-8. (b) 1.6 Mn: 0.39 C, 1.56 Mn, 0.21 Si, 0.024 S, 0.010 P.
Ac; = 716 °C. Ac; = 788 °C. Grain size, ASTM No. 8. F, ferrite; P, pearlite; B,
bainite; M, martensite, (Atlas of Isothermal Transformation and Cooling Transforma-
tion Diagrams, American Society of Metals, 1977, p. 414.)
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5.8.5 Fibrous and Interphase Precipitation in Alloy Steels

When a few per cent of a strong carbide-forming element (e.g. Mo, W, Cir,
Ti, V) is alloyed with steel, cementite is entirely replaced by a more stable
carbide. When such steels are isothermally transformed at temperatures
where the substitutional alloying element has appreciable mobility (~600-
750 °C) two new alloy-carbide morphologies can form.

Sometimes a fibrous morphology can be formed as illustrated in Fig. 5.71.
This is a mixture of Mo,C fibres in ferrite. The interfibre spacings are about
an order of magnitude less than found in pearlite with fibre diameters
~10-50 nm.

In other cases planar arrays of alloy carbides in ferrite are produced,
Fig. 5.72. The spacing of the sheets of precipitates decreases with decreasing
temperature of transformation, being of the order of 10-50 nm. The sheets of
precipitate are parallel to successive positions of the y/a interface, hence this
type of precipitation is known as interphase precipitation. The mechanism by
which the microstructure develops is shown in the thin-foil electron micro-
graphs in Fig. 5.73a and b and schematically in Fig. 5.73c. The o/ interface
can be seen to advance by the ledge mechanism, whereby mobile incoherent
ledges migrate across immobile semicoherent facets. Note that these growth
ledges are ~100 atom layers high in contrast to the structural ledges discussed
in Section 3.4.1 which are only a few atom layers high at most. Normally the
incoherent risers would be energetically favourable sites for precipitation, but
in this case the alloy carbides nucleate on the low-energy facets. This is
because the ledges are moving too fast for nucleation to occur. As can be seen
in Fig. 5.73a and as shown schematically in Fig. 5.73c, the precipitate size
increases with distance behind the step, indicating that nucleation occurs on
the semicoherent facets just ahead of the steps.

5.9 Massive Transformations

Consider the Cu-Zn alloys in Fig. 5.74 containing approximately 38 atomic
% Zn. The most stable state for such alloys is B above ~800 °C, a below
~500 °C and a mixture of a + B with compositions given by the equilibrium
phase diagram in between. The type of transformation that occurs on cooling
the B phase depends on the cooling rate. At slow to moderate cooling rates o
precipitates in a similar way to the precipitation of ferrite from austenite in
Fe-C alloys: slow cooling favours transformation at small undercooling and
the formation of equiaxed «; higher cooling rates result in transformation at
lower temperatures and Widmanstétten o needles precipitate. According to
the phase diagram, the a that precipitates will be richer in Cu than the parent
B phase, and therefore the growth of the o phase requires the long-range
diffusion of Zn away from the advancing «/B interfaces. This process is
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Fig. 5.72 Fe-0.75% V-0.15% C after 5 min at 725 °C. Thin foil electron micrograph
showing sheets of vanadium carbide precipitates (interphase precipitation). (After
R.W.K. Honeycombe, ‘Transformation from Austenite in Alloy Steels’, Metallurgical
Transactions, TA (1976) 91, © American Society for Metals and The Metallurgical
Society of AIME, 1976, after A.D. Batte.)

relatively slow, especially since the Cu and Zn form substitutional solid
solutions, and consequently the C curve for the a precipitation on a TTT or
CCT diagram will be located at relatively long times. A possible CCT diagram
is shown schematically in Fig. 5.75.

If the alloy is cooled fast enough, by quenching in brine for example, there
is no time for the precipitation of o, and the B phase can be retained to
temperatures below 500 °C where it is possible for B to transform into o with
the same composition. The result of such a transformation is a new massive
transformation product, Fig. 5.76.

Massive a grains nucleate at grain boundaries and grow rapidly into the
surrounding B. Note also that because of the rapid growth the o/B boundaries
have a characteristic irregular appearance. Since both the a and B phases
have the same composition, massive a(a,,) can grow as fast as the Cu and Zn
atoms can cross the o/ interface; without the need for long-range diffusion.
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Fig. 5.73  Fe-12% Cr%-0.2% C transformed 30 min at 650°C. Interphase precipita-
tion of Cr;;Cs at a/y interface. (a) Dark-field micrograph showing bright precipi-
tates. (b) Bright-field micrograph of same area showing ledges in the /7 interface.
Precipitates appear dark. (c) Schematic of nucleation and growth mechanism for
interphase precipitation. (After R.W.K. Honeycombe, ‘Transformation from Auste-
nite in Alloy Steels’, Metallurgical Transactions TA (1976) 91, © American Society for
Metals and The Metallurgical Society of AIME, 1976, after K. Campbell.)
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Fig. 5.74 A part of the Cu-Zn phase diagram showing the o/B equilibrium. The
temperature at which G* = G is marked as T,. M, marks the beginning of the
martensite transformation in rapidly quenched specimens. (After T.B. Massalski in
Phase Transformations, American Society for Metals, 1970.)

Since growth only involves thermally activated jumping across the o/
interface, the massive transformation can be defined as a diffusionless
civilian transformation and it is characterized by its own C curve on TTT
or CCT diagrams as shown in Fig. 5.75. The migration of the a/B interfaces
is very similar to the migration of grain boundaries during recrystallization
of single-phase material. However, in the case of the massive transformation
the driving force is orders of magnitude greater than for recrystallization,
which explains why the transformation is so rapid.

Massive transformations should not be confused with martensite. Although
the martensitic transformation also produces a change of crystal structure
without a change in composition, the transformation mechanism is quite
different. Martensite growth is a diffusionless military transformation, i.e.
B is sheared into a by the cooperative movement of atoms across a glissile
interface, whereas the growth of massive a involves thermally activated
interface migration. Systems showing massive transformations will generally
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Fig. 5.75 A possible CCT diagram for systems showing a massive transformation.
Slow cooling (1) produces equiaxed a. Widmanstétten morphologies result from
faster cooling (2). Moderately rapid quenching (3) produces the massive trans-
formation, while the highest quench rate (4) leads to a martensitic transformation.
Compare with Fig. 5.79.

also transform martensitically if sufficiently high quench rates are used to
suppress the nucleation of the massive product, Fig. 5.75. However Fig. 5.74
shows that for the Cu—Zn alloys the M, temperature is below 0 °C and some
P phase is therefore retained after quenching to room temperature, as can
be seen in Fig. 5.76.

It was stated above that B can transform massively into a provided the g
phase could be cooled into the stable o phase field without precipitation at a
higher temperature. Thermodynamically, however, it is possible for the trans-
formation to occur at higher temperatures. The condition that must be
satisfied for a massive transformation is that the free energy of the new phase
must be lower than the parent phase, both phases having the same composi-
tion. In the case of Cu-38 atomic % Zn therefore, it can be seen from
Fig. 5.77 that there is a temperature ~700 °C below which G* becomes less
than G®. This temperature is marked as T} in Fig. 5.74 and the locus of T is
also shown for other alloy compositions. Therefore it may be possible for a
massive transformation to occur within the two-phase region of the phase
diagram anywhere below the T, temperature. In practice, however, there is
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Fig. 5.76 Massive o formed at the grain boundaries of B in Cu-38.7 wt% Zn
quenched from 850 °C in brine at 0 °C. Some high temperature precipitation has also
occurred on the boundaries. (From D. Hull and K. Garwood, The Mechanism of
Phase Transformations in Metals, Institute of Metals, London, 1956.)

Fig. 5.77 A schematic representation of the free energy—composition curves for a
and B in the Cu—Zn system at various temperatures.
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evidence that massive transformations usually occur only within the single-
phase region of the phase diagram.

Massive transformations are found in many alloy systems. Usually the
interfaces are incoherent and migrate by continuous growth in a similar
manner to a high-angle grain boundary, but in some cases growth can take
place by the lateral movement of ledges across faceted interfaces. The Cu-Al
phase diagram is similar to that shown in Fig. 5.74. Figure 5.78 shows a
specimen of Cu-20 atomic % Al that has been quenched from the B field to
produce almost 100% massive o. Again, characteristically irregular phase
boundaries are apparent. In both Figs. 5.76 and 5.78 the cooling rate has
been insufficient to prevent some precipitation on grain boundaries at higher
temperatures before the start of the massive transformation.

The y — o transformation in iron and its alloys can also occur massively
provided the v is quenched sufficiently rapidly to avoid transformation near
equilibrium, but slow enough to avoid the formation of martensite. The effect
of cooling rate on the temperature at which transformation starts in pure iron
is shown in Fig. 5.79. The microstructure of massive ferrite is shown in
Fig. 5.80. Note the characteristically irregular grain boundaries.

Massive transformations are not restricted to systems with phase diagrams

Fig. 5.78 Massive a in Cu-20 atomic % Al after quenching from the B field at
1027 °C into iced brine. Note the irregular a/a boundaries. Some other transforma-
tion (possibly bainitic) has occurred on the grain boundaries. (After G.A. Chadwick,
Metallography of Phase Transformations, Butterworths, London, 1972.)
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Fig. 5.79 The effect of cooling rate on the transformation temperature of pure iron.
(After M.J. Bibby and J.G. Parr, Journal of the Iron and Steel Institute 202 (1964)
100.)

Fig. 5.80 Massive o in an Fe-0.002 wt% C quenched into iced brine from 1000 °C.
Note the irregular a/a boundaries. (After T.B. Massalski in Metals Handbook, 8th
edn., Vol. 8, American Society for Metals, 1973, p. 186.)

like that shown in Fig. 5.74. Metastable phases can also form massively as
shown in Fig. 5.1d(ii) for example. It is not even necessary for the trans-
formation product to be a single phase: two phases, at least one of which must
be metastable, can form simultaneously provided they have the same com-
position as the parent phase.
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5.10 Ordering Transformations

The structure of ordered phases has already been briefly discussed in
Section 1.3.7. To recap: solid solutions which have a negative enthalpy of
mixing (2 < 0) prefer unlike nearest neighbours and therefore show a
tendency to form ordered phases at low temperatures. The five main types of
ordered solutions are shown in Fig. 1.22. An example of a phase diagram
containing low-temperature ordering reactions is the Au-Cu diagram in
Fig. 1.21. Another example is the ordering of bcc B-brass below ~460 °C to
the so-called L2, (or B2) superlattice, Fig. 5.74. The bcc (or so-called A2)
lattice can be considered as two interpenetrating simple cubic lattices: one
containing the corners of the bcc unit cell and the other containing the
body-centring sites. If these two sublattices are denoted as A and B the
formation of a perfectly ordered B’ superlattice involves segregation of all Cu
atoms to the A sublattice, say, and Zn to the B sublattice. This is not feasible
in practice, however, as the 8’ does not have the ideal CuZn composition.
There are two ways of forming ordered structures in non-stoichiometric
phases: either some atom sites can be left vacant or some atoms can be
located on wrong sites. In the case of B(CuZn) the excess Cu atoms are
located on some of the Zn sites.

Let us begin the discussion of ordering transformations by considering what
happens when a completely ordered single crystal such as CuZn or CusAu is
heated from low temperatures to above the disordering temperature. To do
this it is useful to quantify the degree of order in the crystal by defining a
long-range order parameter L such that L = 1 for a fully ordered alloy where
all atoms occupy their ‘correct’ sites and L = 0 for a completely random
distribution. A suitable definition of L is given by

ra — Xa rg — Xp
L = or
1 - X4 1- X

where X, is the mole fraction of A in the alloy and r, is the probability that
an A sublattice site is occupied by the ‘right’ kind of atom.

At absolute zero the crystal will minimize its free energy by choosing the
most highly ordered arrangement (L = 1) which corresponds to the lowest
internal energy. The configurational entropy of such an arrangement, how-
ever, is zero and at higher temperatures the minimum free energy state will
contain some disorder, i.e. some atoms will interchange positions by diffusion
so that they are located on ‘wrong’ sites. Entropy effects become increasingly
more important with rising temperature so that L continuously decreases
until above some critical temperature (7,) L = 0. By choosing a suitable
model, such as the quasi-chemical model discussed in Section 1.3.4, it is
possible to calculate how L varies with temperature for different superlat-
tices. The results of such a calculation for the CuZn and Cus;Au superlattices
are shown in Fig. 5.81. It can be seen that the way in which L decreases to
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Fig. 5.81 The variation of long-range order (L) and short-range order (s) for
(a) CuZn-type and (b) CusAu-type transformations (schematic).

zero is different for the different superlattices. In the equiatomic CuZn case L
decreases continuously with temperature up to T, whereas in CuzAu L
decreases only slightly up to 7. and then abruptly drops to zero above T..
This difference in behaviour is a consequence of the different atomic
configurations in the two superlattices.

Above T, it is impossible to distinguish separate sublattices extending over
long distances and L = 0. However, since ) < 0 there is still a tendency for
atoms to attract unlike atoms as nearest neighbours, i.e. there is a tendency
for atoms to order over short distances. The degree of short-range order (s) is
defined in Section 1.3.7. The variation of s with temperature is shown as the
dashed lines in Fig. 5.81.

The majority of phase transformations that have been discussed in this
book have been so-called first-order transformations. This means that at the
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equilibrium transformation temperature the first derivatives of the Gibbs free
energy 0G/dT and dG/9dP are discontinuous. The melting of a solid is such a
transformation, Fig. 5.82a. Since dG/dT = — S and dG/9P = V, first order
transformations are characterized by discontinuous changes in S and V. There
is also a discontinuous change in enthalpy H corresponding to the evolution of
a latent heat of transformation. The specific heat of the system is effectively
infinite at the transformation temperature because the addition of a small

Fig. 5.82 The thermodynamic characteristics of (a) first-order and (b) second-
order phase transformations.
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quantity of heat converts more solid into liquid without raising the tempera-
ture.

Figure 5.82b illustrates the characteristics of a second-order transforma-
tion. For such a transformation the second derivatives of Gibbs free energy
8°G/oT? and 9*°G/dP? are discontinuous. The first derivatives, however, are
continuous which means that H is also continuous. Consequently since

*G s\ 1 (aH\ _C,
<aT2)p - aT)P T\oT ), T
there is no latent heat, only a high specific heat, associated with the trans-
formation.

Returning to a consideration of order-disorder transformations it can be
seen from Fig. 5.81 that the loss of long-range order in the B’ — B (CuZn)
transformation corresponds to a gradual disordering of the structure over a
range of temperatures. There is no sudden change in order at T, and conse-
quently the internal energy and enthalpy (H) will be continuous across 7.
The B’ — B transformation is therefore a second-order transformation. In the
case of CuzAu, on the other hand, a substantial change in order takes place
discontinuously at T.. Since the disordered state will have a higher internal
energy (and enthalpy) than the ordered state, on account of the greater
number of high-energy like-like atom bonds, there will be a discontinuous
change in H at T, i.e. the transformation is first order.

So far we have been concerned with the disordering transformation that
takes place on heating a fully ordered single crystal. The mechanism by which
order is lost is most likely the interchange of atoms by diffusional processes
occurring homogeneously throughout the crystal. The same changes will of
course take place in every grain of a polycrystal. Let us now turn to the
reverse transformation that occurs on cooling a single crystal, i.e.
disorder — order.

There are two possible mechanisms for creating an ordered superlattice
from a disordered solution. (1) There can be a continuous increase in short-
range order by local rearrangements occurring homogeneously throughout
the crystal which finally leads to long-range order. (2) There may be an
energy barrier to the formation of ordered domains, in which case the trans-
formation must take place by a process of nucleation and growth. These two
alternative mechanisms are equivalent to spinodal decomposition and pre-
cipitation as mechanisms for the formation of coherent zones in alloys with
positive heats of mixing ({2 > 0). The first mechanism may only be able to
operate in second-order transformations or at very high supercoolings below
T.. The second mechanism is generally believed to be more common.

The nucleation and growth process is illustrated in Fig. 5.83. The dis-
ordered lattice is represented by the cross-grid of lines. Within this lattice two
sublattices are marked by heavy and faint lines. Atoms are located at each
intersection but only atoms within the ordered regions, or domains, are
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marked; the unmarked sites are disordered. The diagram is only schematic,
but could represent a {100} plane of the CusAu superlattice. Since the two
types of atoms can order on either the A or B sublattice, the independently
nucleated domains will often be ‘out of phase’ as shown. When these domains
subsequently grow together a boundary will form (known as an antiphase
domain boundary or APB) across which the atoms will have the wrong kind
of neighbours. APBs are therefore high-energy regions of the lattice and are
associated with an APB energy.

Even at rather low undercoolings below T the activation energy barrier to
the nucleation of ordered domains AG* should be rather small because both
nucleus and matrix have essentially the same crystal structure and are there-
fore coherent with a low interfacial energy. Also, provided the alloy has a
stoichiometric composition, both nucleus and matrix have the same com-
position so that there should not be large strain energies to be overcome.
Consequently, it is to be expected that nucleation will be homogeneous,
independent of lattice defects such as dislocations and grain boundaries.
Figure 5.84 shows evidence for the existence of a nucleation and growth
mechanism during ordering in CoPt. This is a field ion micrograph showing
that the two types of atoms are ordered in a regular manner in the upper part
but disordered in the lower part of the micrograph.

At low AT the nucleation rate will be low and a large mean domain size
results, whereas higher values of AT should increase the nucleation rate and
diminish the initial domain size. The degree of long-range order in a given
domain will vary with temperature according to Fig. 5.81 and with decreasing
temperature the degree of order is increased by homogeneous diffusive rear-
rangements among the atoms within the domain. Within the crystal as a
whole, the degree of long-range order will initially be very small because
there are likely to be equal numbers of domains ordered on both A and B
lattices. The only way for long-range order to be established throughout the
entire crystal is by the coarsening of the APB structure. The rate at which this
occurs depends on the type of superlattice.

In the CuZn-type superlattice (L2,) there are only two sublattices on which
the Cu atoms, say, can order and therefore only two distinct types of ordered
domain are possible. A consequence of this is that it is impossible for a
metastable APB structure to form. It is therefore relatively easy for the APB
structure to coarsen in this type of ordered alloy. Figure 5.85 shows an
electron micrograph of APBs in AlFe (L2, superlattice) along with a schema-
tic diagram to illustrate the two different types of domain. The CusAu (L1,)
superlattice is different to the above in that there are four different ways in
which ordered domains can be formed from the disordered fcc lattice: the Au
atoms can be located either at the corners of the unit cell, Fig. 1.20c, or at the
one of the three distinct face-centred sites. The CusAu APBs are therefore
more complex than the CuZn type, and a consequence of this is that it is
possible for the APBs to develop a metastable, so-called foam structure,
Fig. 5.86. Another interesting feature of this microstructure is that the APBs
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Fig. 5.84 A field ion micrograph of the boundary between an ordered domain
(above) and disordered matrix (below) in CoPt. (After E.W. Miiller and Tien Tzou
Tsong, Field lon Microscopy, Principles and Applications, Elsevier, 1969.)

tend to align parallel to {100} planes in order to minimize the number of
high-energy Au-Au bonds.

The rate at which ordering occurs varies greatly from one alloy to another.
For example the ordering of (CuZn) is so rapid that it is almost impossible to
quench-in the disordered bcce structure. This is because the transformation is
second order and can occur by a rapid continuous ordering process.

Ordering of Cu;Au on the other hand is relatively slow requiring several
hours for completion, despite the fact that the atomic mobilities ought to be
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similar to those in the CuZn transformation. This transformation, however, is
second order and proceeds by nucleation and growth. Also the development
of long-range order is impeded by the formation of metastable APB net-
works.

The above comments have been concerned primarily with alloys of
stoichiometric composition. However, it has already been pointed out that
ordering is often associated with non-stoichiometric alloys.

In the case of first-order transformations there is always a two-phase region
at non-stoichiometric compositions, Fig. 1.21, so that the transformation can
be expressed as: disordered phase — ordered precipitates + disordered ma-
trix. There is then a change in composition on ordering and long-range
diffusion must be involved. Second-order transformations on the other hand

do not involve a two-phase region even at non-stoichiometric compositions,
Fig. 5.74.

Fig. 5.85 (a) A thin-foil electron micrograph showing APBs in an ordered AlFe
alloy (X 17 000). (b) A schematic representation of the atomic configurations
comprising the APB structure in (a). (After M.J. Marcinkowski in Metals Handbook.
8th edn., Vol. 8, American Society for Metals, 1973, p. 205.)
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5.11 Case Studies

5.11.1 Titanium Forging Alloys

Composition: Ti—-6 wt% Al-4 wt% V.

Phase diagrams: Binary Ti-Al and Ti-V diagrams in Fig. 5.87.
Important phases: a-hcp, B-bcc.

Microstructures: See Figs. 5.88-5.91.

Applications: As a result of the high cost of titanium, uses are restricted to
applications where high performance is required and high strength to weight
ratio is important, e.g. gas turbine aero engines and airframe structures.

Comments: At low temperatures pure titanium exists as the hcp a phase,
but above 883 °C up to the melting point (~1672 °C) the bcc B phase is stable.
Figure 5.87 shows that Al is an a stabilizer, i.e. it raises the /B transition
temperature, whereas V is a 8 stabilizer which lowers the transition tempera-
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Fig. 5.86 APBs in ordered CusAu. Thin-foil electron micrograph X 53 000. Note
that due to the method of imaging about one third of the APBs are invisible. (After
M.J. Marcinkowski in Metals Handbook, 8th edn., Vol. 8, American Society for
Metals. 1973, p. 205.)

ture. A wide range of titanium alloys are available. These can be classified as
either o, a + B, or B alloys. The Ti-6Al-4V alloy to be discussed here
belongs to the o + B group of alloys. For simplicity, the phase diagram
relevant to these alloys can be envisaged as that shown in Fig. 5.87c. Two
principal types of transformation are of interest. The first of these is the
precipitation of a from B on cooling from above the B transus into the o + 8
field. This is in principle the same as the formation of ferrite during the
cooling of austenite in Fe—C alloys. However, in this case the Widmanstétten
morphology predominates at all practical cooling rates, Fig. 5.88a.
Figure 5.88b is a thin-foil electron micrograph of a similar structure and
shows more clearly the two phases present after air cooling. The § phase
remains as a thin layer between the Widmanstétten o plates. Furnace cooling
produces similar though coarser microstructures. The o plates and the £
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matrix are oriented such that

(0001),//(110)g
[1120],//[111]g

The second important transformation is the formation of martensite that
takes place when  is rapidly cooled by water quenching. The transformation
can be written B — o' where o’ is a supersaturated hcp a phase. M; for 8
containing 6 wt% Al-4 wt% V is above room temperature so that quenching
from above the B transus produces a fully martensitic structure, Fig. 5.8%a.
The martensite can be aged by heating to temperatures where appreciable
diffusion can occur, in which case the supersaturated o’ can decompose by the
precipitation of B on the martensite plate boundaries and dislocations,
Fig. 5.89b.

Alloys for engineering applications are not usually used in the above
conditions but are hot worked in the o + B region of the phase diagram in

Fig. 5.88 (a) Widmanstitten « (light) and B (dark) in a Ti-6 Al-4 V alloy air cooled
from 1037 °C. (S.M. Copley and J.C. Williams, in Alloy and Microstructural Design
J.K. Tien and G.S. Ansell (Eds.), Academic Press, 1976.) (b) Alternate layers of
(light) and B (dark) in a Widmanstitten microstructure. Ti-6 Al-4 V forged at
1038 °C above the B transus, air-cooled, annealed 2 h at 704 °C, air cooled. Thin-foil
electron micrograph (x 15 000). (From Metals Handbook, 8th edn., Vol. 7, American
Society for Metals, 1972, p. 00.)
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Fig. 5.88 (b)

order to break up the structure and distribute the a phase in a finely divided
form. This is usually followed by annealing at 700 °C which produces a
structure of mainly o with finely distributed retained B, Fig. 5.90. The advan-
tage of this structure is that it is more ductile than when the a is present in a
Widmanstitten form. When additional strength is required the alloys are
hardened by heating to high temperatures in the « + B range (~940 °C) so
that a large volume fraction of 8 is produced, followed by a water quench to
convert the B into a’ martensite, and then heating to obtain precipitation
hardening of the martensite (Fig. 5.91). Mechanical properties that can be
obtained after these treatments are given in Table 5.4. If the alloy is held

Table 5.4 Room Temperature Mechanical Properties of Ti—6 wt% Al—
4 wt% V Alloys

Condition YS/MPa UTS/MPa Elongation

annealed 930 990 15%
hardened 950 1030 14%
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Fig. 5.89 (a) o’ Martensite in Ti-6 Al-4 V held above the B transus at 1066 °C and
water quenched. Prior B grain boundaries are visible (X 370). (From Metals Hand-
book, 8th edn., Vol. 7, American Society for Metals, 1972, p. 328) (b) B precipitates
that have formed during the tempering of ' martensite in Ti-6 Al-4 V. Specimen
quenched from 1100 °C and aged 24 h at 600 °C. Thin-foiled electron micrograph.
(After S.M. Copley and J.C. Williams in Alloy and Microstructural Design, J.K. Tien
and G.S. Ansell (Eds.), Academic Press, New York, 1976.)
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Fig. 5.90 Microstructure of hot-worked and annealed Ti-6 Al-4 V (x 540). (P.H.
Morton in Rosenhain Centenary Conference, The Royal Society, London, 1976.)

lower in the o + B field before quenching the B phase that forms can be so
rich in vanadium that the M, temperature is depressed to below room tem-
perature and quenching results in retained B, see Fig. 5.87c.

5.11.2 The Weldability of Low-Carbon and Microalloyed Rolled Steels

Composition: C = 0.22 wt%, Si=0.3%, Mn = 1.0-1.5%, P < 0.04%,
S =0.04%. Cq (see text) < 0.4%.

Possible microalloying elements: Al, Nb, Ti, V, with possible additions of Zr
and/or N. The total amount of microalloying elements does not usually
exceed 0.15%.

Phase diagrams: Fe—C binary.

Modified CCT diagrams (see below).

Welding nomographs (see text).

Microstructure: Depends on type of steel, e.g. whether quench and tem-
pered, microalloyed—fine grained, plain rolled C-Mn, etc. See, e.g.
Fig. 5.49a.

Applications: Constructional steels for building frames, bridges, pressure
vessels, ships, oil platforms, etc.
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Fig. 5.91 Microstructure of hardened Ti-6 Al-4 V. Solution treated at 954 °C (high
in the o + B range), water quenched, aged 4 h at 538 °C. Equiaxed ‘primary’ a grains
(light) in an aged martensitic matrix. (From Metals Handbook, 8th edn., Vol. 7,
American Society for Metals, 1972, p. 329.)

Comments: Steels used for heavy, high-strength constructions are nowa-
days rather sophisticated, relying for their high strength and toughness on
having a fine and uniform grain size. When fusion welding plates together, the
steel is subjected to an extremely severe thermal cycle, and at the fusion line
the temperature attains the melting point of the alloy. Because the steel plate
provides an effective thermal sink (see Section 4.5) the cooling rate is very
high for most types of welding process as illustrated in Fig. 5.92. This thermal
cycle causes changes in properties of the base material in the heat-affected
zone due to the combination of phase changes and thermal/mechanical
stresses. Typical microstructural changes experienced by a C-Mn steel are
illustrated in Fig. 5.93, showing that recrystallization, grain growth and even
ageing are occurring in the heat-affected zone. Of these changes, grain growth
is potentially the most troublesome in decreasing the strength and toughness
of these steels particularly since in most cases high-energy submerged arc
welding is used with its associated relatively long dwell-time at peak tempera-
tures. In order to avert the problem of grain growth at high temperatures,
new steels have recently been introduced containing a fine dispersion of TiN
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precipitates. These precipitates remain fairly stable at temperatures as high as
1500 °C and, at their optimum size of about 10 nm, act as a barrier to grain
growth during welding.

Another important problem in welding high-strength steels concerns the
formation of martensite. The reason for this is that it is very difficult in
welding to avoid the presence of hydrogen. This is because hydrogen-
containing compounds are invariably present in fluxes, the electrode material
or even in the environment if welding is done outside. In this way atomic
hydrogen is absorbed into the molten metal of the fusion weld where it then
diffuses rapidly into the heat-affected base metal. If during subsequent cooling,
martensite forms, hydrogen (whose solubility in martensite is lower than in
ferrite) is forced out of the martensite where it concentrates at the marten-
site—ferrite phase boundary, or at inclusion boundaries. Thus in combination
with weld residual stresses the hydrogen weakens the iron lattice and may
initiate cracks. This phenomenon is known as cold cracking. It is found vital
in welding to exert a close control over the amount of residual hydrogen in
welds and to avoid martensite, particularly in cases where residual stresses
may be high. Since it is usually difficult to totally avoid the presence of
hydrogen, special CCT diagrams are employed in conjunction with estimated
cooling rates in the heat affected material as shown in Fig. 5.94. The essential
feature of this type of CCT diagram is that the phase boundaries need to be
plotted under conditions of actual welding, or weld simulation, in which both
thermal and residual stresses are present®’. In the case of weld simulation, a
special equipment is employed in which it is possible to programme in the
appropriate thermal and stress cycles. As illustrated in Fig. 5.94, the various
cooling curves 1-8 represent different heat inputs corresponding to different
welding processes or parameters. The parameter ¢, in the table refers to the
time in seconds for cooling through the temperature range: 800-500 °C, this
being almost a constant within the heat-affected zone, and is thus considered a
useful parameter in welding in helping to predict microstructure as a function
of welding input energy. The working temperature in the table refers to
whether or not pre-heating was employed. Thus in Fig. 5.94, martensite is
predicted to occur for all welding energies below about 37 500 J/cm (curve
5), this corresponding in practice to a weld deposit on a 20 mm thick plate of
the composition given. In practice of course it is more useful if microstruc-
tural or cold cracking predictions could be made as a function of differing
chemical composition, plate thickness, peak temperature, pre-heating and
welding variables. This obviously requires much more complex diagrams than
that of Fig. 5.94, and will therefore be correspondingly less accurate,
although such diagrams, or welding nomographs as they are called, have been
developed for certain applications. The composition variations are estimated
using a so-called carbon equivalent”, in which the effect of the various
elements present is empirically expressed as a composition corresponding to a
certain carbon content. This is then used to estimate possible martensite
formation for the welding conditions given.
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Exercises

5.1 An approximate expression for the total driving force for precipitation
in a regular solution (AG, in Fig. 5.3) is
Xo (1 - Xo)
=RT|Xyln — + (1 — Xg) In ——| = Q(X, — X.)*
AGO |: OnXe ( O)n(l_Xe) ( 0 C)
where X, and X, are the mole fractions of solute defined in Fig. 5.3.
(a) Use this equation to estimate the total free energy released when
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a' > a+ B at 600K if Xy =0.1, X, =0.02 and Q = 0 (ideal
solution) (R = 8.31 J mol™! K™).

(b) Estimate the volume fraction of precipitate at equilibrium if B is
pure solute (X% = 1). (Assume the molar volume is constant.)

(c) If the alloy is heat treated to produce a precipitate dispersion with a
spacing of 50 nm estimate the total o/B interfacial area m~> of
alloy. (Assume a simple cubic array.)

(d) If Yo = 200 mJ m~2 what is the total interfacial energy m~
alloy? mol ™! of alloy? (V,, = 107> m?).

(e) What fraction of the total driving force would remain as interfacial
energy in the above case?

(f) Repeat c—e for a dispersion of 1 wm spacing.

Use the methods of Chapter 1 to derive the expression for AG, in

problem 5.1.

In dilute or ideal solutions the driving force for precipitate nucleation

(assuming X§ = 1) is given approximately by

3 of

Xo ..
AG, = RTIn X per mole of precipitate
€

where X, and X, are the mole fractions of solute defined in Fig. 5.3.

(a) Evaluate AG, for the precipitate in problem 5.1.

(b) Assuming homogeneous nucleation, what will be the critical nucleus
radius?

(c) How does the mean precipitate size in problem 5.1c compare with
the size of the critical nucleus?

Derive the expression for AG,, in problem 5.3. (Use equation 1.68.)

(a) Calculate 6 in Fig. 5.6 if y,g = 500 and vy, = 600 mJ m™2.

(b) Evaluate the magnitude of the shape factor S(6) for this nucleus.

Imagine the Fe-0.15 wt% C alloy in Fig. 5.45 is austenitized above A,

and then quenched to 800 °C where ferrite nucleates and covers the

austenite grain boundaries.

(a) Draw a composition profile normal to the a/vy interface after partial
transformation assuming diffusion-controlled growth.

(b) Derive an approximate expression for the thickness of the ferrite
slabs as a function of time.

(c) Given that DY (800 °C) = 3 x 107" m? s~ plot the thickness as a
function of time.

(d) If the austenite grain size is 300 pm extend the above curve to long
times. (State any simplifying assumptions you make.)

Derive Equation 5.34.

(a) By considering short transformation times derive expressions for k
and n in Equation 5.39 for the pearlite transformation when nuclea-
tion is restricted to grain corners and all nuclei form at time zero
(site saturation). Assume spherical pearlite nodules and a cubic
grain structure with a cube side d.
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(b) Repeat the above for grain-boundary nucleation again assuming site
saturation. In this case pearlite grows as grain-boundary slabs.
Draw schematic diagrams to show how growth rate and nucleation rate
should vary with temperature for civilian transformations that are in-

duced by an increase in temperature.

A and B form a regular solution with a positive heat of mixing so that

the A-B phase diagram contains a miscibility gap.

(a) Starting from Equation 1.39 derive an equation for d’G/dX%,
assuming G, = Gg = 0.

(b) Use the above equation to calculate the temperature at the top of
the miscibility gap T, in terms of ).

(c) Plot the miscibility gap for this system. Hint: the limits of solubility
for this simple case are given by dG/dXg = 0.

(d) On the same diagram plot the locus of d°G/dX% = 0, i.e. the
chemical spinodal.

By expressing G as a Taylor series, i.e.

_ dG d’G (AX)?
G(X0+AX)-G(XO)+dX(AX)+W St

show that Equation 5.43 is valid for small values of AX.

How should alloy composition affect the initial wavelength of a spino-

dally decomposed microstructure at a given temperature?

(a) Account for the location of massive transformations in Table 3.5.

(b) Why do massive transformations generally occur at lower tempera-
tures but higher rates than precipitation transformations?




6
Diffusionless Transformations

One of the most important technological processes is the hardening of steel by
quenching. If the steel is quenched rapidly enough from the austenitic field,
there is insufficient time for eutectoidal diffusion-controlled decomposition
processes to occur, and the steel transforms to martensite—or in some cases
martensite with a few per cent of retained austenite. This transformation is
important and best known in connection with certain types of stainless steels,
quenched and tempered steels and ball bearing steels. Important recent
developments involving the martensitic transformation in steels include
maraging steels (precipitation-hardened martensite), TRIP steels (trans-
formation induced by plastic deformation), ausforming steels (plastically
deformed austenite prior to quenching) and dual phase steels (a mixture of
ferrite + martensite obtained by quenching from the vy + « field).

Because of the technological importance of hardened steel we shall mainly
be concerned with this transformation, although martensite is a term used in
physical metallurgy to describe any diffusionless transformation product, i.e.
any transformation in which from start to completion of the transformation
individual atomic movements are less than one interatomic spacing. The
regimented manner in which atoms change position in this transformation has
led to it being termed military, in contrast to diffusion-controlled transforma-
tions which are termed civilian. In principle, all metals and alloys can be made
to undergo diffusionless transformations provided the cooling rate or heating
rate is rapid enough to prevent transformation by an alternative mechanism
involving the diffusional movement of atoms. Martensitic transformations can
thus occur in many types of metallic and non-metallic crystals, minerals and
compounds. In the case of martensite in steel, the cooling rate is such that the
majority of carbon atoms in solution in the fcc y-Fe remain in solution in the
a-Fe phase. Steel martensite is thus simply a supersaturated solid solution of
carbon in a-Fe. The way in which this transformation occurs, however, is a
complex process and even today the transformation mechanism, at least in
steels, is not properly understood. The main purpose of this chapter is to
consider some of the characteristics of martensitic transformations including a
brief study of their crystallography, and to examine possible theories of how
the phase nucleates and grows. We shall then consider the process of temper-
ing steel martensites and finally give some examples of engineering materials
based on martensitic transformations.
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6.1 Characteristics of Diffusionless Transformations

There have been a number of excellent reviews of martensitic transforma-
tions, and the most complete treatments to date have been given by Christian
(1965)" and Nishiyama (1978)2. The formation of martensite appears from
micrographs to be a random process and the way it is observed to develop is
illustrated schematically in Fig. 6.1a and b. As seen from Fig. 6.1a, the
martensitic phase (designated a') is often in the shape of a lens and spans
initially an entire grain diameter. The density of plates does not appear to be
a function of the grain size of the austenite. For example it is observed to form
randomly throughout a sample with a plate density which appears to be
independent of grain size. Where the plates intersect the surface of a polished
specimen they bring about an elastic deformation, or tilting of the surface as
shown in Fig. 6.2. Observations have shown that, at least macroscopically,
the transformed regions appear coherent with the surrounding austenite. This
means that intersection of the lenses with the surface of the specimen does not
result in any discontinuity. Thus, lines on a polished surface are displaced, as
illustrated in Fig. 6.2a, but remain continuous after the transformation. It has
been shown that a fully grown plate spanning a whole grain may form within
~107" s which means that the o'/ interface reaches almost the speed of
sound in the solid. Martensite is thus able to grow independently of thermal
activation, although some Fe-Ni alloys do exhibit isothermal growth charac-
teristics. This great speed of formation makes martensite nucleation and
growth a difficult process to study experimentally.

Itis seen in Fig. 6.1a and b that the volume fraction of martensite increases
by the systematic transformation of the austenite remaining between the
plates that have already formed. The first plates form at the M, (martensite
start) temperature. This temperature is associated with a certain driving force
for the diffusionless transformation of vy into o' as shown in Fig. 6.3a and b.
In low-carbon steels, M; = 500 °C (Fig. 6.3c), but increasing C contents
progressively decrease the M, temperature as shown. The M; tempera-
ture (martensite finish) corresponds to that temperature below which
further cooling does not increase the amount of martensite. In practice the
M; may not correspond to 100% martensite, and some retained austenite
can be left even below M;. The retention of austenite in such cases may be
due to the high elastic stresses between the last martensite plates to form,
which tend to suppress further growth or thickening of existing plates. As
much as 10-15% retained austenite is a common feature of especially the
higher C content alloys such as those used for ball bearing steels. Figure
6.3d is a TTT diagram used for estimating the speed of quench necessary to
obtain a given microstructure. These diagrams are plotted and used in
technological applications for any one particular alloy, and that illustrated
for example applies to only one carbon content, as shown.
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Fig. 6.1 (a), (b) Growth of martensite with increasing cooling below M. (c)-
(e) Different martensite morphologies in iron alloys: (c) low C (lath), (d) medium C
(plate), (e) Fe-Ni (plate).
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Surface f ‘

(a)

Invariant plane Martensite

habit
plane

Fig. 6.2 Illustrating how a martensite plate remains (macroscopically coherent with
the surrounding austenite and even the surface it intersects.

By analogy with Equation 1.17, the driving force for the nucleation of
martensite at the M, temperature should be given by:
aGre = ppr—e To— M) (6.1)
Ty
where T, and M, are defined in Fig. 6.3a. Some calorimetric measurements
of AH are given in Table 6.1 for a number of alloys exhibiting martensitic
transformations, together with the corresponding amounts of undercooling
and free energy changes. Note especially in this table the large differences in
AGY~“ between ordered and disordered alloys, the ordered alloys exhibiting
a relatively small undercooling. We shall now examine the atomic structures
of steel austenite and martensite in more detail.

6.1.1 The Solid Solution of Carbon in Iron

In an fcc (or hcp) lattice structure, there are two possible positions for
accommodating interstitial atoms as shown in Fig. 6.4. These are: the tet-
rahedral site which is surrounded by four atoms and the octahedral site which
has six nearest neighbours. The sizes of the largest atoms that can be
accommodated in these holes without distorting the surrounding matrix
atoms can be calculated if it is assumed that the atoms are close-packed hard
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Fig. 6.3 Various ways of showing the martensite transformation. (a) Free energy-
temperature diagram for austensite and martensite of fixed carbon concentration (¢,
in (b)). (b) Free energy—composition diagram for the austensite and martensite
phases at the M, temperature. (c) Iron—carbon phase diagram with T, as defined in
(a), M, and M; superimposed. (d) M, and M in relation to the TTT diagram for alloy
C() in (C)
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Fig. 6.4 Illustrating possible sites for interstitial atoms in the fcc or hcp lattices.

spheres. Such a calculation gives:

tetrahedral interstice d, = 0.225 D

6.2
octahedral interstice dg = 0.414 D (6.22)

where D is the diameter of the parent atoms and d4 and dg are the maximum
interstitial diameters in the two types of site. In the case of y-iron, at ambient
temperature D = 2.52 A, so that interstitial atoms of diameter 0.568 A or
1.044 A can be contained in tetrahedral and octahedral interstices without
distorting the lattice. However, the diameter of a carbon atom is 1.54 A. This
means that considerable distortion of the austenite lattice must occur to
contain carbon atoms in solution and that the octahedral interstices should be
the most favourable.

The possible positions of interstitials in the bcc lattice are shown in
Fig. 6.5a. It is seen that there are three possible octahedral positions (3[100],

Table 6.1 Comparisons of Calorimetric Measurements of Enthalpy and
Undercooling in some martensitic alloys

G. Guénin, Ph.D. thesis, Polytechnical Inst. of -Lyon; 1979

Alloy AHY™Y Ty — M, -AGY™Y
(J mol™ ") (K) (J mol™ 1)
Ti-Ni 1550 20 92
Cu-Al 170-270 20-60 193+ 76
Au-Cd 290 10 11.8
Fe-Ni 28% 1930 140 840
Fe-C 1260
Fe-Pt 24% 340 10 17
ordered
Fe-Pt 2390 ~150 ~1260

disordered
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Fig. 6.5 Illustrating (a) possible sites for interstitial atoms in bcc lattice, and (b) the
large distortion necessary to accommodate a carbon atom (1.54 A diameter) com-
pared with the space available (0.346 A). (c) Variation of a and c as a function of
carbon content. (After C.S. Roberts, Transactions AIME 191 (1953) 203.)

1[010], 4[001]), and six possible tetrahedral spaces for each unit cell. In this
case, the maximum sizes of interstitials that can be accommodated without
distorting the lattice are as follows:

d,=0291D

dg = 0.155 D (6.2b)
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The interesting feature of the bcc lattice is that although there is more ‘free’
space than the close-packed lattices, the larger number of possible interstitial
positions means that the space available per interstitial is less than for the fcc
structure (compare Equations 6.2a and 6.2b). In spite of the fact that dg < d,,
measurements of carbon and nitrogen in solution in iron show that these
interstitials in fact prefer to occupy the octahedral positions in the bcce lattice.
This causes considerable distortion to the bcc lattice as illustrated in
Fig. 6.5b. It is conjectured that the bec lattice is weaker in the (100) directions
due to the lower number of near and next nearest neighbours compared to the
tetrahedral interstitial position (see, e.g. Cottrell, 1963)°. The estimated
atomic diameters of pure carbon and nitrogen are 1.54 and 1.44 A respec-
tively, although these values are very approximate. It should also be remem-
bered that in a given steel relatively few (300) sites are occupied. Neverthe-
less, the martensitic Fe—C lattice is distorted to a bct structure as shown in
Fig. 6.5c. These measurements, made by X-ray diffraction at —100 °C to
avoid carbon diffusion, show that the c/a ratio of the bct lattice is given by:

¢/a = 1.005 + 0.045(wt% C) (6.3)

As seen by these results, the distortion of the lattice in one direction (z)
causes a contraction in the two directions normal to z(x, y). In fact, these
measurements suggest a certain long-range order in the distribution of the
carbon interstitials.

6.2 Martensite Crystallography*

A feature of the microstructures shown in Fig. 6.1 is the obvious crystallo-
graphic dependence of martensite plate formation. Within a given grain, all the
plates grow in a limited number of orientations. In the case of iron alloys, for
example, the orientation variants and even plate morphology chosen turn out
to be dependent upon alloy content, particularly carbon or nickel, as illus-
trated in Table 6.2.

The irrational nature of the growth planes of high carbon or high nickel
martensites has been the subject of much discussion in the literature for the
following reason: if martensite is able to grow at speeds approaching the
speed of sound, then some sort of highly mobile dislocation interface is re-
quired. The problem is then to explain the high mobility of an interface
moving on austenite planes not always associated with dislocation glide. Yet
another is that the growth or habit plane of martensite is observed to be
macroscopically undistorted, i.e. the habit plane is a plane which is common
to both the austenite and martensite in which all directions and angular
separations in the plane are unchanged during the transformation. That this is
so can be reasoned in conjunction with Fig. 6.2. The absence of plastic
deformation in the form of a discontinuity at the surface shows that the shape
strain does not cause any significant rotation of the habit plane. If the habit
plane had been rotated, plastic deformation would be necessary to maintain
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coherence between the martensite and parent austenite and this would have
resulted in additional displacements of the surface, or of the lines traversing
the plate. In order that the habit plane is left undistorted, the martensitic
transformation appears to occur by a homogeneous shear parallel to the habit
plane (see Fig. 6.2). Since the y — o’ transformation is also associated with
~4% expansion, this implies in turn that the dilatation in question must take
place normal to the habit plane, i.e. normal to the lens. However, some
homogeneous dilatation of the habit plane may be necessary.

The question now arises: can the bct martensite lattice structure be gener-
ated by simple shear parallel to the habit plane, together with a small
dilatation normal to the plane? In order to answer this question adequately
we must consider the crystallography of the y — o' transformation in more
detail.

It has been stated that the habit plane of a martensite plate remains
undistorted following the transformation. An analogous situation is found in
twinning as illustrated in Fig. 6.6a and b. It is convenient to consider the
(111), (112), twinning reaction illustrated in Fig. 6.6a in terms of the
homogeneous shear of a sphere, Fig. 6.6b. In the shearing plane K, the lattice
is undistorted, i.e. it is invariant. Let us assume first that the equivalent
macroscopic shape change in the formation of a martensite plate is a twinning
shear occurring parallel to the habit (or twinning) plane, plus a simple
uniaxial tensile dilatation perpendicular to the habit plane. A strain of this
type is termed: an invariant plane strain, because a shear parallel to the habit
plane, or an extension or contraction perpendicular to it, cannot change the
positions or magnitude of vectors lying in the plane. We shall now try to
answer the question of whether the fcc lattice can be homogeneously de-
formed to generate the bct structure.

6.2.1 The Bain Model of the fcc — bct Transformation

In 1924, Bain’ demonstrated how the bct lattice could be obtained from the
fce structure with the minimum of atomic movement, and the minimum of
strain in the parent lattice. To illustrate this we shall use the convention that
x,y,zandx',y’, z' represent the original and final axes of the fcc and bcc unit
cells as illustrated in Fig. 6.7. As shown by this figure, an elongated unit cell
of the bcc structure can be drawn within two fcc cells. Transformation to a bee
unit cell is achieved by: (a) contracting the cell 20% in the z direction and
expanding the cell by 12% along the x and y axes. In the case of steels, the
carbon atoms fit into z' axes of the bcc cell at 3(100) positions causing the
lattice to elongate in this direction. In 1 atomic % C steel, for example,
carbon occupies one position along the z’ axis for every 50 iron unit cells. The
positions occupied by the carbon atoms in the bct structure do not exactly
correspond to the equivalent octahedral positions in the parent fcc structute,
and it is assumed that small shuffles of the C atoms must take place during the
transformation.
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Fig. 6.6 (a) Showing the twinning of an fcc structure. Black and white circles
represent atoms on different levels. (R.E. Reed-Hill, Physical Metallurgy Principles,
2nd edn., Van Nostrand, 1973.) (b) Graphical representation of a twinning shear
occurring on a plane K| in a direction d (from C.M. Wayman, Introduction to the
Crystallography of Martensite Transformations, MacMillan, New York, 1964).

It is an interesting fact that the Bain deformation involves the absolute
minimum of atomic movements in generating the bcc from the fec lattice.
Examination of Fig. 6.7 shows that the Bain deformation results in the
following correspondence of crystal planes and directions:

(111), = (011,
[i01], — [1i1],
[110], — [100],
[112], — [011].
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Experimental observations of orientation relationships between austenite and
martensite show that {11 l}y planes are approximately parallel to {011}, planes,
and that the relative directions can vary between (101),[(111), (the Kurd-
jumov — Sachs relation) and (110),||(101),, (the Nishiyama-Wasserman rela-
tion). These two orientations differ by ~5° about [111],.

By using the sphere — ellipsoid transformation applied earlier to demons-
trate the twinning shear (Fig. 6.6) we can now test whether the Bain deforma-
tion also represents a pure deformation in which there is an undeformed
(invariant) plane. If a sphere of unit radius represents the fcc structure then
after the Bain distortion it will be an ellipsoid of revolution with two axes (x’
and y') expanded by 12% and the third axis (z") contracted by 20%. The x’ z’
section through the sphere before and after distortion is shown in Fig. 6.8. In
this plane the only vectors that are not shortened or elongated by the Bain
distortion are OA or O’A’. However in order to find a plane in the fcc
structure that is not distorted by the transformation requires that the vector
OY'’ (perpendicular to the diagram) must also be undistorted. This is clearly
not true and therefore the Bain transformation does not fulfil the require-
ments of bringing about a transformation with an undistorted plane.

Hence the key to the crystallographic theory of martensitic transformations
is to postulate an additional distortion which, in terms of Fig. 6.8, reduces the
extension of y' to zero (in fact a slight rotation, 6, of the AO plane should also
be made as shown in the figure). This second deformation can be in the form
of dislocation slip or twinning as illustrated in Fig. 6.9. Applying the twinning
analogy to the Bain model, we can see that an internally twinned martensite
plate can form by having alternate regions in the austenite undergo the Bain
strain along different contraction axes such that the net distortions are com-
pensated. By also adjusting the width of the individual twins, the habit plane
of the plate can even be made to adopt any desired orientation. These
features of twinned martensite plates are illustrated in Fig. 6.10. In this figure
¢ defines the angle between some reference plane in the austenite and the
martensite habit plane. It is seen that ¢ is a function of twin widths I, II (see,

'}
Z (contraction axis)

x' (expansion axis)

y' (expansion axis)

Fig. 6.8 The Bain deformation is here simulated by the pure deformation in
compressing a sphere elastically to the shape of an oblate ellipsoid. As in the Bain
deformation, this ‘transformation’ involves two expansion axes and one contraction
axis.
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Fig. 6.9 This figure illustrates schematically how dislocation glide or twinning of the
martensite can compensate for a pure lattice deformation such as a Bain deformation
and thereby reduce the strain of the surrounding austenite. The transformation shear
(s) is defined. Note how s can be reduced by slip or twinning.

e.g. Fig. 6.9c). On this basis, the habit plane of the martensite plate can be
defined as a plane in the austenite which undergoes no net (macroscopic)
distortion. By ‘net distortion’, it is meant that the distortion when averaged
over many twins is zero. There will of course be local regions of strain energy
associated with the o'/y interface of the twins at the edge of the plate.
However, if the plate is very thin (a few atomic spacings) this strain can be
relatively small.

Fig. 6.10 Twins in martensite may be self-accommodating and reduce energy by
having alternate regions of the austenite undergo the Bain strain along different axes.
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In the crystallographic theory, it is assumed that slip or twinning occurs on
suitable (111){112}, systems, corresponding to equivalent (110){110}, planes
in the austenite. Since the {112},(111), system is that commonly adopted for
bec slip or twinning, the physical requirements of the theory are satisfied.

6.2.2 Comparison of Crystallographic Theory with Experimental Results

Some plots of experimental measurements typical of habit planes in steel
martensites are shown in Fig. 6.11. These results indicate that there is a fairly
wide scatter in experimental measurements for a given type of steel, and that
alloying additions can have a marked effect on the habit plane. It appears that
on reaching a critical carbon content, martensite in steel changes its habit
plane, these transitions being approximately {111} — {225} — {259}, with
increasing C content (there is overlap of these transitions in practice). As a
general rule, the {111} martensites are associated with a high dislocation
density lath morphology, or consist of bundles of needles lying on {111},
planes, while the {225}, and {259}, martensites have a mainly twinned plate or
lens morphology. However, any exact morphological description of marten-
site is not possible since, after thickening and growth, the shapes of the
martensites are often quite irregular. Twinning is more predominant at high
carbon or nickel contents and is virtually complete for {259}v martensites. In
stainless steel, the habit plane is thought to be nearer {112}, which has been
explained in terms of a lattice invariant shear on {101}(101),. corresponding to
{111K121),. Transmission electron micrographs of lath and twinned steel
martensites are shown in Fig. 6.12, which also illustrates the ‘classical’
definition of lath and plate morphologies.

The notable success of the crystallographic theory is that it was able to
predict the fine substructure (twinning or slip) of martensite before it was
actually observed in the electron microscope. For a typical (high-carbon) steel

Fig. 6.11 Martensite habit planes in various types of steel.
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Fig. 6.12 Transmission electron micrographs of (a) lath martensite and (b)
twinned martensite. Note the midrib in the twinned martensite, which is thought to be
the first part of the plate to grow.

for example, to achieve a {259}, habit plane, twins having a spacing of only
8-10 atomic planes, or ~3 nm, are predicted. Twin thicknesses of this
order of magnitude are observed in electron micrographs of high carbon
martensites. On the other hand, it is usually difficult to predict exactly the
habit plane of a given alloy on the basis of known lattice parameters, dilata-
tions, etc., and apart from a few cases, the theory is mainly of qualitative
interest. The theory is essentially phenomenological, and should not be used
to interpret the kinetics of the transformation. Attempts at combining the
crystallographical aspects of the transformation with the kinetics have,
however, recently been made and will be discussed later.

6.3 Theories of Martensite Nucleation

A single plate of martensite in steel grows in 1075 to 1077 s to its full size, at
velocities approaching the speed of sound. Using resistivity changes to
monitor the growth of individual plates of martensite in, e.g. Fe-Ni alloys,
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speeds of 800-1100 m/s have been measured (Nishiyama, 1978)°. The
nucleation event is thus very important in martensitic transformations be-
cause of its likely influence on the final form of the full-grown plate. This
implies that the nucleation of martensite influences the strength and tough-
ness of martensitic steels, since for a given austenite grain size, if the number
of nuclei is large, then the final grain size of the martensite will be finer and
hence the steel may be stronger.

Because of the great speed of growth of martensite, it is extremely difficult
to study this transformation experimentally. An example of Bunshah and
Mehl’s (1953) resistivity measurements’ is shown schematically in Fig. 6.13,
indicating that o’ gives a lower resistivity than y. The small initial increase in
resistivity is explained in terms of the initial strain of the austenite lattice by
the martensite nucleus. This suggests in turn that the initial nucleus should be
coherent with the parent austenite. This factor could be an important starting
point when considering how nucleation occurs.

6.3.1 Formation of Coherent Nuclei of Martensite

The total increase in Gibbs free energy associated with the formation of a
fully coherent inclusion of martensite in a matrix of austenite can be
expressed as:

AG = Ay + VAG, — VAG, (6.5)

where v is the interfacial free energy, AG, is the strain energy, AG, the
volume free energy release, V the volume of the nucleus and A the surface

Resistivity
Y
—_—CLI
—
10%-107s Time

Fig. 6.13 Resistivity changes during the growth of single plates of martensite across a
grain in a Fe-Ni alloy. From this it can be calculated that the velocity of growth is
about 1000 m/s. (After R. Bunshah and R.F. Mehl, Transactions AIME 197
(1953) 1251.)
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area. This expression does not account for possible additional energies that
may be available due, e.g. to thermal stresses during cooling, externally
applied stresses, and stresses produced ahead of rapidly growing plates. As
with other nucleation events there is a balance between surface and elastic
energy on the one side, and chemical (volume) free energy on the other.
However, in martensitic transformations the strain energy of the coherent
nucleus is much more important than the surface energy, since the shear
component of the pure Bain strain is as high as s = 0.32 which produces large
strains in the surrounding austenite. On the other hand, the interfacial
(surface) energy of a fully coherent nucleus is relatively small.

Consider the nucleation of a thin ellipsoidal nucleus, with radius a,
semi-thickness ¢ and volume V, as illustrated in Fig. 6.14. In agreement with
experimental observations, we assume that nucleation does not necessarily
occur at grain boundaries. We also assume to begin with that nucleation
occurs homogeneously without the aid of any other types of lattice defects. As
seen from Fig. 6.14, the nucleus forms by a simple shear, s, parallel to the
plane of the disc, and complete coherency is maintained at the interface. On
this basis Equation 6.5 can be written

22 —-v)
8(1 —v)
where +y refers to the coherent interfacial energy of the coherent nucleus, v is

the Poissons ratio of the austenite, and w is the shear modulus of the
austenite. If v = 4, Equation 6.6 can be simplified to:

4
mc/a — =ma*c - AG, (6.6)

AG = 2ma*y + 2uV(s/2)? 3

16 4
AG = 2ma*y + —‘w(s/2)2p,ac2 - —Tra2c - AG, (6.7)
surface elastic volume

§) #

L

Fig. 6.14 Schematic representation of a martensite nucleus.
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In this expression, the negative term AG, is the free energy difference at the
M temperature between the austenite and martensite phases and is defined in
Fig. 6.3a. The middle term referring to the strain energy, is due to the shear
component of strain only and neglects the small additional strain due to the
dilatation which is assumed to occur normal to the disc. As pointed out by
Christian (1965)!, the most favourable nucleation path is given by the
condition that the habit plane is exactly an invariant plane of the shape
transformation (to reduce coherency energy) although this is not necessarily
realized in practice. The minimum free energy barrier to nucleation is now
found by differentiating Equation 6.7 with respect to a and ¢, and by
subsequent substitution we obtain:

2y
3 (AG)*

This expression is thus the nucleation barrier to be overcome by thermal
fluctuations of atoms if classical, homogeneous nucleation is assumed. It is
seen that the energy barrier is extremely sensitive to the values chosen for v,
AG, and s. The critical nucleus size (c* and a*) is also highly dependent upon
these parameters. It can be shown that:

AG* = - (s/2)*w*m  joules/nucleus (6.8)

.o 2
"~ AG, (6.9)
and
16 2)?
. _ 16vn(s/2) (6.10)

(AG,)*

Typically AG, = 174 MJ m > for steel. s varies according to whether the net
shear of a whole plate (e.g. as measured from surface markings) or the shear
of a fully coherent plate (as measured from lattice fringe micrographs) is
considered. For the present we shall assume a value of 0.2 which is the
‘macroscopic’ shear strain in steel. We can only guess at the surface energy of
a fully coherent nucleus, but a value of ~20 mJ m~2 seems reasonable. Using
these values gives c*/a* = 1/40, and AG* = 20 eV, which in fact is too high
for thermal fluctuations alone to overcome (at 700 K, k7T = 0.06 eV).
Indeed, there is plenty of experimental evidence to show that martensite
nucleation is in fact a heterogeneous process. Perhaps the most convincing
evidence of heterogeneous nucleation is given by small particle
experiments® %19,

In these experiments small single-crystal spheres of Fe-Ni of a size range
from submicron to a fraction of a millimetre were cooled to various tempera-
tures below the M, and then studied metallographically. These experiments
showed that:

1. Not all particles transformed even if cooled down to + 4 K, i.e. ~300 °C
below the M, of the bulk material; this appears to completely rule out
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homogeneous nucleation, since this should always occur at a certain
undercooling. Indeed, the maximum undercooling for certain alloys
reached as much as 600-700 °C

2. The average number of nuclei (based on plate counts) was of the order
of 10* per mm?; this is less than to be expected for purely homogeneous
nucleation.

3. The number of nuclei increases substantially with increasing supercool-
ing prior to transformation; on the other hand, the average number of
nuclei is largely independent of grain size, or even whether the particles
(of a given size) are single crystals or polycrystalline.

4. The surface does not appear to be a preferred site for nucleation.

On the basis of (3) and (4) it is thought that since surfaces and grain
boundaries are not significantly contributing to nucleation, then the trans-
formation is being initiated at other defects within the crystal. The most likely
types of defect which could produce the observed density of nuclei are
individual dislocations, since an annealed crystal typically contains ~10° or
more dislocations per mm?.

6.3.2 Role of Dislocations in Martensite Nucleation

A number of researchers have considered possible ways in which dislocations
may contribute to martensite nucleation. It is instructive to consider some of
these ideas and see how they can fit in with the various features of martensitic
transformations already discussed.

Zener (1948)"' demonstrated how the movement of (112), partial disloca-
tions during twinning could generate a thin bce region of lattice from an fcc
one, and this is illustrated in Fig. 6.15. In this figure the different layers of the
close-packed planes of the fcc structure are denoted by different symbols and
numbered 1, 2, 3, from bottom to top layer. As indicated, in the fcc lattice
the normal twinning vector is b,, which can be formed by the dissociation of
an 4(110) dislocation into two partials:

b=5b+b,
ie. (6.11)

a a - a - -
5(110] = 2[211] + 2[i21]

In order to generate the bcc structure it requires that all the ‘triangular’
(Level 3) atoms jumps forward by 36; = %[211]. In fact, the lattice produced
is not quite the bce one after this shear, but requires an additional dilatation
to bring about the correct lattice spacings. As pointed out by Christian (1965)",
however, this reaction produces a bcc lattice only two atom layers thick.
Recent electron microscopy work by Brooks et al. (1979)' indicated that
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Fig. 6.15 Zener’s model of the generation of two-atom-thick martensite by a
half-twinning shear (some additional minor adjustments are also needed).

thicker nuclei couid form by this mechanism at dislocation pile-ups, where the
partial dislocations are forced closer together thereby reducing the slip vec-
tors such that the core structures correspond to a bcc stacking. Pile-ups on
nearby planes can hence interact such as to thicken the pseudo-bcc region.
An alternative suggestion was earlier made by Venables ' (1962) also in
connection with the formation of martensite in stainless steels, i.e. in the case
of alloys of low stacking fault energy. Venables proposed that o’ forms via an
intermediate (hcp) phase which he termed epsilon martensite, thus:

y—> ¢ —>a (6.12)

Using the same atomic symbols as before, Venables’ transformation mecha-
nism is shown in Fig. 6.16. The e’-martensite structure thus thickens by
inhomogeneous half-twinning shears on every other {111}, plane. Such
faulted regions have been observed to form in conjunction with martensite
and an example is given in Fig. 6.17. On the other hand, there has been no
direct evidence of the £ — « transition, and recent electron microscopy work
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Fig. 6.16 Venables’ model for the y — ¢’ — o’ transformation in stainless steel.

indicates that the ¢’ and o' phases in martensitic stainless steels form
1ndependent1y of each other by different mechanisms, i.e. the transformation
reactions in stainless steel are of the type y— & or y— a''?!. Other
detailed models of how dislocations may bring about the martensitic trans-
formation in iron alloys have been given, e.g. by Bogers and Burgers (1964)°
and more recently by Olson and Cohen (1976)'¢.
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Fig. 6.17 Dislocation-assisted martensite transformation in a plastically deformed
17% Cr-8% Ni Stainless steel. (3y courtesy of B. Lehtinen, Institute for Metals
Research, Stockholm, Sweden.)

Another example of the fact that the half-twinning shear in fcc material can
induce a martensitic transformation is in cobolt'’. In this case there is an
fcc — cph transformation at around 390 °C. The generation of large numbers
of 112),, partial dislocations on {111}, planes has been observed directly in
the transmission electron microscope using a hot stage, as shown in Fig. 6.18.
The stacking faults in this case appeared to initiate at grain boundaries. The
habit plan is {111}, and the orientation relationship is (111),//(0001),. The
transformation is reversible (at ~430 °C) and the cph — fcc reaction occurs
by the following dissociation on the hcp basal plane:

1. . ) 1.
3[1210] - 5[0110] + 5[1100] (6.13)

As before, the reaction has to occur on every other hcp plane in order to
generate the fcc structure.

It is thus seen that some types of martensite can form directly by the
systematic generation and movement of extended dislocations. It is as if the
M; temperature of these alloys marks a transition from positive to negative
stacking fault energy. It appears, however, that this type of transformation
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can not occur in high stacking fault energy nor in thermoelastic martensites,
and it is thus necessary to consider alternative ways in which dislocations can
nucleate martensite other than by changes at their cores. It is also difficult to
understand twinned martensite, merely on the basis of dislocation core
changes.

6.3.3  Dislocation Strain Energy Assisted Transformation

We now consider the possibility that the nucleation barrier to form coherent
nuclei can be reduced by the help of the elastic strain field of a dislocation.
This theory?® thus differs fundamentally from the other dislocation-assisted
transformation theories discussed, all of which were based on atomic shuffles
within the dislocation core. We also note that in this case it is unnecessary that
the habit plane of the martensite corresponds to the glide planes of austenite.
Furthermore, it is assumed that coherent nuclei are generated by a pure Bain
strain, as in the classical theories of nucleation.

It can be shown that the strain field associated with a dislocation can in
certain cases provide a favourable interaction with the strain field of the
martensite nucleus, such that one of the components of the Bain strain is
neutralized thereby reducing the total energy of nucleation. This interaction
is illustrated schematically in Fig. 6.19, in which it is seen that the dilatation
associated with the extra half plane of the dislocation contributes to the Bain
strain. Alternatively the shear component of the dislocation could be utilized.

Such an interaction thus modifies the total energy of Equation 6.5 to:

AG = Ay + VAG, — VAG, — AG, (6.14)

where AG4 represents the dislocation interaction energy which reduces the
nucleation energy barrier. It can be shown that this interaction energy is given
by the expression:

AGy = 2psm - ac - b (6.15)

Fig. 6.19 Illustrating how one of the strain components of the Bain deformation may
be compensated for by the strain field of a dislocation which in this case is tending to
push atom planes together.
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where b refers to the Burgers vector of the dislocation, and s refers to the
shear strain of the nucleus.

The interaction energy used in Equation 6.15 assumes that a complete loop
is interacting with the nucleus. In practice it is likely that only a part of a
dislocation will be able to ‘react’ with the nucleus in this way.

Equation 6.14 may now be written in full (see Equation 6.7) as:

16 4
AG = 2ma’y + ——3—“3(s/2)2puzc2 ~ AG, = &% - 2psmac- b (6.16)

By summing the various components of this expression it is possible to
compute the total energy of a martensite nucleus as a function of its diameter
and thickness (a, c), whether it is twinned or not (this affects s, see, e.g.
Fig. 6.9) and the degree of assistance from the strain field of a dislocation (or
group of dislocations). This result is shown schematically in Fig. 6.20a. It has
been calculated that a fully coherent nucleus can reach a size of about 20 nm
diameter and two to three atoms in thickness by this partial interaction with
the strain field of a dislocation. However, it will not be able to thicken or even
grow larger unless twins form or slip occurs to further reduce strain energy.
The attractive feature of this theory is that it essentially combines the crystal-
lographic characteristics of the inhomogeneous shear and the Bain strain in
terms of total strain energy at nucleation. It is thus in line with the majority of
the known characteristics of martensite, including the initial straining of the
lattice due to the coherent nucleus (see Fig. 6.13) and the fact that an
inhomogeneous shear is necessary for growth. It even shows that in principle
nucleation can occur in the vicinity of any dislocation, thus underlining the

AG;,; b+ve Fully coherent
nucleus

E S ——— =Nucleus size
[

N
N\
\

Critical size \
for coherency loss\
-ve twinned nucleus

Fig. 6.20 (a) Schematic diagram based on Equation 6.16, illustrating the need for
the nucleus to twin if it is to grow beyond a certain critical size. (b) Lattice image of
the tip of a martensite plate in a Ti-Ni alloy. The first interfacial dislocation behind the
growing front is indicated. (After R. Sinclair and H.A. Mohamed, Acta Metallurgica
26 (1978) 623.



408 Diffusionless transformations

Fig. 6.20 (continued)
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statistical correlation between dislocation density in well-annealed austenite
and martensite formation indicated by the small particle experiments.

The M, temperature is thus associated with the most potent nuclei, perhaps
depending on the orientation or configuration of the dislocation, or groups of
dislocations with respect to the potential martensite nucleus. The large under-
coolings below bulk M; as observed from the small particle experiments thus
reflect the statistical probability that ideally oriented dislocations are rela-
tively few and far between, so that high chemical driving forces are needed in
most cases. The burst phenomenon, in which an autocatalytic process of
rapid, successive plate formation occurs over a small temperature range in,
e.g. Fe-Ni alloys, is explicable on this basis by the large elastic stresses set up
ahead of a growing plate. In this case, the elastic strain field of the plate acts
as the necessary interaction term in Equation 6.10. The question of whether
slip or twinning occurs at the critical nucleus size in order to assist growth of
the nucleus appears to be a function of the alloy content and M, temperature,
and this factor will be taken up in more detail in the next section on marten-
site growth.

In summary, we have not dealt with all the theories of martensite nuclea-
tion in this section as recorded in the literature, or even with all alloys
exhibiting martensitic transformations. Instead we have attempted to illus-
trate some of the difficulties associated with explaining a complex event which
occurs at such great speeds as to exclude experimental observation. A gen-
eral, all-embracing theory of martensite nucleation has still evaded us, and
may not even be feasible.

6.4 Martensite Growth

Once the nucleation barrier has been overcome, the chemical volume free
energy term in Equation 6.10 becomes so large that the martensite plate
grows rapidly until it hits a barrier such as another plate, or a high angle grain
boundary. It appears from observations, that very thin plates first form with a
very large a/c ratio (see Fig. 6.14) and then thicken afterwards. In high
carbon martensites this often leaves a so-called “midrib” of fine twins, and an
outer less well defined region consisting of fairly regular arrangements of
dislocations. In low carbon lath martensite, transmission microscopy reveals a
high dislocation density, sometimes arranged in cellular networks in the case
of very low C content, but no twins (see Fig. 6.12). In very high carbon
martensite (259 type), only twins are observed.

In view of the very high speeds of growth, it has been conjectured that the
interface between austenite and martensite must be a glissile semicoherent
boundary consisting of a set of parallel dislocations or twins with Burgers
vector common to both phases, i.e. transformation dislocations. The motion
of the dislocations brings about the required lattice invariant shear trans-
formation. As noted in Section 3.4.5, the motion of this interface may or may
not generate an irrational habit plane.
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The habit plane transition in steels and Fe-Ni alloys as a function of
alloying content of: {111}, lath — {225}, mixed lath/twins — {259}, twinned
martensite, is not properly understood. An important factor is thought to be
that increased alloying lowers the M temperature and that it is the tempera-
ture of transformation that dictates the mode of lattice invariant shear.
Qualitatively, the slip-twinning transition in a crystal at low temperatures is
associated with the increased difficulty of nucleating whole dislocations
needed for slip. It is thought that the critical stress needed for the nucleation
of a partial twinning dislocation is not so temperature dependent as the
Peierls stress for a perfect dislocation'®. On the other hand, the chemical
energy available for the transformation is largely independent of M, tempera-
ture. This implies that as the M, temperature is lowered the mechanism of
transformation chosen is governed by the growth process having least energy.
The other factor affecting mode of growth, as discussed in the previous
section, is how the nucleus forms. If the nucleus forms by the generation of a
homogeneous Bain deformation, the orientation of the nucleus in the auste-
nite is again dependent upon it finding the lowest energy. This may not
coincide with a normal glide plane in the austenite—and in highly alloyed
systems it evidently does not. On the other hand, the inhomogeneous shear
during growth has to be dictated by the normal modes of slip or twinning
available. This suggests that if the habit plane of the martensite is irrational, it
may have to grow in discrete steps which are themselves developed by
conventional modes of deformation. The resulting plate would then be, for
example, likened to a sheared-over pack of cards (see, e.g. Fig. 6.9b). We
now consider the two main cases of rational (lath) and irrational (plate)
martensite growth in steel in more detail.

6.4.1 Growth of Lath Martensite

The morphology of a lath with dimensions a > b > ¢ growing on a
{111}, plane (see Fig. 6.20b) suggests a thickening mechanism involving the
nucleation and glide of transformation dislocations moving on discrete ledges
behind the growing front. This picture of growth is suggested, e.g. in the work
of Sinclair and Mohammad (1978)%° studying NiTi martensite and Thomas
and Rao (1978)%! in the case of steel martensite.

It seems possible that due to the large misfit between the bet and fcc lattices
dislocations could be self-nucleated at the lath interface. The criterion to be
satisfied for dislocation nucleation in this case is that the stress at the interface
exceeds the theoretical strength of the material.

It can be shown using Eshelby’s approach®* that for a thin ellipsoidal plate
in which a > ¢ the maximum shear stress at the interface between the
martensite and austenite due to a shear transformation is given by the
expression:

o = 2usc/a (6.17)
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Fig. 6.21 Equation 6.17 plotted for two values of shear corresponding to a pure Bain
deformation (0.32) and a twinned plate (0.2).

where p is the shear modulus of the austenite. It is seen in this simple model
that the shear stresses are sensitive to particle shape as well as angle of shear.
Of course in practice it is very difficult to define the morphology of martensite
in such simple c/a terms, but this gives us at least a qualitative idea of what
may be involved in the growth kinetics of martensite.

Kelly (1966)* has calculated a theoretical shear strength for fcc materials of
0.025 p at ambient temperature, and this can be used as a minimum, or
threshold stress for nucleating dislocations. Equation 6.17 is plotted in
Fig. 6.21 in terms of different a:c ratios, assuming s = 0.2 which is typical of
bulk lath and plate martensite. An approximate range of morphologies
representative of lath or plate martensite is given in the figure. It is seen that
Kelly’s threshold stress for dislocation nucleation may be exceeded in the case
of lath martensite, but seems unlikely in the case of the thinner plate
martensite. It is interesting to note from Fig. 6.21, however, that shear loop
nucleation in plate martensite is feasible if s = 0.32, which is the shear
associated with a pure Bain strain (Fig. 6.9a). In other words, coherency loss
of the initial coherent nucleus is energetically possible.

The assumption of shear loop nucleation in fact seems reasonable and
likely in conjunction with lath growth. The same mechanism of dislocation
generation during growth could even be applied to bainite where the mor-
phology appears to be fairly similar to lath martensite, although in this case
some diffusion of carbon also occurs. It is thus seen that by nucleating
dislocations at the highly strained interface of the laths, the misfit energy can
be reduced and the lath is able to continue to grow into the austenite.
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Internal friction measurements have shown that in lath martensite the
density of carbon is slightly higher at cell walls than within cells, suggesting
that limited diffusion of carbon takes place following or during the trans-
formation. The transformation could also produce adiabatic heating which
may affect diffusion of carbon and dislocation recovery, at least at higher Mg
temperatures. In this respect there appears to be a certain relationship be-
tween lower bainite and martensite. The higher Mg temperatures associated
with lath martensite may be sufficient to allow dislocation climb and cell
formation after the transformation, although the high growth speeds suggest
an interface of predominantly screw dislocations. The volume of retained
austenite between laths is relatively small in lath martensite (these small
amounts of retained austenite are now thought to be important to the mecha-
nical properties of low-carbon steels®*), suggesting that sideways growth, and
transformation between laths occurs without too much difficulty.

6.4.2 Plate Martensite

In medium and high carbon steels, or high nickel steels, the morphology of
the martensite appears to change from a lath to a roughly plate-like product.
This is associated with lower Mg temperatures and more retained austenite, as
illustrated by Fig. 6.22. However, as mentioned earlier, there is also a transi-
tion from plates growing on {225}, planes to {259}, planes with increasing
alloy content. The lower carbon or nickel {225}, martensite often consists of
plates with a central twinned ‘midrib’, the outer regions of the plate being free
of twins. It appears that the twinned midrib forms first and the outer (disloca-
tion) region which is less well defined than the midrib, grows afterwards. The
high carbon or nickel {259} martensite on the other hand is completely
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Fig. 6.22 Approximate relative percentages of lath martensite and retained austenite
as function of carbon content is steels. (Data from G.R. Speich, Metallurgical Trans-
actions, 3 (1972) 1045.)
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twinned and the habit plane measurements have less scatter than the mixed
structures.

Typical morphologies for plate martensite are usually thought to be much
thinner than lath martensite or bainite. On the basis of Fig. 6.21 it appears
that there is likely to be a problem in nucleating whole dislocations in the case
of growing plate martensite when s = 0.2, but that partial twinning disloca-
tions evidently are able to nucleate. Once nucleated, twinned martensite
grows extremely rapidly, but the mechanism by which this occurs has not been
clarified as yet. It is clear from work on low temperature deformation of fcc
metals, that twinning can be an important deformation mechanism. However,
the problem in martensite transformations is to explain the extremely rapid
rates of plate growth as based on twinning mechanisms. The pole mechanism
seems inadequate in this respect, although mechanisms based on dislocation
reflection processes may be more realistic’’. Alternatively, it may be neces-
sary to invoke theories in which standing elastic waves may nucleate twinning
dislocations®® as an aid to very rapid plate growth.

The transition from twinning — dislocations in ‘midrib martensite’ is intri-
guing and could be the result of a change in growth rate after the midrib forms
(see, e.g., Shewmon, 1969)*°. In other words, martensite formed at higher
temperatures or slower rates grows by a slip mechanism, while martensite
formed at lower temperatures and higher growth rates grows by a twinning
mode. Indeed, in the case of ferritic steels, the normal mode of plastic
deformation is very much a function of strain rate and temperature.

An elegant model for a dislocation generated {225}, martensite has been
postulated by Frank (1953)%’. Frank has basically considered the way to
interface the fcc austenite lattice with that of the bcc martensite such as to
reduce lattice misfit to a minimum. He finds that this can be achieved quite
well with the help of a set of dislocations in the interface. In this model, the
close-packed planes of the fcc and bcc structures are envisaged to meet
approximately along the martensite habit plane as shown in Fig. 6.23a. Since
the (111) and (101),- planes meet edge-on at the interface, the close-packed
directions are parallel and lie in the interface plane. The reason for the
rotation, ¢, shown in Fig. 6.23a, is to equalize the atomic spacings of the
(111) and (101),- planes at the interface. However, in spite of this, there is
still a slight misfit along the [011],, [111], direction where the martensite
lattice parameter is ~2% less than that of austenite. Frank therefore
proposed that complete matching can be achieved by the insertion of an array
of screw dislocations with a spacing of six atom planes in the interface which
has the effect of matching the two lattices and thus removing the misfit in this
direction. This also brings about the required lattice-invariant shear on the
(112),. plane as the interface advances. The resulting interface is illustrated in
Fig. 6.23b.

In terms of the minimum shear stress criterion (Fig. 6.21) the further
expansion and thickening of a {225}, twinned midrib by a Frank dislocation
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Fig. 6.23 Model for the {225} habit austenite-martensite interface in steel. (Based on
data by F. C. Frank, Acta Metallurgica 1 (1953) 15.)

interface could occur when the midrib reaches some critical a/c ratio.
However, there have been no detailed models developed as to how the Frank
interface can be generated from the nucleation event. Assuming a coherent
nucleus with s = 0.32, it is seen from Fig. 6.21 that it is theoretically possible
for dislocation nucleation to occur at this stage to relieve coherency.
Qualitatively, the larger amount of chemical free energy available after the
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critical size for growth has been exceeded, may be sufficient to homo-
geneously nucleate dislocations®® particularly in the presence of the large
strain energy of the rapidly growing plate®.

Other factors known to affect the growth of martensite are grain size,
external stresses and the phenomenon of stabilization. We now briefly
consider these effects.

6.4.3 Stabilization

This is a phenomenon associated with samples cooled to some temperature
intermediate between Mg and M;, held there for a period of time and then
cooled again. In such a case, transformation does not immediately continue,
and the total amount of transformed martensite is less than obtained by
continuous cooling throughout the transformation range. It has even been
observed that existing plates do not continue to grow after stabilization, but
new plates are nucleated instead. The degree of stabilization is a function of
the time held at temperature. This phenomenon is not properly understood,
although it seems conceivable that carbon has time to diffuse to the interface
under the influence of the high stresses associated with plate growth. There
could also be local atomic relaxation at the interface, thereby increasing the
nucleation barrier for dislocation generation.

6.4.4 Effect of External Stresses

In view of the dependence of martensite growth on dislocation nucleation, it
is expected that an externally applied stress will aid the generation of
dislocations and hence the growth of martensite. It is well established, for
example, that external stress lowers the nucleation barrier for coherency loss
of second phase precipitates. External stresses can also aid martensite
nucleation if the external elastic strain components contribute to the Bain
strain. This will provide yet another interaction term in Equation 6.14. It has
been shown in such cases that the Mg temperature can be raised*’. However,
if plastic deformation occurs, there is an upper limiting value of Mg defined as
the M, temperature. Conversely the Mg temperature can be suppressed to
lower temperatures by, e.g. holding the sample being transformed under
hydrostatic compression. This is because increasing pressure stabilizes the
phase with the smaller atomic volume, i.e. the close-packed austenite,
thereby lowering the driving force AG, for the transformation to martensite.
On the other hand, the presence of a large magnetic field can raise the Mg
temperature on the grounds that it favours the formation of the ferromagnetic
phase.

Plastic deformation of samples can aid both nucleation and growth of
martensite, but too much plastic deformation may in some cases suppress the
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transformation. Qualitatively it could be expected that increases in disloca-
tion density by deformation should raise the number of potential nucleation
sites, but that too much deformation may introduce restraints to nuclei
growth.

The effect of plastically deforming the austenite prior to transformation on
increasing the number of nucleation sites and hence refining plate size is of
course the basis of the ausforming process. The high strength of ausformed
steels is thus due to the combined effect of fine plate size, solution hardening
(due to carbon) and dislocation hardening.

6.4.5 Role of Grain Size

Since martensite growth relies on maintaining a certain coherency with the
surrounding austenite, a high-angle grain boundary is an effective barrier to
plate growth. Thus while grain size does not affect the number of martensite
nuclei in a given volume, the final martensite plate size is a function of the
grain size. Another important feature of grain size is its effect on residual
stress after transformation is completed. In large grain sized material the
dilatational strain associated with the transformation causes large residual
stresses to be built up between adjacent grains and this can even lead to
grain-boundary rupture (quench cracking) and substantially increase the dis-
location density in the martensite. Fine grain-sized metals tend to be more
self-accommodating and this, together with the smaller martensite plate size,
provides for stronger, tougher material.

In summary, theories of martensite nucleation and growth are far from
developed to a state where they can be used in any practical way—such as
helping to control the fine structure of the finished product. It does appear
that nucleation is closely associated with the presence of dislocations and the
process of ausforming (deforming the austenite prior to transformation) could
possibly be influenced by this feature if we knew more of the mechanism of
nucleation. Growth mechanisms, particularly by twinning, are still far from
clarified, however.

6.5 Pre-martensite Phenomena

This is a subject that has provoked considerable attention in recent years from
researchers, and is mainly concerned with ordered compounds exhibiting
order — order martensitic transformations. A useful summary of this phe-
nomenon has been given recently by Wayman (1979)*!. The effect has been
observed in the form of anomolous diffraction effects or even diffuse streaking
as well as a resistivity anomaly, e.g. in TiNi alloys. In B-brass thin foils a
mottled contrast has been observed giving rise to side band reflections in
diffraction patterns. In CuAu alloys the phenomenon occurs in the form of a
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streaming or shimmering effect in bright field images of thin foils. The latter
observation, first noted by Hunt and Pashley in 1962*?, has even been inter-
preted as possible evidence for the appearance of fluctuating strain fields due,
e.g. to a Bain deformation. Recent work in Wayman’s laboratory suggests,
however, that while the appearance of local reordering reactions above the
Mg temperature are possible, there is still little direct evidence that the
observed phenomena can be related to the initial stage of the martensitic
transformation. Nevertheless, the effect is an intriguing one, particularly
bearing in mind the relatively low undercoolings associated with ordered
alloys (see, e.g., Table 6.1), and in this respect it could be conjectured that
some process is occurring which very effectively aids the transformation of
these alloys.

6.6 Tempering of Ferrous Martensites

Although the diffusionless martensite transformation is fundamental to the
hardening of steel, most (if not all) technological steels have to be heat
treated after the transformation in order to improve toughness and in some
cases even strength. Recent years have seen notable developments in these
steels, achieving in some cases very high degrees of sophistication in the form
of carbide dispersions and various types of substructure strengthening. For
useful reviews see, e.g., Speich®® and Honeycombe®*.

The martensitic transformation usually results in a ferritic phase which is
highly supersaturated with carbon and any other alloying elements that re-
main locked into the positions they occupied in the parent austenite. On
ageing, or tempering, therefore, there is a strong driving force for precipita-
tion. As is usual with low temperature ageing the most stable precipitate, as
indicated by the equilibrium phase diagram, is not the first to appear. The
ageing sequence is generally a’ — a + e-carbide or a + Fe;C, depending
upon the tempering temperature. It is not thought that e-carbide (Fe, ,C)
decomposes directly to Fe;C, but that the transition only occurs by the
e-carbide first dissolving. When strong carbide-forming alloying elements
such as Ti, Nb, V, Cr, W, or Mo are present the most stable precipitate can be
an alloy carbide instead of cementite. See, for example, the Fe~-Mo-C phase
diagram in Fig. 6.24. However, these ternary additions are dissolved substitu-
tionally in the ferrite lattice and are relatively immobile in comparison to
interstitial carbon. The precipitation of these more stable carbides is there-
fore preceded by the formation of e-carbide and Fe;C which can occur solely
by the diffusion of carbon. Alloying elements are only incorporated into the
precipitate in proportion to their overall concentration in the ferrite.

The various changes that can take place during the tempering of ferrous
martensites are summarized in Table 6.3. In practice heat-treatment times
are limited to a few hours and the phases that appear within these time
periods depend on the temperature at which tempering occurs. Therefore
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Table 6.3 gives a summary of the new phases that appear within the various
temperature ranges, and provides details of other microstructural changes
that take place. It should be noted, however, that the temperature ranges
given are only approximate and that there is a great deal of overlap between
the various ranges.

Table 6.4 summarizes the observed precipitation sequences in a few
selected steel compositions. These compositions are experimental alloys that
have been studied to avoid the complications that arise with commercial
alloys where many interacting alloying elements are present. The crystal

Table 6.3 Transformations Occurring During Tempering of Ferrous

Martensites
Temperature/°C Transformation Remarks
25-100 Carbon segregation to Clustering predominant
dislocations and in high-carbon steels

boundaries; pre-
precipitation clustering
and ordering

100-200 Transition-carbide Carbides may be n(Fe,C)
precipitation, diam. or g(Fe, 4C)
2 nm (first stage of
tempering)

200-350 Retained austenite Associated with tempered
transforms to ferrite martensite embrittlement
and cementite (second
stage)

250-350 Lath-like Fe;C
precipitation (third
stageg)

350-550 Segregation of Responsible for temper
impurity and alloying embrittlement
elements

400-600 Recovery of Lath structure maintained
dislocation
substructure. Lath-like
Fe;C agglomerates to
form spheroidal Fe;C

500-700 Formation of alloy Occurs only in steels
carbides. (secondary containing Ti, Cr, Mo, V,
hardening or fourth Nb, or W; Fe;C may
stage) dissolve

600-700 Recrystallization and Recrystallization
grain growth; inhibited in medium-
coarsening of carbon and high-carbon
spheroidal Fe;C steels; equiaxed ferrite

formed
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Table 6.4 Carbide Precipitation Sequences

Alloy (Wt%) Precipitation sequence

Fe-C e-carbide* — Fe;C(—graphite)
Fe-2 V-0.2 C Fe;C — VCor V,C;

Fe-4 Mo-0.2 C FeC — Mo,C - M(Ct

Fe-6 W-0.2 C FC3C g W2C g M23C6 i M6C
Fe-12 Cr-0.2 C Fe;C — Cr,C; = Cry;3Ce

* Does not form when C < 0.2%.

T M stands for a mixture of the substitutional alloying elements, in this case
Fe and Mo.

structures, shapes and orientation relationships for some of these precipitates
are listed in Table 6.5.

On the basis of the data given in Tables 6.3 to 6.5, we note the following
features:

Carbon Segregation
As a result of the large distortion caused by the carbon atoms in the martensi-
tic lattice there is an interaction energy between carbon and the strain fields

Table 6.5 Data Concerning Carbides Precipitated During Tempering
of Martensite

Crystal Orientation Temperature of
Carbide structure Shape relationship formation/°C
e-carbide hep laths (1011).//(101),  100-250
(Fe,.5C) [0001].//[011],
cementite  orthorhombic laths (001)c//(211)q 250-700
(FesC) [100].//[011],
VC-V,C;  cubic (NaCl plates (100).//(100),, ~550
structure) [011].//[010],
Mo,C hep — (0001).//(011), ~ ~550
[1120].//[100],
Ww,C hcp needles as Mo,C ~600
Cr,Cs hexagonal spheres — ~550
Cry;Ce cubic plates (100).//(100),,
(M23Ce) (010]//[010],
M(C cubic — — ~700
(FesMosC,

FC3W3C)
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around dislocations. In lath martensite, for example, carbon tends to diffuse
to sites close to dislocations in order to lower its chemical potential. In plate
martensite, however, the martensite is internally twinned and there are
relatively few dislocations. In this case carbon-rich cluster: or zones tend to
form instead. In low-carbon low-alloy steels, martensite starts to form at
relatively high temperatures and there can be sufficient time during the
quench for carbon to segregate or even precipitate as e-carbide or cementite.

e-Carbide

The reason for the 0.2% C limit (Table 6.4) is thought to be due to the fact
that the M, temperatures of very low-carbon martensites are high enough to
allow considerable carbon diffusion to lath boundaries during cooling (see,
e.g., Fig. 6.3c). There is thus no carbon left in solution to precipitate out on
reheating. e-Carbide has a hexagonal crystal structure and precipitates in the
form of laths with an orientation relationship as shown in Table 6.5, (see
Fig. 6.25). This orientation relationship provides good matching between the
(101),- and (1011), planes.

Fig. 6.25 e-carbide (dark) precipitated from martensite in Fe-24 Ni-0.5 C after 30
min at 250 °C. Thin foil electron micrograph (X 90 000). (After G.R. Speich in Metals
Handbook, 8th edn. Vol. 8, American Society for Metals, 1973, p. 202.)
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Cementite

Cementite forms in most carbon steels on tempering between 250 and 700 °C.
The precipitate is initially lath-like with a {011}, habit plane, Fig. 6.26. It has
an orthorombic crystal structure and forms with the orientation relationship
given in Table 6.5. At high temperatures cementite rapidly coarsens into a
spheroidal form, as shown in Fig. 6.32. In alloy steels the cementite composi-
tion can often be represented as (FeM);C where M is a carbide-forming
alloying element. The composition may however be metastable if sufficient
alloying elements are present.

Alloy Carbides

In steels containing sufficient carbide-forming elements alloy carbides are
formed above ~500 °C where substitutional diffusion becomes significant.
These carbides replace the less stable cementite which dissolves as a finer
alloy carbide dispersion forms. Some typical precipitation sequences are
listed in Table 6.4. There are two ways in which the Fe;C — alloy carbide

Fig. 6.26 Cementite (dark laths) formed during tempering a 0.42 C steel 1 h at
300 °C. Thin foil electron micrograph (x 39 000). (After G.R. Speich in Metals
Handbook, 8th edn., Vol. 8, American Society for Metals, 1973, p. 202.)
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transformation can take place:

1. By in situ transformation—the alloy carbides nucleate at several points
at the cementite/ferrite interfaces, and grow until the cementite dis-
appears and is replaced by a finer alloy carbide dispersion, see, e.g.,
Fig. 6.27.

2. By separate nucleation and growth—the alloy carbides nucleate heter-
ogeneously within the ferrite on dislocations, lath boundaries, and prior
austenite grain boundaries. The carbides then grow at the expense of
cementite.

Either or both mechanisms can operate depending on the alloy composition.

The formation of alloy carbides is an important strengthening mechanism
in high-speed tool steels that must operate at dull red heat without losing their
cutting ability. The phenomenon is usually referred to as secondary harden-
ing. Figure 6.28 shows the effect of tempering molybdenum steels for various
times and temperatures. The hardness of plain carbon martensites usually
decreases with increasing temperature due to recovery and overageing
effects. The replacement of a coarse cementite dispersion by a finer alloy
carbide that is more resistant to coarsening, however, is able to produce an
increase in hardness at around 550-600 °C.

The effectiveness of these carbides as strengtheners depends on the fineness
of the dispersion and the volume fraction precipitated. The fineness of the
dispersion depends on AG* for nucleation which in turn is influenced by the

Fig. 6.27 W,C needles lying along the sites of former Fe;C precipitates in Fe—6.3
W-0.23 C quenched and tempered 20 h at 600 °C. (After R.W.K. Honeycombe,
Structure and Strength of Alloy Steels, Climax Molybdenum, London, after A.T.
Davenport.)
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Fig. 6.28 The effect of molybdenum on the tempering of quenched 0.1% C steels.
(After K.J. Irvine F.B. Pickering, Journal of the Iron and Steel Institute 194
(1960) 137.)

free energy of formation of the carbide, the interfacial energy and the misfit.
A guide to the relative free energies of formation is given by Fig. 6.29 which
shows the heats of formation (AH;) of various nitrides, carbides and borides
relative to that of cementite which is taken as AH; = 0. The finest precipitate
dispersions are generally obtained from VC, NbC, TiC, TaC and HfC. These
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Fig. 6.29 Enthalpies of formation of carbides, nitrides and borides. (Data from
H. L. Schick, Thermodynamics of Certain Refractory Compounds, Academic Press,
1966.)
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are all close-packed intermetallic compounds. On the other hand the carbides
with complex crystal structures and low heats of formation, e.g. M;C;, MgC
and Mn;Cq, generally form relatively coarse dispersions.

The volume fraction of carbide precipitated depends on the solubility of the
alloy carbide in the austenite prior to quenching, relative to the solubility in
ferrite at the tempering temperature. Note that the solubility of a phase 8 in a
terminal solid solution of a was considered in Chapter 1 for binary alloys. It
can similarly be shown that in ternary Fe—C-M alloys the concentrations of M
and C in Fe in equilibrium with a carbide M,,,C,, are approximately given by
the relation®:

M]"[C]" = K (6.18)

where [M] and [C] are the atomic percentages or mole fractions of M and C in
solution and K is the solubility product which can be expressed as

K = Kj exp RT

(6.19)

where K| is a constant and AH is the enthalpy of formation of M,,,C,, from M
and C in solution.

Figure 6.30 shows the solubility products of various carbides and nitrides in
austenite as a function of temperature. The solubilities of these compounds in
ferrite are very much lower and to a first approximation can be considered to
be approximately equal. It is clear therefore that chromium, molybdenum
and vanadium with the highest solubilities in austenite, should precipitate in
the highest volume fractions in the ferrite.

Effect of Retained Austenite

In most steels, especially those containing more than 0.4% C, austenite is
retained after quenching. On ageing in the range 200-300 °C this austenite
decomposes to bainite. In some high-alloy steels austenite can be stabilized to
such low temperatures that the martensite partially reverts into austenite on
heating. Very thin regions of retained austenite may even be present between
laths in low-carbon steel, and this is thought to improve the toughness of
these steels independently of tempering treatments.

Recovery, Recrystallization and Grain Growth

As-quenched lath martensite contains high-angle lath boundaries, low-angle
cell boundaries within the laths, and dislocation tangles within the cells.
Recovery usually occurs above 400 °C and leads to the elimination of both the
dislocation tangles and the cell walls. The lath-like structure, however, re-
mains as shown in Fig. 6.31. The ferrite can recrystallize at high temperatures
in low-carbon steels, (see, e.g., Fig. 6.32) but the process is inhibited in
medium to high-carbon steels by the grain boundary pinning caused by
carbide precipitates. In the latter steels recovery is followed by grain growth.



Tempering of ferrous martensites 427

1400 1300 1200 1100 1000 300 800(C)
N I I R |

I EARSIGE™

M- s

N
S 10'1 —
®
E 107'%_ VC0‘75
-
&
(&)
o 103
§ TiC
NbCn.
8 04— V%Cog
AIN
TiN
109
NbN
106

i/VI | | l ] |
5 6 7 8 9 10

10T (k)
Fig. 6.30 Solubility products (in atomic per cent) of carbides and nitrides in austenite

as a function of temperature. (After R.W.K. Honeycombe, Structure and Strength of
Alloy Steels, Climax Molybdenum, London, 1973.)

Temper Embrittlement

As pointed out in the introduction to this section the aim of tempering
martensite is to improve ductility. However in some steels tempering in, or
slow cooling through, the range 350-575 °C can lead to embrittlement. This
has been attributed to the segregation of impurity atoms such as P, Sb or Sn to
prior austenite grain boundaries. Some steels also show an embrittlement on
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Fig. 6.31 A recovered lath martensite showing that the lath boundaries are retained.
Fe-0.18 C tempered 10 min at 600 °C (X 2000). (After G.R. Speich in Metals
Handbook, 8th edn., Vol. 8, American Society for Metals, Metals Park, Ohio, 1973,

p. 202.)

tempering between 230 and 370 °C. This may be caused by the formation of
carbides with a critical plate-like shape.

6.7 Case Studies

It is clear from the foregoing theory of martensite that much work remains to
be done before we can fully understand this complex transformation, particu-
larly in steels. In spite of this, the hardening of steel by quenching to obtain
martensite is arguably one of the most important of all technological proces-
ses. In this section we illustrate four examples of technological alloys based on
the martensite transformation. These are a quenched and tempered structural
steel, some controlled transformation steels including TRIP steels, dual-
phase steel, and a TiNi ‘memory’ metal possessing a unique shape-memory
property based on a diffusionless transformation.

6.7.1 Carbon and Low-Alloy Quenched and Tempered Steels

Composition range: 0.1-0.5 wt% C; (C < 0.3%: weldable without preheat)
0.6-1.3% Mn with or without small alloying additions,
e.g. Si, Ti, Mo, V, Nb, Cr, Ni, W, etc.
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Fig. 6.32 A partially recrystallized structure. Top left: recovered but not recrystal-
lized, bottom left: a new recrystallized grain. Coarse spheroidal cementite is also
apparent. Fe—0.18 C quenched and tempered 96 h at 600 °C (x 2000). (After G.R.
Speich, in Metals Handbook, 8th edn., Vol. 8, American Society for Metals, 1973,
p. 202.)

Special properties: High strength, weldable constructional steels.

Relevant phase diagrams: Fe—C, in conjunction with appropriate CCT, TTT
diagrams (see, e.g., Fig. 6.3).

Microstructures: See Figs. 6.1 and 6.12.

Comments: The compositions of these steels are chosen with respect to
(a) hardenability; (b) weldability; (c) tempering properties, e.g. resistance to
tempering, or increased tempering strength due to secondary hardening.
Typically, lath or mixed (lath plus twinned) structures contain high densities
of dislocations (0.3-0.9 x 10! mm~?), equivalent to a heavily worked steel.
There is normally very little retained austenite associated with these steels
see, e.g., Fig. 6.22. The lattice structure is bct, at least for carbon contents
greater than ~0,2%. Below this composition it is suspected that due to the
higher M temperature, some carbon segregates to dislocations or lath bound-
aries during the quench, as measured by resistivity and internal frictional
measurements.

These results indicate that only in steels containing more than 0.2% C is
carbon retained in solution. Curiously, this effect is not reflected by hardness
changes and therefore the main strengthening mechanism in these steels is
thought to be the fine lath or cellular structures and not so much due to
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carbon in solution. The yield strength can therefore be represented by a
modified version of the Hall-Petch equation (Gladman et al., 1975)°:

O'.Y = 0j + Kd—l/Z + O disl (+ Gppt) (620)

where o; is the friction stress (due to alloying elements in solution) and d
refers to the mean cell, or lath size. K is a constant and oy, refers to the
hardening contribution due to dislocations and/or twins; Oppt Tefers to carbide
precipitation after tempering. Typical yield strengths of these tempered steels
are in the range 500-700 MN m 2, for a mean lath width of 2-3 pm.

6.7.2 Controlled-Transformation Steels

Compositions ranges:

0.05-0.3 wt% C
0.5-2.0% Mn
0.2-0,4% Si

14.0-17.0% Cr
3.0-7.0% Ni

~2% Mo

Other possible additions: V, Cu, Co, Al, Ti, etc.
Special properties: Very high strength, weldable, good corrosion resistance;
used, e.g., as skin for high speed aircraft and missiles.

Relevant phase diagrams: See Fig. 6.33.

Microstructures: Fine lath martensite with possible fine network of d-ferrite.
Comments: Since it is required to form, or work this material at ambient
temperatures prior to hardening and tempering, elements that stabilize the
austenite are used in significant amounts, e.g. Ni, Cu, etc. On the other hand,
the M—M; range should not be depressed too far, and the relative effects of
alloying elements on M, temperature are shown in Table 6.6. It is seen that in
practice very strict control over composition of these steels must be made,
balancing the amount of ferrite formers (e.g. Mn) with C content. Such
amounts of 3-ferrite are sometimes retained in order to improve weldability

Table 6.6 Effect of Alloying Elements on M; in Steels

F.B. Pickering, ‘Physical metallurgy of stainless steel developments’ Inz. Met.
Rev., 21, pp. 227-268, 1976.

Element N C Ni Co Cu Mn W Si Mo Cr V Al

Change
in M, °C
per wt% —450 =450 =20 +10 —35 —30 —36 —50 —45 —20 —46 —53
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(see Section 4.6.3). This also requires a careful balance in analyses, using,
e.g., modified Schaeffler diagrams as a guide. Cold working is either carried
out in the purely austenitic range (i.e. above M,) the steel then being
quenched to obtain martensite, or worked below M, in which case deforma-
tion induces the transformation to occur without the need for refrigeration.
The latter steels are known as ‘transformation induced plasticity’ (TRIP)
steels. Since the M,—M; range is about 100-140 °C, the M, temperature
should not lie too far below the working temperature, or refrigeration will
have to be carried out at such low temperatures that it may become too
expensive. Retained austenite is undesirable in these steels because of its
adverse effect on strength. The fine martensitic structure, in combination with
work hardening and tempering give these steels strengths up to
~1500 MN m™2. In Table 6.7, typical properties of various controlled trans-
formation steels are shown as a function of the type of heat treatment and
transformation.

The mechanical properties given in Table 6.7 show that samples trans-
formed by refrigeration generally give the higher strengths. It is also seen that
the austenitizing temperatures may change from alloy to alloy. Choice of
austenitizing temperature is critical with regard to solution treatment, re-
solution of carbides and M, temperature. For example, the lower the solution
temperature, the more M,3Cy will remain during austenitizing; this in turn
reduces the Cr and C content of the austenite which raises the M, tempera-
ture. The example given of a TRIP steel in Table 6.7 shows that this material
has exceptional high strength and toughness (50% elongation).

6.7.3 The ‘Shape-Memory’ Metal: Nitinol

Composition range: 55-55.5 wt% Ni-44.5-45% Ti. Possible additions: small
amounts of Co (to vary M;).

Phase diagram: See Fig. 6.34.
Phase transitions:

Ordered TiNi(I) bcc A2 structure

| {650-700 °C diffusion controlled
TiNi (II): complex CsCl-type structure

{ {170 °C martensitic
TiNi (III): complex structure

Special properties: The TiNi (II < III) transformation is reversible and
effectively enables the alloy to be deformed by a shear
transformation, i.e. without irreversible plastic defor-
mation occurring, by up to 16% elongation/contraction.
Thus ‘forming’ operations can be made below M, which
may be ‘unformed’ simply by re-heating to above the M.
These unique properties are used in such applications as,
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Fig. 6.34 (a) Ti-Ni phase diagram (after D.R. Hawkins in Metals Handbook, 8th
edn., Vol. 8, American Society for Metals, 1973, p. 326); (b) M temperature as
function of Ni content.
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e.g. toys, self-erecting space antennae, special tools,
self-locking rivets, etc.
Microstructure; very fine twinned martensite.

Comments: This transformation is interesting for two reasons: firstly it
involves a diffusionless transformation from one ordered structure to another.
It is of course fundamental to this type of transformation that if the austenitic
phase is ordered, the martensitic product must also be ordered. Secondly, the
mode of the transformation is such that very extensive deformation (up to
16%) can occur as a thermoelastic (non-plastic) martensitic shear mechanism,
i.e. the transformation is reversible. Although this essentially involves an
alloy of nominally stoichiometric composition, small additional increases in
Ni (max ~55.6 wt%) can be tolerated. This increase in Ni content has the
important effect of decreasing the M, temperature. The M, temperature as a
function of Ni content is shown in Fig. 6.34b. However, it is advisable not to
exceed 55.6 wt% Ni, to avoid the precipitation of the TiNi; phase. To avoid
this problem, small amounts of Co can be added virtuallyonal : 1 basis as a
substitute for Ni.

While the martensitic phase is described as a complex CsCl ordered lattice,
as a first approximation the transformation is related to the type: bcc @ hep.
The habit plane of the twinned martensite plate is irrational and close to
[551}ycc (Sinclair and Mohammed, 1978)%.

Another interesting feature of this transformation is that it appears to bring
about an abrupt change in Young’s modulus and yield strength. This change
in Young’s modulus also results in distinct changes in the modulus of
resilience, the ‘damping’ properties of the material being much greater in the
martensitic (TiNi III) form.

The large amount of deformation that this alloy can undergo due its special
transformation characteristics is utilized commercially. For example, it may
be “formed” in a fully reversible way simply by deforming below the M;
temperature. Subsequent heating above the transition temperature then
changes the deformed (sheared) structure back to its original form. This
unique feature of alloys such as this has made them known as: “memory
metals”. There are a number of so-called memory metals known today®’,
although none so commercially useful as TiNi alloys.
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Exercises

6.1 Use free energy—composition diagrams to illustrate the driving force for
the Fe-Ni martensitic transformation at T> Ty; T = Ty; T = M;.
Show how this chemical free energy can be estimated if the undercooling
is known. Explain why the driving force for the nucleation of martensite
at the M, temperature is independent of carbon concentration in Fe-C
steels.

6.2 What are the possible non-chemical energy terms in the martensitic
transformation? Derive equations for the critical size and volumes of a
martensite nucleus using classical nucleation theory. What evidence is
there that martensite nucleates heterogeneously?

6.3 Evaluate Equations 6.8, 6.9 and 6.10 for Fe-C martensite assuming
AG, =174MIm™>3, y=20mIm 2 s =02, n=8GNm?

6.4 Give an exact definition of the habit plane of martensite. Describe how
this habit plane might be measured experimentally. Give possible
reasons why there is so much scatter of habit plane measurements in a
given sample.

6.5 In the phenomenological approach to martensitic transformations there
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6.6

6.7

6.8

6.9

Diffusionless transformations

are two different but equivalent ways of producing the lattice invariant
shear. Show exactly what is meant by this. What is the experimental
proof of both types of shear?

Draw a diagram to illustrate Bain’s homogeneous deformation model
for the fcc — bec diffusionless transformation. Assummg a, = 3.56 A
and a, = 2.86 A, and that c/a for martensite is 1.15 calculate the
maximum movement experienced by atoms during the transformation.
Assume that c/a = 1.1.

What are the essential differences in martensite nucleation models based
(a) on changes at the core of a dislocation; (b) on dislocation strain field
interaction? Discuss the advantages and disadvantages of both models in
terms of the known characteristics of martensitic transformations.
Give possible reasons why the habit plane of martensite changes as a
function of alloying content in steels and Fe-Ni alloys. What factors
influence the retention of austenite in these alloys?

What is the role of austenitic grain size in martensitic transformations?
Is austenitic grain size important to the strength of martensite? What
other factors are important to strength and toughness in technological
hardened steels?

6.10 Suggest possible alloying and heat treatment procedures needed to

design the following steels: () a quenched and tempered steel; (b) a
dual phase steel; (c) a maraging steel; (d) a TRIP steel.

6.11 How would you characterize the unique properties of alloys which can

be utilized as ‘memory metals’. How would you design a TiNi alloy for
use as, e.g., a self-locking rivet? Give instructions on how it is to be
used.



Solutions to Exercises
Compiled by John C. Ion

Chapter 1
1.1 C,=22.64 + 6.28 X 107°T J mol~'K™!
TzC
Entropy increase, AS = | —2dT
TI

1358 22,64 + 6.28 x 1073T
AS300-1358 =f dT

300 T

= '350[22.64In T + 6.28 x 107°T]
= 40.83 J mol"'K™'

1.2

Liquid Fe -
1600 === — — - — — — — —— ——
N\
o-Fe
v-Fe

800+

500+

Temperature, °C

300+

T
0 50 100
Pressure, kbar
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1.3

Solutions to exercises

Free
energy

Pressure
kbar

Schematic free energy—pressure curves for pure Fe.

From Equation 1.14

dP\ _ AH

dT)., TAV
Assuming AH and AV are independent of T and P for the range of
interest, the equation may be rewritten as

AP\ AH
AT)eq TAV
where: AH = H* — HS = 13050 J mol™!;
AV =Vt — VS = (8.0 — 7.6) x 10~°m?;
T = (1085 + 273) K.

Thus if AP is 10 kbar, i.e. 10° Nm™2, the change in the equilibrium
melting temperature is given by the above equation as

AT = 42 K
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1.4 Phases stable at low temperatures must have low enthalpies because

the (—TS) term in the expression for G becomes negligible. Phases
stable at high temperatures, on the other hand, have higher entropies
to compensate for higher enthalpies.

1.5

QD

DO

ON OO
NO O
NO O
QO O
\\N®

Six distinguishable configurations.
Theoretical number of distinguishable ways of arranging two black
balls and two white balls in a square is

(Ng + Nw)! _ (2 +2)!
Ng! Ny! 212!

=0

1.6 Dividing both sides of Equation 1.30 by the number of moles of

solution (ns + ng) gives
dG’ dna dng
= +
(na + np) Ha (na + ng) e (na + np)

The left-hand side of this equation is the free energy change per mole
of solution and can therefore be written dG.

dna dng
and
(nA + nB) (nA + nB)

are the changes in the mole fractions of A and B, dX and dXg.
The above equation can therefore be written as
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Thus 36—, 94Xa
dXg Ha X5 HB
= —Ma + KB (1.6.1)

But using Equation 1.31
G = paXa + upXp

ives — G — paXa
EIVES Hp Xz

.. d G — paX
giving —B = —ua + %

dG
OI‘},IA=G—XB&;

— OR\ — —
From the figure py = PR — Xp (?Y—) = PQ = 0S
B
i.e. point S, the extrapolation of the tangent to point R on the
G-curve represents the quantity pa.
Equation 1.6.1 gives

_ . 4+ 96
HB = HA dXg

— OV
ie. =08 + —
i.e. pg = O US
BuTS-0T=1
Thus yg = OS + UV =TV
i.e. point V represents the quantity pg.

Free energy
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1.7  Equation 1.31: G = paXa + paXs
Equation 1.39: G = XAG + XgGp + QXaXp + RT(XAln X4
+ XglIn Xg)
= XAGa + XpGp + QXaXp + XBXA)
+ RT(Xaln XA + XplnXp)
= XA[Ga + QX3 + RTInXA] + Xg[Gy
+ QX4 + RTIn Xg]

Comparison with Equation 1.31 and using X + Xp = 1 gives

pa = Ga + Q1 — Xa)* + RTIn X5
U = GB + Q(l - XB)2 + RTlnXB

1.8 (a) Atomic weight of Au = 197
Atomic weight of Ag = 108

Il

15
No. of moles of =—=0.
o. of moles of Au 197 0.076
No. of moles of A ——2—5——0231
' E= 108

no. of moles of solution = 0.307

0.076
ion of Au = —— = 0.
(b) Mole fraction of Au 0307 0.248
0.231
Mole fraction of Ag 0307 0.752

(c) Molar entropy of mixing, ASpyix = —R(XAln X + Xpln Xp)
ASmix = —8.314(0.248 - 1n0.248 + 0.752-1n 0.752)
=4.66J K ' mol™!

(d) Total entropy of mixing = Molar entropy of mixing
X no. of moles of solution

= 4.66 x 0.307
=143JK™!
(e) Molar free energy change at 500°C = AGpnix
= RT(XAlnXA + XBIIIXB)
AG iy = —TASmix = —773 X 4.66 = —3.60 kJ mol™"'

(f) Hau = GAu + RTlnXAu
=0+ (8.314-773-In 0.248)
= —8.96kJmol ™'
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uAg = GAg + RTlnXAg
=0 + (8.314-773-1n0.752)
= —1.83 kJ mol~!

(g) For a very small addition of Au
dG’ = payu-dnau(T, P, ng constant)
At 500°C, pa, = —8.96 kJ mol ™.
Avogadro’s Number = 6.023 x 103
leV=16x10""]

-8.96 x 10°
— -1 = -1
8.96 kJ mol 16 X 10-° X 6.023 X 107 eV atom

= —0.1eV atom™!

Adding one atom of Au changes the free energy of solution
by —0.1 eV.
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T
[
3 0¢
g p —— —— ————— i@
Q
£
hd de
_Fe;;C
— —--Graphite
Fe FesC Graphite
%C —
G-composition and T-composition diagrams for the Fe—Fe3C
and Fe—C systems (not to scale).
1.10 dG* = —p% dng

dGP = +pk dna

At equilibrium dG* + dG® = 0
ie. —p% dna + ph dny =0
ie. pk = ph

Similarly for B, C, etc.

1.11 Equilibrium vacancy concentration

\

RT
AS, _AH,
R P TRT

leV=16x10"1"7]
R =2863x10"°eVatom ! K}

X, =exp —

= exp

—0.8
X (933 K) = exp (2)'CXP(8.63 x 1075 x 933)

-0.8
X< (298 K) = exp (2)'eXp(8.63 x 1073 x 298)
=228 x 107"
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Assume Xg; = A exp —%

Q
lnXSi =InA - ﬁ

At 550°C (823 K): In1.25 = InA — Q/(8.314 x 823)
At 450°C (723 K): In0.46 = InA — Q/(8.314 x 723)

which can be solved to give

O = 49.45 kJ mol™!
A=1721

Thus at 200°C (473 K)

XSi = 1721 c€Xp — ( 49450 )

8.314 x 473
= 0.006 atomic %

According to the phase diagram, the solubility should be slightly
under 0.01 atomic %. Reliable data is not available at such low
temperatures due to the long times required to reach equilibrium.

A sketch of the relevant phase diagram and free energy curves is
helpful in solving this problem. See p. 449.
AG, and AGyp are as defined in (b) and (c).

Since A and B are mutually immiscible, the tangent to the liquid
curve G" at Xp = X§ will intercept the curves for the A and B phases
as shown, i.e. pk = G, p5 = G3.

The liquid is assumed ideal, therefore from Fig. 1.12

AGA = —RTgln X&
and
AGg = —RTgIn X§
But AG, and AGg can also be found from the relationships shown in
Figs (b) and (c).
If C5 = C}, Equation 1.17 gives

L
AG = —-AT
T

or

AG = AS,, - AT
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(a) Schematic phase diagram;
(b) G-T curves for pure A;
(c) G-T curves for pure B;

(d) Free energy curves for the A—B system at Te.

Thus AGa = ASy(A) - (Tm(A) — Tg)
AGg = ASm(B) ' (Tm(B) - TE)

Finally therefore:
—RTeIn X& = AS(A) - (Tn(A) — Tg)
—RTeInXE = AS,(B) - (Tn(B) — Tg)

or

—8.314 TeIn X& = 8.4 (1500 — Tg)
—~8.314 TgIn(1 — X&) = 8.4 (1300 — Tg)

Solving these equations numerically gives
X5 =04
X5 =0.56
Tz = 826 K

449
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1.14 If solid exists as a sphere of radius r within a liquid, then its free
energy is increased by an amount
2yV,
G- G = —Y—r—"‘ (from Equation 1.58)

where Gj is the molar free energy of the sphere and G, is the molar
free energy in the absence of interfaces.

Growth of the sphere must lead to a reduction of the total free
energy of the system, i.e. growth can occur when

G < G*

ie. G* — G5 >%ﬂ/E

See figure below.

Growth occurs spontaneously with
a decrease in free energy

>
=y
[]
[ =
(]
Q) N
£ G?
k-
[<]
b
S
I AT : G- G-
1 P
T T

Substituting Equation 1.17 for G+ — G5, gives

LAT _ 2vyV,,
—_—— > —_———
T r

29V T

>
i.e. AT L

Substituting the numerical values given

AT(r =1pum) > 02K
AT(r = 1 nm) > 200 K

1.15 Composition = 40% A, 20% B, 40% C;
o = 80% A, 5% B, 15% C;
B=10% A, 70% B, 20% C;
Yy =10% A, 20% B, 70% C.
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Let the mole fractions of o, B and y in the final microstructure be X,
X and X, respectively.

Balance on A: 0.4 = 0.8 X, + 0.1 X3 + 0.1 X,
Balance on B: 0.2 = 0.05 X, + 0.7 X3 + 0.2 X,
Balance on C: 0.4 = 0.15 X, + 0.2 X + 0.7 X,

Solving these equations gives: X, = 0.43; X3 = 0.13; X, = 0.44

From Equations 1.41 and 1.43 we have
Ha = GA + RTln'YAXA

where G, is the free energy of pure A at temperature T and pressure
P.
Suppose G4 is known for a given temperature and pressure T, and
Py
i.e. GA(T(), P()) = GOA
From Equation 1.9 for 1 mole of A
dGA = ‘—SAdT + deP

Thus if S5 and V,, are independent of T and P, changing temperature
from T, to T and pressure from P, to P will cause a total change in
GA of
AGA = —SA(T—' To) + Vm(P - Po)
Ga = GA + AG
= G% + SA(TO - T) + Vm(P - Po)

and

Ha = G4 + Sa(To — T) + V(P — Po) + RTInyaXa

The accuracy of this equation decreases as (T — Ty) and (P — Py)
increase.
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Chapter 2
2.1 (a)

Carburizing Sheet Decarburizing
gas gas

1-47\
-0.15

Carbon concentration

Thickness

(b) Under steady-state conditions, flux of carbon atoms into one side
= flux out of the other side = J.

_DdC
dx

dC dC
Dis{==! = Dyis{—
- {dx}m o {dx}O.IS
dac dc _Doys _25x107"" 0.32
dx 1.4 dx 0.15 D1.4 B 7.7 X 10_” T==
(c) Assume that the diffusion coefficient varies linearly with carbon
concentration

D=a+ bC

where a and b are constants that can be determined from the data
given. Fick’s first law then gives

J =

dCc
]——(a+bC)E;
or [Jdx=—[(a+ bC)dC
2
ie. —Jx=aC+-[22£+d

where d is an integration constant. If we define C = C; at x = 0

d=—aC1—§C%
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Similarly, if C = C, at x = [, the thickness of the sheet, gives

b b
—Jl=aC2+§C§—aC1—5C%

ie. J= {a(c1 - G) + 15) (C} - C%)}/l.

The constants a and b can be determined from

D1=a+bC1
D2=a+bC2
D, - D
from which a = D, — (ﬁ) G,
_ D, -D,
and b = ¢, -G

Substitution of these expressions into the equation for J gives
after simplification

B 2 !
Substituting: D; = 7.7 x 107" m*s~
D, =2.5x10""m?s™!

1

1.4 .,
=X
C 08 60 kg m
0.15
= — k -3
(&) 0.8 X 60 kg m
I =2x107m
gives J=24x10"°kgm?s”!
1 2
c)<
e

Consider two adjacent (111) planes in an f.c.c. crystal. A vacancy in
plane 1 can jump to one of three sites in plane 2. For the sake of
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generality, let this number of jumps be designated P (=3). In all there
are 12 possible sites (nearest neighbours).

If n; and n, are the numbers of vacancies m™* in planes 1 and 2
respectively, the number of jumps from 1 to 2 will be given by

2

i, = 7 ny m2%s7!

where I, is the jump frequency of the vacancies.

Likewise
< P
JV = E Fvnz

Therefore following the same arguments as in Section 2.2.1 (p. 6)
gives

(P 5.\ 3C,
Jo= (12‘””) dx

where d is the perpendicular separation of the adjacent planes, i.e. we
can write

Do=Tg

In f.c.c. metals the jump distance a is given by
a
o=
V2
where a is the lattice parameter.

For (111) planes
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The activity along the bar is described by the following equation

.. Ao x2
activity = W-exp (—Zl_)_t>
where A, = initial activity;
D = diffusion constant;
t = time;
x = distance along the bar.

Thus by plotting In (activity) vs x, a straight line of slope —(4Dt)~"
is produced, enabling D to be found since ¢ is known.

X pm 10 20 30 40 50
x* pm? 100 400 900 1600 2500
activity 83.8 66.4 42.0 23.6 8.74
In (activity) 4.43 4.20 3.74 3.16 2.17

T T
0 1000 2000 X2 um?

From the graph: slope = —8.66 X 10™* pm™2,

1
Hence: ——— = —8.66 x 107*
ence DY) 8.66 x 10
Since t =24 h

D=334x10""m?s!
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— t
2.4 C=C+ Bysin (TETX) exp —-

For this equation to be a solution of Fick’s second law, the following
condition must be met

sC_ ) #C
& TP oax?
8—C——B sin | = -lex !
& M0 1) TP L
S—C—B exp —= -2 cos [
ox 0P T !
FC g exp - i (™
T s R PR
Lc_gcr
& & n?
12
But T=n2DB (Equation 2.21)
sC_p #C
& TP ax?
2.5 (a)
_4G &1 Qi+ D)
€W =2 sryqsin T

where [ = thickness of sheet,
Co

initial concentration.
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The first two terms of the series are
4
C(x) = % [sin ™~ + 1 sin 3—n£:|

Plotting this sum for the range 0 < x < [ gives the curve plotted
opposite

(b) If the surface concentration is effectively zero, the solution to the
diffusion equation becomes

_4G o 1 Qi+ D)
Clx, t) = n ;::0 i+ 1 sin (f)
[—(21‘ + l)znth]
exp | —————
)
The amplitude of the first term (A;) is obtained by putting x = /2
andi = 0, i.e.

_4C() —thDt
A= T CXP[ 12 ]

The amplitude of the second term (A,) is obtained by putting x =
l/6and i =1, i.e.

3n I?
If A, < 0.05 A,
4Cy —9n°Dt 4Cy —n°Dt
e P [ 2 < 0.05 - SXP |

12
which gives ¢ > 0.0240 D

(c) Assume that the time taken to remove 95% of all the hydrogen is
so long that only the first term of the Fourier series is significant.
The hydrogen concentration at this stage will then be given by

4 —n*Dt
C(x, ) = —f(-)-sin %-exp —7;—2——~

i.e. as shown in the figure on page 458.

At the required time (¢,) the shaded area in the figure will be 5%
of the area under the concentration line at t = 0, i.e.

1
JC(XI, tl) dx = 0.05 C()l
0

_ ZDt !
o exp (20 [sin ™ 4x = 0.05 ¢y
T [ 0 )
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2
which gives #; = 0.282 IB

Note that this time is an order of magnitude larger than the time
derived in part (b). Consequently it is clearly justified to ignore all
terms of the Fourier series but the first.

-13 400)

RT
i.e. D (20°C) = 4.08 X 10™* mm?s~!

Thus for [ = 10 mm: ¢, = 19.2 h,
for / = 100 mm: ¢; = 1920 h (80 days).

From Table 2.1, D = 0.1 exp (

2.6

At the initial compositions 1 and 2 of a and B respectively the
chemical potentials of A and B atoms in each phase can be found by
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extrapolation of the tangents to the free energy curves at 1 and 2 to the
corresponding sides of the free energy diagram, as shown above.

All atoms diffuse so as to reduce their chemical potential.
Therefore, A atoms will have a tendency to diffuse from a to B (p% >
pR) and B atoms will have a tendency to diffuse from B to a (ub >
HB)-

The resultant composition changes are indicated in the diagram.
Diffusion stops, and equilibrium is reached, when p%4 = p& and p§ =
pb. That this process results in a reduction in the total free energy of
the diffusion couple can be seen from the diagram below. The initial
free energy G, can be reduced to G, by a change in the compositions
of the a and B phases to X5 and Xj, the equilibrium compositions
(provided Xg < Xpux < XB).

=

{
N\
/
N

Free energy —e
”
£
L

N

- ——

\

>
23
2

2.7 Substituting into Darken’s Equations (2.47) and (2.51)

0Xzn
v = (D%~ D&) 52

D* = XCuD%n + XZnD((lZu
we obtain

0.026 x 107% = (D%, — D%,) X 0.089 mm s~
4.5 x 1077 = 0.78 D%,, + 0.22 D%, mm?s~!

From which

2 1

%, =5.1X% 107" mm®s”
%y =22 % 107" mm? s~ !
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The expected variation of D%, D¢, and 5“ are shown schematically
below

Since Zn has a lower melting point than Cu, it diffuses faster of the
two, and since increasing the zinc content reduces the liquidus tem-
perature, all diffusivities can be expected to increase with increasing
Zn concentration.



Solutions to exercises 461



462

2.9

Solutions to exercises



Solutions to exercises 463

|
I
|
I(l
| L
——————— l————_.___ S
T
1B L
| 2
l v
A Bulk 0.9 B
0.5
—
Xs

The total distance the interface moves, s, can be calculated in terms of
the total couple thickness, L, by writing down an equation describing
the conservation of B, i.e.

L L
0.9<5+s)+0<5—s)—0.5L

S
Z=56x10"2
I 5.6

Chapter 3

3.1 Considering only nearest neighbours, if a surface atom has B ‘broken’
bonds, it will have an excess energy of B. /2, where ¢ is the bond
energy.

For f.c.c. crystals, each atom has twelve nearest neighbours in the
bulk, so that ¢ = L/6N,, where L, is the molar latent heat of sub-
limation and N, Avogadro’s number (no. of atoms per mole).

The surface energy per surface atom is therefore given by

’ S

Ysv = EE per surface atom

If each surface atom is associated with a surface area A, the surface
energy is

= —}—3— 5 er unit area
' =1Aa NP

A can be calculated in terms of the lattice parameter a:
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*Each surface atom is connected to two nearest neighbours in the
{220} plane. Therefore it must be connected to ten others out of the
plane. Since the atoms are symmetrically disposed about the {220}

{hkl} {111} {200} {220}
X
2 O \}) e
A 5‘2%% €2_2 a.a_Z_Z
] \ \ ]
o | ol | sl | el
o[zl | o] oss[]

plane, there must be five bonds above the plane of the paper and five
below (giving a total of 12).
*It can be shown that in general for f.c.c. metals

a (R + k2 + P)

A= 7

For the simple cases above, however, A can be calculated directly
from a sketch, as shown.

, €
3.2 E,, = (cos 6 + sin |9])-2a2
ie. Ey=(cos0+sin0)— 0>0
2a
dEg, _ . &
a0 (—sin 0 + cos 0) oy

dE,,
de

=&
0=0 24



Solutions to exercises 465

€

and Eg, = (cos 0 — sin 6)-2——2,
a

0<0

dE,,
which gives ( d9$ )e:o = —ziaz

At 0 = 0 there is a cusp in the E;, — 0 curve with slopes 158—2.
a

3.3 For a two-dimensional rectangular crystal with sides of lengths /, and
I, and surface energies y, and y, respectively, the total surface energy
is given by

G =2(lLiyi + by,)

The equilibrium shape is given when the differential of G equals
Zero, 1.€.

dG = 2(l\dy, + y,dl; + Ldy, + v.dl) =0
Assuming that y, and vy, are independent of length gives
vdl, + y,dl, =0
But since the area of the crystal A = [/, is constant

dA = lzdlz + lzdll =0

Giving
h_m
L 1

3.4 (a) By measuring, the misorientation 6 =~ 11.

(b) By constructing a Burgers circuit around a dislocation, the
Burgers vector is found to be 1.53 mm in the photograph (i.e.
one bubble diameter).

For a low-angle grain boundary, the spacing of the dislocations

is given by
b
D =
sin 0
D= ,1‘53 ~ 8.0 mm
sin 11°

which is very close to the mean dislocation spacing in the
boundary.
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Like all other natural processes, grain boundary migration always
results in a reduction in total free energy.

Grain growth

During the process of grain growth all grains have approximately the
same, low dislocation density, which remains unchanged during the
grain growth process.

Grain boundaries move towards their centres of curvature in this
case, because atoms tend to migrate across the boundaries in the
opposite direction (from the high pressure side to the low pressure
side), in order to reduce their free energy, or chemical potential.

The process also results in a reduction of the total number of grains
by the growth of large grains at the expense of smaller ones. The net
result is a reduction in the total grain boundary area and total grain
boundary energy.

Recrystallization

In this case, grain boundary energy is insignificant in comparison with
the difference in dislocation energy density between recrystallized
grain and surrounding deformed matrix. The small increase in total
grain boundary energy that accompanies growth of a recrystallization
nucleus is more than compensated for by the reduction in total dis-
location energy.

The boundaries of recrystallization nuclei can therefore migrate
away from their centres of curvature.

(a) The pulling force acting on the boundary is equivalent to the free
energy difference per unit volume of material.
2

If the dislocations have an energy of % J m™!', and the

dislocation density is 10'® m™2, then the free energy per unit

volume, G, is given by

10" x (0.28 x 10~°)?
4

G = 10" x =1.96 MJ m~3

Thus the pulling force per unit area of boundary is 1.96 MN m~2.
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(b) For nucleus growth, reduction in free energy due to annihilation
of dislocations must be greater than or equal to the retarding
force due to grain boundary curvature.

Equating this with the driving force across a curved boundary

ie. 1.96 x 10° = 2v
r

Sor= —-——2Y
7196 x 100

Thus the smallest diameter = 1.0 pm

3.7 From the phase diagrams, the limit of solid solubility of Fe in Al is
0.04 wt% Fe, whereas that of Mg in Al is 17.4 wt% Mg. If one
element is able to dissolve another only to a small degree, the extent
of grain boundary enrichment will be large. (See for example Fig.
3.28, p. 138.) Thus grain boundary enrichment of Fe in dilute Al-Fe
alloys would be expected to be greater than that of Mg in Al-Mg
alloys.

3.8 See Fig. 3.35, p. 145.
If d, < dj, then in general the dislocation spacing (D) will span n
atom planes in the B phase and (n + 1) planes in the a phase, i.e.

D=ndy=(n+1)d,

From the definition of & we have

&= d‘*—d_‘fﬁ (—ve)

dg = (1 + 8) dg

Substitution into the first equation gives

n(l+98)d,=(@n+1)d,
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3.9

The edges of the plate exert a force on the periphery of the broad
face equal to y,-4-2x,
This force acts over an area equal to (2x,)?

Y2'4'2xz_ﬁ

AP="ar T .

The periphery of each edge is acted on by a force of magnitude
227220 + 2071020,

The area of each edge is 2x - 2x,

_ 2y, 2x) + 2y, 2x, =ﬁ+ﬂ

AP 2xy 2%, X2 X

From the Wulff theorem (p. 115) for an equilibrium plate shape:

_n (see also Exercise 3.3)
X2 Y2
Ap=2N_20

X1 X2

3.10 See Section 3.4.1 (p. 143).

3.11 Atomic radius of Al = 1.43 A
Atomic radius of Fe = 1.26 A
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126 - 143
T X 100%

-11.89%.

When the misfit is less than 5%, strain energy effects are less
important than interfacial energy effects and spherical zones minimize
the total free energy. However, when the misfit is greater than 5%,
the small increase in interfacial energy caused by choosing a disc
shape is more than compensated by the reduction in coherency strain
energy.

Thus the zones in Al-Fe alloys would be expected to be disc-
shaped.

Hence zone misfit

Assuming that the matrix is elastically isotropic, that both Al and
Mg atoms have equal elastic moduli, and taking a value of 1/3 for
Poisson’s ratio, the total elastic strain energy AG; is given by:

AG, = 4 6>V p = shear modulus of matrix;
0 = unconstrained misfit;
V = volume of an Al atom.

1.60 — 1.43
6= —143—— = 0.119
V=43-n-(1.43 x 107193 = 1.225 x 107® m*
Har = 25 GPa = 25 X 10° Nm ™2
AG, = 4 x 25 x 10° x (0.119)® x 1.225 x 107%° J atom™!

=1.735 x 1072 J atom™!
In 1 mol there are 6.023 x 10%* atoms

1.735 x 1072 x 6.023 x 10%

= l—l
AG; 1000 kJ mo
=10.5 kJ mol !
1eV = 1.6 x 10717 J, thus
1.735 x 10720 )
AGg = W eV atom
= (0.1 eV atom™!

It is also implicitly assumed that individual Mg atoms are separated
by large distances, so that each atom can be considered in isolation,

i.e. dilute solutions.
The use of Equation 3.39 is also based on the assumption that the

matrix surrounding a single atom is a continuum.

3.13 See Section 3.4.4. (p. 160).
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3.14 When a Shockley partial dislocation passes through an f.c.c. crystal
the atoms above the glide plane in positions A are shifted to B
positions, B into C positions, etc.

ic A>B—->C—- A

A B C 1 _ _A_ _ B
Cc A n __B_ ) C C
B L= -C- ] A A A
A B B B
e |
Cc c [ Cc (o} C Twin
Plane
B B B B B
A A A A A
(o] Cc C (o} C
B B B B B

The above series of diagrams shows the twinning process.

3.15

B 14
o= f .
Eb—F

-

Let the interface CD move with a velocity v perpendicular to the

interface.
Consider unit area of interface perpendicular to both BC and CD.

Mass flow perpendicular to BC = u X h.
Mass flow perpendicular to CD = v X [.

From the conservation of mass: u X h = v X [.

_uXh
o

v
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3.16
B B B B B B
o} C o} C C o}
A A A A A Feel
B B B B li'i'/i'i'—'l B
- C === C === C——————— c-— ¢ |———c———
B B B B B B
A A A A A A
Fec ll
C c o} o} C
B B B B B B
A A A A A A

If a single atom in crystal I attempts to jump into a crystal II position
a ring of dislocation and an unstable A upon A situation results.

A Shockley partial dislocation in every {111} slip plane creates a
glissile interface between two twinned crystals:

AL A
=TT
B N c
T
c 1 B
TT T
B 1 c
=T r
c 1 B
-7
A 4 A

Note, however, that as a result of the shape change produced by the
transformation large coherency stresses will be associated with the
interface (see Fig. 3.62a).

Similar coherency stresses will arise as a result of the f.c.c./h.c.p.
interface in Fig. 3.61. Strictly speaking, Fig. 3.60 is an incorrect
representation of the stacking sequence that results from the passage
of the partial dislocations. In layer 10, for example, there will not be
a sudden change across the ‘extra half-plane’ of A to B or B to C, but
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rather a gradual change associated with long range strain fields in
both crystals.

3.17 Solid/vapour interfaces and solid/liquid interfaces in non-metals are
faceted and therefore migrate by ledge mechanisms.
Solid/liquid interfaces in metals are diffuse and migration occurs by
random atom jumps.
3.18 See Section 3.3.4, p. 130.

3.19

S~

&1 'XK

1
T
|
|
!
|
!
T
X B

From equations 1.41 and 1.43 we can write
HIB = GB + RT In YiXi
ug = Gg + RT In vy X,
i i ¥iXi
App = pg — pp = RT In —
HB = HB — HUB n X,

For ideal solutions: v; = v, = 1
For dilute solutions (X; < 1): y; = y. = constant (Henry’s Law)
such that in both cases

. X;
L=RT 1
Apg = RT In X,

This can also be written

. X, — X
Apyg = RTIn (1 + = =
UB n( X. )

If the supersaturation is small, i.e.
X; — Xo) < X, then

. X, - X
Auk = Ai — Ae
HB RT< X. )
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3.20

Suppose the alloy had reached equilibrium at a temperature 7; and
consists of long plate-like precipitates. The bulk alloy composition is
Xo, the equilibrium concentrations at 7; and T, are X; and X,
respectively, where T is the temperature to which the alloy is heated.

= Distance

Xo
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(iii) Mixed control: similar to diffusion control except the interface
concentration in the a-matrix will be less than X,, the equi-
librium concentration at 7.

Chapter 4
1 AG, = _‘;“P AG, + 4nrysy
Differentiating this equation with respect to r:
dﬁf;' = —4nr? - AG, + 8nrysy

At the critical radius, r*, this expression is equal to zero
0 = —4nr*?- AG, + 8nr*ysy

2ysL
* —_— —
" T AG,

In order to calculate the critical value of AG, AG* at this radius,
the value of r* is substituted into the original equation

—an (2ys.)? 2ys.\2
AG*=—3—E<£E) -AGV+4n(AYCS;L) Yse

_ 161ty§L
3(AG,)?

4.2  From Equation 4.10, at the equilibrium melting temperature T,

B -AG,
n. = ny€xp kT
At the equilibrium melting temperature AG, = 0, so that Equation

4.4 becomes

AGr(T = Tm) = 4TU'2'YSL

For a cluster containing #. atoms with an atomic volume Q we have

4nr
—=n0
3
Therefore the expression for AG, becomes

2/3-y
AG, = 4n <3 Q”“)

4n
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Substituting Q = 1.6 X 107%° m’
and y = 0.177 Jm ™2 gives

AG, = (5.435 x 1072 n2

For 1 mm?, ng = 6.25 x 10" atoms
Therefore when n. = 10 atoms, n, = 9 X 10" clusters mm™3;
and when n. = 60 atoms, n, = 3 clusters mm™>;
when n. = 100 atoms, n, = 4 X 1072 clusters mm~3;

or, alternatively, 1 cluster in 2.5 x 10" mm? (251).

4.3  As the undercooling (AT) is increased, there is an increasing con-
tribution from AG, in the equation

4
AG, = —§7tr3AGv + dnriyg

whereas the interfacial energy is independent of AT. Consequently,
for a given r, AG, decreases with increasing AT, and the ‘maximum’
cluster size increases somewhat.

4.4  From Equation 4.13

—16my3, T2 1
Nhom =f0C05XP{ ISem, }

3L2kT  AT?
where T = T, — AT

From which the following values are obtained:

AT K Npom m ™3 s71 Npom cm ™3 571
180 0.7 7 x 1077
200 8 x 10° 8
220 1 x 10'2 1 x 10°

Note the large change in N over the small temperature range (see
Fig. 4.6).

4.5 AG* =1-V*-AG,
For homogeneous nucleation, it has been shown (see 4.1) that
2ysL
% — ZISL
" TAG,

Thus for a spherical nucleus

4nr*3 _ 32myd,

* — —
v 3 3(AG,)?
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4.6
4.7
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1 16TE'Y§L
*=—.V*.AG, =
AGT =3 3AG?
This is identical to that derived in 4.1, and so the equation holds for
homogeneous nucleation.
For heterogeneous nucleation, it can be shown that

x  2rsL
AG,

The volume of a spherical cap on a flat mould surface is given by

- (2 + cos0)(1 — cos0)?

4 3
Thus
S 2ysL\’ (2 + cos@)(1 — cosB)’
~ \AG, 3

where 0 is the ‘wetting’ angle.

Substituting into the given equation
AG* = L.y -AG, = inﬁi-(z + cos0)(1 — cos 0)?
2 Y 37AG?

Writing the normal free energy equation for heterogeneous nuclea-
tion in terms of the wetting angle 6 and the cap radius r
(2 + cos0)(1 — cos0)?
4

4
AGhet = {—gmﬁAGv + 47tr2’ySL}

But from Equations 4.19 and 4.17 we have

16ny3L (2 + cos6)(1 — cos6)>
3AG? 4

which is identical to that obtained using AG* = V*AG,

AG* =

See Section 4.1.3.

Consider a cone-shaped crevice with semiangle o as shown below:
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The wetting angle between nucleus and mould wall () is fixed by the
balance of surface tension forces (Equation 4.14). The activation
energy barrier (AGy) depends on the shape of the nucleus as deter-
mined by the angles a and 6.

From Equation 4.23, for a given undercooling (AT), AG, and r*
are constant, such that the following equalities apply

g = AGhet _ Viet

AGiom  Vitom

AGy,. _ Volume of the heterogeneous nucleus

AG{,,, Volume of a sphere with the same nucleus/
liquid interfacial radius

re. §=

It can be seen that the shape factor (S) will decrease as a decreases,
and on cooling below Ty, the critical value of AG* will be reached at
progressively lower values of AT, i.e. nucleation becomes easier.

When a < 90 — 0, S = 0 and there is no nucleation energy barrier.
(It can be seen that a = 90 — O gives a planar solid/liquid interface,
i.e. r = o even for a negligibly small nucleus volume.)

Once nucleation has occurred, the nucleus can grow until it reaches
the edge of the conical crevice. However, further growth into the
liquid requires the solid/liquid interface radius to pass through a
minimum of R (the maximum radius of the cone). This requires an
undercooling given by

ZYSL _ LAT
R Ta
i.e. AT=%1£nl

RL
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4.8 For conical crevices with a < 90 — 0 the solid/liquid interface can
maintain a negative radius of curvature which stabilizes the solid
above the equilibrium melting temperature (Ty,):

As the temperature is raised above Ty, the solid will melt back into
the crevice to maintain equilibrium with a radius given by

— 2ys.Tm
LAT

where (—AT) is now the superheat above Tj,.

4.9  If the situation described above is realized in practice it would explain
the observed phenomena.

4.10 (a)

(b)

The values of the three interfacial energies are as follows:

Solid-liquid = 0.132J m~%
Liquid—vapour = 1.128 J m~2;

Solid-vapour = 1.400 J m~2

Thus the sum of the solid-liquid and liquid-vapour interfacial
free energies is less than the solid-vapour free energy, and there
is no increase of free energy in the early stages of melting.
Therefore, it would be expected that a thin layer of liquid should
form on the surface below the melting point, because the dif-
ference in free energies could be used to convert solid into liquid.
Imagine the system I below. The free energy of this system is
given by:

G() = G® + v,
System II contains a liquid layer of thickness § and solid reduced

to a height (1 — §). (The difference in molar volume between
liquid and solid has been ignored.)
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Thus

G(I) = G5(1 = 8) + G"8 + v + yv (8 >0)
GI) = G% + 8(G* = G%) + ysL + yv (8> 0)

At an undercooling AT below T,,, G* — G5 = %,A—I
. LA
1.€. G(II) = GS + T_Ts + YsL + YLv

or G(II) = G(I) — Ay + %-8

where Ay = vy — YsL — TLv

This is shown in the figure below:

Note that as 8 — 0, G(II) - G(I), which means that in practice yg +
YLv — 7Ysv as a result of an interaction between the S/L and L/V
interfaces as they approach to within atomic dimensions of each
other.

The optimum liquid layer thickness (8g) will be that giving a
minimum free energy as shown. We cannot calculate this value
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without a knowledge of the above interaction. However, it is reason-
able to assume that the minimum will occur at a separation of a
few atom diameters, provided 8,4 in the above diagram is at least a
few atom diameters. 8., is defined by G(I) = G(II)

LAT

ie. GO) = G() — Ay + — Opax
T
max — LAT
AyTy,
Alternatively, AT = #nmx

If 8ax = 10 nm (say), then AT = 16 K.
It seems therefore that surface melting is theoretically possible a few
degrees below T,.

4.11 (a) Repeated surface nucleation (see Section 4.2.2, p. 198).

Suppose the edge of the cap nucleus is associated with an energy
e (J m™'). Formation of such a cap will cause a free energy
change given by

AG = —nr*hAG, + 2nre

The critical cap radius r* is given by &36—) =0
r

. . __€
ie. rt =7 G.
and

2

Te
AG* =
¢ hAG,

The rate at which caps nucleate on the surface should be

proportional to exp < _AG*)
kT



(b)
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—me?
i.e. N o< exp (hAG kT)

But, AG < AT;, the undercooling at the interface, so for small
undercoolings we have

—k l -2 -1
N o exp AT, nucleim™“s

1

where k is approximately constant.

Each time a cap is nucleated, it should grow rapidly across the
interface to advance a distance A. It seems reasonable to suppose
therefore that the growth rate will be proportional to N, i.e.

-k
vV < expﬁ

Very roughly, Equation 4.28 can be seen to be reasonable as
follows:

Firstly, it is reasonable to suppose that the distance between
successive turns of the spiral (L) will be linearly related to the
minimum radius at the centre (r*). Thus we have

L < r* o AT

Secondly, for small undercoolings, the lateral velocity of the
steps (u) should be proportional to the driving force, which in
turn is proportional to AT;

u < AT;
Thus the velocity normal to the interface v is given by

uh
= — o« AT?
v 3 o< AT;

where 4 is the step height.

4.12 Equilibrium solidification (see Figs. 4.19 and 4.20)

From Fig. 4.19 the lever rule gives the mole fraction solid (fs) at T,

as

_X-Xo_ (XsK) - Xy
Is = X " X5 (Xslk) — Xs
_ kX,

1-(1-kfs

Xs
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This expression relates the composition of the solid forming at the
interface at T, to the fraction already solidified. For the case shown in
Fig. 4.19, it will be roughly as shown below:

The temperature of the interface (7,) as a function of the fraction
solidified can be obtained using the following relationship which is
apparent from Fig. 4.19

IL-Ts _ Xo—-Xs

T,-T: Xo-— kXp

Substituting for X gives

T, - T3= fs -1
T,- T {l+k<1—fs)}

This will be a curved line roughly as shown below for the case
described for Fig. 4.19 (k ~ 0.47).
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No diffusion in solid, perfect mixing in liquid (see Fig. 4.21).
Again, we have

T,-Ts  Xo—Xs
T,-Ts Xo,- kX,

X; is now given by Equation 4.33 such that
Ty = Ts _ Xo — kXo(1 - f*7V

T, — T; Xy — kXp
T,-T; 1-k(1-f)*"
T, - Ts (1 - k)

where T; > T, > Tg. For the phase diagram in Fig. 4.21a, the
following variation is therefore obtained (k — 0.47, the exact form of
the curve depends on k, of course)

No diffusion in solid, no stirring in liquid (see Fig. 4.22)
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4.13  No diffusion in solid, complete mixing in liquid
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Diagram (a), above, is a typical phase diagram for kK > 1. (In this
case, k = 3.) The variation of composition along the bar can be
calculated using Equation 4.33

i.e. XS = kXO(l - fs)(k—l)

The result for k = 3 is shown in diagram (b). fs is proportional to
distance along the bar. Note that the final composition to solidify is
pure solvent (Xs = 0).

No diffusion in solid, no stirring in liquid.

kXo
Steady state
Xo 4
0 t
0 fs 1

4.14 During steady-state growth the concentration profile in the liquid

must be such that the rate at which solute diffuses down the concen-
tration gradient away from the interface is balanced by the rate at
which solute is rejected from the solidifying liquid, i.e.

—DCy = v(CL — Cy)

Assuming the molar volume is independent of composition, this
becomes

-DdX,. =v (& — Xo) at the interface
dx k

The concentration profile in the liquid is given by
1-k X
XL = Xo{l - —k—'exp - (D/V)}

X, _ _1_‘_") Yoexp — >
dx _XO( x ) D P (Dh)

(Xo — X0)

v
D
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4.15

Solutions to exercises

Substituting this expression into the solute equation

v X
D (Xo - Xy) = V(?O - Xo)

Since X} = Xy/k at the interface, the expressions are equivalent, and
the profile satisfies the solute balance.

700
1
o)
5
®
@ 600 -
Q
£
()
P—
500 T T T T T T T
0 5 10 15 20 25 30 35

X solute

For an Al-0.5wt% Cu alloy:

(a) Interface temperature in the steady state is given by the solidus
temperature for the composition concerned,

Interface temperature = 650.1°C

(b) Diffusion layer thickness is equivalent to the characteristic width
of the concentration profile,

(c) A planar interface is only stable if there is no zone of constitu-
tional undercooling ahead of it. Under steady-state growth, con-
sideration of the temperature and concentration profiles in the
liquid ahead of the interface gives that the critical gradient, T,
can be expressed as follows

, I —Ts where T; = liquidus temp at X,
L7 Div T3 = solidus temp at X,
(658.3 — 650.1) —1
Th ="
us 17, 6 x 10-3 Cm

=13.7K mm™!
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(d) For an Al-2 wt% Cu alloy:

Interface temperature = 620.4°C

-9
Diffusion layer thickness = %‘1‘8—_6 = 6x 10" m
Temperature gradient = L%T?‘?.‘t) =547 K mm™!

Scheil equation: X; = X,f*~!

Since it is assumed that the solidus and liquidus lines are straight, k is
constant over the solidification range, and may be calculated using
Xmax and Xg as follows

Xs .
k = - at a given temperature
XL

At the eutectic temperature, Xs = X, and X; = Xg.
_5.65

Thus, k = = 0.17
33.0
331 — Xe
3
o
®
E
3
5.65 1 'Xmax
2.0 / M
0.34 . — KXo
0 0.88 0.97

Distance along bar

The above plot may be constructed by considering the composition
of the initial solid formed (kX;), the position at which the solid has
the compositions X, and Xp., and the eutectic composition, Xg.

Initial solid formed = kX,.

= 0.17 X 2 wt% Cu
= 0.34 wt% Cu
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The volume fraction of liquid remaining, f; when the solid
deposited has a composition X is found from the Scheil equation.

X .
Thus when X5 = X; XL = ——0, and the Scheil equation becomes

k
Xo _
Xo_ ose
1
— = £(-0.83)
0.17 s

fu = 0.12, hence fs (position along bar) = 0.88

Similarly, when X5 = Xp.x = 5.65wt% Cu, the Scheil equation

becomes
5.65
200 (—0.83)
o7 - 2 XML
0.17 x 2)\08
fo= ( 5.65 )
=0.03

Hence fs (position along bar) = 0.97

From the information given, Xg = 33 wt% Cu for positions along the
bar between 0.97 and 1.
(b) From the diagram, the fraction solidifying as a eutectic, fg = 0.03.

(c) For an Al-0.5 wt% Cu alloy solidified under the same conditions,
the fraction forming as eutectic may be found from the Scheil
equation as before by putting X5 equal to X,.x:

XL = Xof%.k_l)

X,
et

Xmax —

PRE Ol

5.65

22 2 0.5 x £(-0.83)

0.17 0.5 % fe

fo = (0.17 X 0.5)”"~83
E- 5.65

= 0.006
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4.17 Cells grow in the direction of maximum temperature gradient, which

is upstream in a convection current.

4.18

Assume equilibrium conditions between ¢ and L

4.19 It can be shown that the growth rate of a lamellar eutectic v, is given
by the following equation

A

where k = proportionality constant;
D = liquid diffusivity;
AT, = interface undercooling;
A = lamellar spacing;
A* = minimum possible value of A.

v= kDATO-%<1 - L)
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(i) When the undercooling is fixed, k, D and AT, may be combined
to form a constant ¢, thus

1 A
vV = C'X'<1 —7>

Differentiating this equation with respect to A

dv_ —c 20
dv - a2 T A3

2 2 .

Differentiating a second time: %}—:—; = Xg - _6;7‘.4 ‘

*

c
Hence = =

2 e at the max. or min. growth rate.

Substituting this value into the equation of the second differential

Pv_2 6ot
A
_ 2c 3 6c\*
T8 160
—C
= 8)\.*3

Thus when A = 2A*, the growth rate is a maximum.

(i) When the growth rate is fixed, the original equation may be
rewritten as follows

a = ATO}%(l - %)

where
iz ¥
kD
a 1 A*
Thus KY—,O X - F

Differentiating with respect to A
—a dAT, 1 2"

: =-=+
AT d A
dAT, AT; (1 2x*)

dr a

A2 3
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Differentiating a second time

—a AT, dAT, 2a _ 2 6L
AT dA?

. ATy 2 F
—a PATy 2 (1 2r)_ (2 6
AT, da? AT, \M2 M)

dzAT(%*ZATO(l 2x*) AT3<2 w)

KPR VER T a \B3 A%
Substituting A = 2A*
PAT, 20Ty (1 1\ ATg( 1 6
d?  a \4? an? a \4*3 1603
d’AT, . .
Thus d)\,ZOlS positive

Hence undercooling is a minimum when A = 2A*

4.20 The total change in molar free energy when liquid transforms into
lamella o + B with a spacing A is given by Equation 4.37, i.e.

2YapVm
AG(\) = —AG(w) + —yi—
The equilibrium eutectic temperature T is defined by A = » and

G(») = 0.

We can define a metastable equilibrium eutectic temperature at
(Tg — ATg) such that at this temperature there is no change in free
energy when L — a + B with a spacing A, i.e. at Tg — ATg,
AG(L) = 0.

Also from Equation 4.38 at an undercooling of ATg

AHATE
Te

AG(») =

Finally, then, combining these equations gives

_ 2YapViTE
ATe = ="\
N -2 AH 8 -3
Substituting: Yo = 0.4 J m™°, Tg = 1000 K, v =8 X 10°] m

gives
10-°

ATe ===

ie. forA =0.2 um, ATg = 5K
=1.0um, ATg = 1K
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Note that if these eutectics grow at the optimum spacing of 2A* the
total undercooling at the interface during growth (AT,) will be given
by Equation 4.39 such that

forA = 0.2 pm, A* =0.1pm, ATy, =10K
and A = 1.0 um, A* =05um, AT;=2K
4.21

For a lamellar eutectic the total interfacial area per unit volume of
eutectic is given by: 2/A, irrespective of volume fraction of .

For the rod eutectic, considering rods of unit length, and diameter
d, the area of o/ interface per unit volume of eutectic is given by

nd  2nd
A-A32 T AA3
For the rod eutectic to have the minimum interfacial energy, then
2nd 2 . d J’

26w

d depends on the volume fraction of B, (f)

=T /W

From which f < f, = \/; 0.28.

4.22 See Sections 4.4 and 4.5.
4.23 See Section 4.5.
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Chapter 5

5.1

A - Xo)
(1 - Xe)
(a) By direct substitution into the above equation

AG, = 420.3 J mol™!

X,
AGy = RT Xolnyo + (1 - Xo)In - Q(X, — X.)?

(b) Applying the lever rule to the system at equilibrium

( 0~ e)
(Xﬂ c)
Assuming the molar volume is independent of composition, this
will also be the volume fraction.

©

Mole fraction of precipitate = = 0.08

50nm

Assuming a regular cubic array with a particle spacing of 50 nm,
the number of particles per cubic metre of alloy =

1
(50 x 107%)°
Let all the particles be of equal volume and spherical in shape

with a radius r. Then the total volume of particles in 1 m> of
alloy =

=8 x 10!

8 x 102! x i1tr3
3
Equating this with the volume fraction of precipitate

8 x 10?! x gnr3 = 0.08 m*

r = 13.4 nm.
Thus in 1 m® of alloy the total interfacial area =
8 x 10*' X 4nr® = 1.8 X 10’ m?
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(d) If yop = 200 mJ m~2
total interfacial energy = 200 X 1.8 x 10’ mJ m~2 alloy
= 3.6 x 10°J m~? alloy

=36 J mol™!

(e) The fraction remaining as interfacial energy = 4—2306—3 =9%

(f) When the precipitate spacing is 1 um;

No of particles per m* = (1x—10_g)_3

=1x10¥m3

Using the same method as in (c), the particle radius is found to

be 267 nm.
Thus in 1 m® of alloy the total interfacial area =

1 X 10™ X 41 x (2.67 x 1077)?
= 8.96 X 10° m?
Total interfacial energy = 1.8 x 10° J m~3 alloy

= 1.8 J mol™!

Fraction remaining as interfacial energy = 0.4%

5.2

Molar free energy

AGO = GO - Gf
Go = Xopg + (1 — Xo) 2
Gt = Xopg + (1 — Xo) pa
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From Equation 1.40

s = Gg + RTln X, + Q(1 — X,)?
pg = Gg + RTIn X, + Q(1 — X.)?
A = Ga + RTIn(1 — X;) + QX3
ps = Ga + RTIn(1 — X.) + QX?

Combining the above equations gives

53 @)
(b)
(©
5.4

_ Xo _ A-Xy)| _ e
AG, = RT[Xoln T (1 - Xo)In = Xe)] QX, — X.)

AG, = RTln% per mole of precipitate
€
Thus for a precipitate with Xy, = 0.1 and X, = 0.02 at 600 K:
AG, = 8.0 kJ mol™!

Assuming that the nucleus is spherical with a radius r, and ignor-
ing strain energy effects and the variation of y with interface
orientation, the total free energy change associated with nucleation
may be defined as

4
AG = —gnr3-AGV + 4nr?y
where AG, is the free energy released per unit volume. Differ-

entiation of this equation yields the critical radius r*

r* = 2Y _2YVm_

= AG.  AG. = 0.50 nm

The mean precipitate radius for a particle spacing of 50 nm was
calculated as 13.4 nm = 27 r*. For a 1 pm dispersion the
precipitate radius, 267 nm = 534 r*.

V4

4--—-—--\9¢

<
&
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From Equation 1.68
ug = Gg + RTInv,X,
pg = Gg + RTIny X,

where v, and 7. are the activity coefficients for alloy compositions X,
and X, respectively

— 0 _ e — YOXO
AG, = Ug — UB RTln—YeXe

For ideal solutions vy = v, = 1
For dilute solutions vy = y. = constant (Henry’s Law)
In both cases

X
AG, = RTlnYO

€

5.5 (a) Consider equilibrium of forces at the edge of the precipitate:

chﬁ

Yaa

YuB

For unit area of interface

Yaa = 2YapCOS O

0 = cos~ 112 _ 53 1°
2Yap

(b) The shape factor $(0) is defined as

1
S(6) = 5(2 + cos0)(1 — cos8)? = 0.208



5.6

(b)

(a)
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Using the simplified approach, above, the carbon concentration

Lo ., dC
gradient in the austenite, o ey be expressed as

G -G

L

For unit area of interface to advance a distance dx, a volume of
material 1. dx must be converted from y containing C, to o
containing C, moles of carbon per unit volume, i.e. (C, — C,)dx
moles of carbon must be rejected by diffusion through the y.
The flux of carbon through unit area in time dt is given by
D(dC/dx) dt, where D is the diffusion coefficient. Equating the
two expressions gives

dc
(C, — C)dx = D<a) de
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dx dC 1
EzD( ) € - Co

Thus using the simple concentration profile obtained earlier

95=D C, - G\ 1
de L (C, - Cy)

The width of the diffusion zone L may be found by noting that
conservation of solute requires the two shaded areas in the
diagram to be equal

(Co — Ca)x=M

2
I = 2(Co— Cy)x
(€, — Co)
Substituting for L in the rate equation
dx _ D(C, — Cy)?

dr ~ 2(Cy — Co)(Cy — Co)x

Assuming that the molar volume is constant, the concen-
trations may be replaced by mole fractions (X = CV},). Integration
of the rate equation gives the half-thickness of the boundary
slabs as

(X, — Xo) V(DY)

X= (XO — Xa)l/z(Xv — Xa)1/2

(c) The mole fractions in the above equation can be replaced ap-
proximately by weight percentages. For ferrite precipitation from
austenite in an Fe—0.15 wt% C alloy at 800 °C, we have

X, =0.32;
Xo = 0.15;
X, = 0.02;

DLE=3%x10"12m?s7!
giving x = 1.49 x 1076 ¢172,

(d) The previous derivation of x(¢) only applies for short times. At
longer times the diffusion fields of adjacent slabs begin to overlap
reducing the growth rate. The lever rule can be used to calculate
the maximum half-thickness that is approached for long times.

Assume the grains are spherical with diameter D. When the

transformation is complete the half-thickness of the ferritic slabs
(*max) is given by
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(D - meax)3
T

where f, is the volume fraction of austenite.

D
Xmax = (1 - 31’/3)—

(The same answer is obtained for any polyhedron.) Approxi-
mately, f, is given by

f = Xo — X,
"X, - X,

In the present case f, = 0.43, such that for D = 300 um;
Xmax = 36.5 pm

This value will be approached more slowly than predicted by the
parabolic equation, as shown schematically in the diagram below.

The exact variation would require a more exact solution to the
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diffusion problem. However, the approximate treatment leading
to the parabolic equation should be applicable for short times.

5.7 ,

a
B —_— U '

Consider unit area of interface perpendicular to the diagram:

Mass flow in the direction of u = u X h;
Mass flow in the direction of v = v X A.

From the conservation of mass: u X h = v X A

b= uXxXh
S
5.8 f=1-exp(—Kt"
At short times this equation becomes
f=Kt"

(a) Pearlitic nodules grow with a constant velocity, v. The volume
fraction transformed after a short time ¢ is given by

f_4n:(vt)3_ 4y’ ;3
o343 343
i.e.
4 3
K=% . n=3

(b) For short times, slabs growing in from the cube walls will give

6d?- vt 6v
55 )

i.e.
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5.9
g
2
©
g
£
(]
-
ToA
Nucleation or growth rate
Civilian transformations that are induced by an increase in tempera-
ture show increasing nucleation and growth rates with increasing
superheat above the equilibrium temperature (7). This is because
both driving force and atom mobility (diffusivity) increase with
increasing AT.
5.10 (a) G = XAGA + XBGB + QXAXB + RT(XAIHXA + XBII].XB)

Ga = Gg = 0 gives:
G = QX X + RT(XalnX, + XplnXg)
dG = QX ,dXg + QXpdX,
+ RT[dX + dXg + InXadXs + InXpdXp]

but
XA + XB = l
dXA + dXB = 0
dG
— = Q(XA — Xg) + RT(InXg — InX,)
dXg
d’G 1 1
—_ = — _— 4 —
X2 20 + RT(XB XA>
d’G RT
— = - 20
dX3 XaXg

(b) This system has a symmetrical miscibility gap with a maximum at
X4 = X = 0.5 for which
d’G
—5 = 4RT - 2Q
Xz R 2
2

It can be seen that as T increases ax2 changes from negative to
B
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positive values. The maximum of the solubility gap (T = T.)
2

corresponds to — = 0
B

. Q
ie. T, = >R

. dG . . .
(c) Equating ax. to zero in the equations gives
B

Putting Q = 2RT, gives
T  2(1 -2Xp)

T, 1 - Xg
ln( X, )

This equation can be used to plot the coordinates of the
miscibility gap as shown below:

Miscibility
gap

S~

0.5

Chemical
spinodal
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(d) The locus of the chemical spinodal is given by

¢G
dXx3

1.e.

=0

RT

~20=0
XaXp

L = 4Xy(1 - Xp)

C

This is also shown in the figure.

2 2
511 G(X, + AX) = G(X,) + gg(AX) + gXGz (A‘;()

FG (aX)?
dx? 2

+ ...

dG
G(Xo = AX) = G(Xo) + T (~AX) +

-. Total free energy of an alloy with parts of composition (X, + AX)
and (X, — AX) is given by

G(Xy + AX) G(Xo — AX) 1 d2 5
1d°G

= G(Xp) + = 5 dXZ(AX)Z

Original free energy = G(XO)

)?

Change in free energy = 2 3 X2(

5.12 Equation 5.50 gives the minimum thermodynamically possible wave-
length A, as

-2K
+m%v)

2 . —3
Ainin G
dx?

2n2E'V,, is a positive constant, while d°G/dX? varies with com-
position Xp as shown below:
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5.13
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d’G
dx2
d’G ,
+ " (Ex—z'+2112E Vm)
\\
\
0 Y T
| |'\\ 05 XB
[} | \\
\ I
Chemical |
~| spinodal
|
Coherent
spinodal
|
|
]
|
I
Aemin :
|
1
|
]
|
. T
0.5 Xa
Thus AL, = o at the coherent spinodal, but decreases as Xg

increases towards 0.5, as shown schematically above. The wavelength
that forms in practice will be determined by a combination of thermo-
dynamic and kinetic effects, but qualitatively it will vary in the same
way as Amin-

(a)

(b)

Massive transformations are classified as civilian nucleation and
growth transformations which are interface controlled. This is
because massive transformations do not involve long-range dif-
fusion, but are controlled by the rate at which atoms can cross
the parent/product interface (see also Section 5.9).

Precipitation reactions can occur at any temperature below that
marking the solubility limit, whereas massive transformations
cannot occur until lower temperatures at least lower than T,
(Fig. 5.74). Massive transformations therefore occur at lower
temperatures than precipitation reactions. However, at low tem-
peratures diffusion is slow, especially the long-range diffusion
required for precipitation. Massive transformations have the
advantage that only short-range atom jumps across the parent/
product . interface are needed. Thus it is possible for massive
transformations to achieve higher growth rates than precipitation
reactions despite the lower driving force.
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Chapter 6
6.1

For an alloy of composition X, at T > Ty, the free energy curve for a
lies above that for v, thus austenite is stable at this composition and
temperature, and the martensitic transformation is unable to occur.
At a temperature T = T, the a and o’ free energy curve coincides
with that for v, and so at this temperature and composition both the
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6.2

6.3

Solutions to exercises

martensite and austenite have equal free energy, and there is no
driving force for the martensitic transformation.

At a temperature T = M, the y free energy curve lies above that for
a, therefore y is thermodynamically unstable, and there is a driving
force for the martensitic transformation proportional to the length
AB. The significance of the M, temperature is that it is the maximum
temperature for which the driving force is sufficient to cause the
martensitic transformation. No such driving force is present at tem-
peratures above M,.

At the equilibrium temperature T, AG for the transformation is
zero, thus

AG"™ = AH"™™ — TyAS = 0
AH"“
Ty

at To, AS =

For small undercoolings AH and AS may be considered to be
independent of temperature, thus the free energy change may be
expressed in terms of the undercooling as follows:
aGre = appre Lo = M)
Ty
at the M, temperature.

The driving force for the martensitic transformation has been
shown to be proportional to the undercooling (Ty — M), where Ty is
the temperature at which austenite and martensite have the same free
energy, and M; is the temperature at which martensite starts to form.
In the Fe-C system both T, and M, fall with increasing carbon
content, with an equal and linear rate. Thus the difference (7o — M)
remains constant for different carbon contents, which means that the
driving force must remain constant.

See Section 6.3.1 (p. 398).
512 y? S\* .
3 (G (2) pm  J nucleus

-2

~AG,

_ 16yu(S/2)?

Gy

Substitution of the values given gives
AG* = 3.0 x 1078 J nucleus!

¢* =0.23 nm

AG* =

*

*

a* = 85 nm
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The habit plane of martensite is a common plane between martensite
and the phase from which it forms which is undistorted and unrotated
during transformation. Thus all directions and angular separations in
the plane are unchanged during the transformation.

The martensitic habit plane may be measured using X-ray diffrac-
tion and constructing pole figures. The figures are analysed and the
plane index may be determined by measuring the positions of diffrac-
tion spots from martensite crystals produced from austenite crystals.

The main reason for the scatter in the measurement of habit planes
is that the martensite lattice is not perfectly coherent with the parent
lattice, and so a strain is inevitably caused at the interface. This may
act to distort the habit plane somewhat. Internal stress formed during
the transformation depends on transformation conditions. Habit
plane scatter has been observed to increase when the austenite has
been strained plastically prior to transformation, indicating that prior
deformation of the austenite is an important factor.

Another reason for the scatter is that during the formation of
twinned martensite, the twin width may be varied to obtain adjacent
twin widths with very low coherency energies. Experimental studies
have shown that the lowest energy troughs are very shallow and quite
extensive, enabling the production of habit planes which may vary by
several degrees in a given alloy.

The key to the phenomenological approach to martensitic trans-
formations is to postulate an additional distortion which reduces the
elongation of the expansion axis of the austenite crystal structure to
zero. This second deformation can occur in the form of dislocation
slip or twinning as shown below:

e ", Slip
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Dislocation glide or twinning of the martensite reduces the strain of
the surrounding austenite. The transformation shear is shown as S.

Both types of shear have been observed under transmission electron
microscopy.

Assuming that a, = 3.56 A and a, = 2.86 A, and that c/a for
martensite is equal to 1.1, the movements of atoms in the ¢ and a
directions may be calculated

a, = 2.86 A SCe=315A
a,=35A& - %y =254
Vertical movement of atoms = 3.56 — 3.15 A
=041 A
Horizontal movement of atoms = 2.86 — 2.52 A
=034 A

Thus by vector addition, the maximum movement is found to be

0.53 A

See Sections 6.32 and 6.33.

The habit plane of martensite is found to change with carbon and
nickel contents in FeC and FeNi alloys respectively. This may be
explained by considering the nature and the method of formation of
the martensite which is dependent on alloy content.

In low-carbon steels the M; temperature is high and martensite
forms with a lath morphology growing along a {111} plane. Growth
occurs by the nucleation and glide of transformation dislocations.
However, as the carbon content is increased the morphology changes
to a plate structure which forms in isolation. The degree of twinning
is higher in this type of martensite. An important difference in this
process is that the M temperature is lowered with increasing alloy
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content which means that the austenite is not as uniformly or as
efficiently eliminated as with lath martensites. Plate martensite is
formed by a burst mechanism, this factor contributing to the fact that
the habit plane changes to {225}, and to {259} with even higher
carbon content.

Similar arguments may be used to explain the change in habit plane
with increasing Ni content in FeNi alloys, since Ni acts in a similar
way to C, lowering the M, temperature and influencing martensite
morphology and amount of retained austenite.

The amount of retained austenite is also influenced by the austen-
itizing temperature since this influences the amount of dissolved iron
carbide. The quenching rate is also important, an oil quench will
produce more retained austenite than a water quench.

See Section 6.4.5.

6.10 See Section 6.7.
6.11 See Section 6.7.4.
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quasi-chemical model, 18
real, 23
regular, 18, 41
solubility as a function of
temperature, 41
Solidification, 185
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ingots, 233
low-alloy steels, 249
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