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Preface to the second edition 

In the ten years since this book was first published there have been many 
new developments in the metallurgical field. Rapidly solidified metals and 
glasses have come of age; new Al-Li alloys are now used in modern 
aircraft; microalloyed (structural) and high purity (pipeline) steels have 
become more sophisticated; radically new oxide-dispersed steels have ap­
peared; a number of new memory metals have been developed; the list 
could go on. In spite of this, the underlying principles governing all of these 
developments have obviously not changed over the years. This is really the 
strength of the present text book. From the beginning we aimed to speil out 
these principles in a nice, readable way, and one in which undergraduates 
could appreciate and be capable of developing for themselves. The present 
text is thus deliberately little changed from the original. We have, however, 
hopefully corrected any errors, expanded the lists of further reading, and 
perhaps, most importantly, included a complete set of solutions to exercises. 
We hope that the revised edition continues to be enjoyed and appreciated 
in the many Schools of Metallurgy, Materials Science and Engineering 
Materials we know to be using our text throughout the world. 

In completing this revised edition we are grateful to the many people, 
students and professors alike, who have written to us over the last decade. 
Particular thanks are due to Dr Wen-Bin Li (University of Luleä) for using 
a fine tooth-comb in bringing out both obvious and less obvious errors in 
the original text. There remain, (inevitably), a few 'points of contention' 
concerning our description of certain phenomena, as raised by some of our 
correspondents, but there is nothing unhealthy about that. We should finally 
like to thank Dr John Ion (University of Lappeenranta, Finland) for his help 
in compiling the Solutions to Exercises chapter. 

David Porter and Kenneth Easterling 
September 1991 



Preface to the first edition 

This book is written as an undergraduate course in phase transformations 
for final year students specializing in metallurgy, materials science or 
engineering materials. It should also be useful for research students in­
terested in revising their knowledge of the subject. The book is based on 
lectures originally given by the authors at the University of Lulea for 
engineering students specializing in engineering materials. Surprisingly we 
found no modern treatments of this important subject in a form suitable for 
a course book, the most recent probably being P.G. Shewmon's Trans­
formations in Metals (McGraw-Hill, 1969). There have, however, been so me 
notable developments in the subject over the last decade, particularly in 
studies of interfaces between phases and interface migration, as well as the 
kinetics of precipitate growth and the stability of precipitates. There have 
also been a number of important new practical developments based on 
phase transformations, including the introduction of TRIP steels (trans­
formation induced by plastic deformation), directionally aligned eutectic 
composites, and sophisticated new structural steels with superior weid ability 
and forming properties, to mention just a few. In addition, continuous 
casting and high speed, high energy fusion welding have emerged strongly in 
re cent years as important production applications of solidification. It was the 
objective of this course to present a treatment of phase transformations in 
which these and other new developments could be explained in terms of the 
basic principles of thermodynamics and atomic mechanisms. 

The book is effectively in two parts. Chapters 1-3 contain the background 
material necessary for understanding phase transformations: thermo­
dynamics, kinetics, diffusion theory and the structure and properties of 
interfaces. Chapters 4-6 deal with specific transformations: solidification, 
diffusional transformations ill so lids and diffusionless transformations. At 
the end of the chapters on solidification, diffusion-controlled transforma­
tions and martensite, we give a few selected case studies of engineering 
alloys to illustrate some of the principles discussed earlier. In this way, we 
hope that the text will provide a useful link between theory and the practical 
reality. It should be stated that we found it necessary to give this course in 
conjunction with a number of practical laboratory exercises and worked 
examples. Sets of problems are also included at the end of each chapter of 
the book. 

In developing this course and writing the text we have had continuous 



Preface to the first edition xiii 

support and encouragement of our colleagues and students in the Depart­
ment of Engineering Materials. Particular thanks are due to Agneta Engfors 
for her patience and skill in typing the manuscript as weIl as assisting with 
the editing. 

David Porter and Kenneth Easterling 
February 1980 



1 
Thermodynamics and Phase Diagrams 

This chapter deals with some of the basic thermodynamic concepts that are 
required for a more fundamental appreciation of phase diagrams and phase 
transformations. It is assumed that the student is already acquainted with 
elementary thermodynamics and only a summary of the most important 
results as regards phase transformations will be given here. Fuller treatment 
can be found in the books listed in the bibliography at the end of this chapter. 

The main use of thermodynamics in physical metallurgy is to allow the 
prediction of whether an alloy is in equilibrium. In considering phase trans­
formations we are always concerned with changes towards equilibrium, and 
thermodynamics is therefore a very powerful too1. It should be noted, how­
ever, that the rate at wh ich equilibrium is reached cannot be determined by 
thermodynamics alone, as will become apparent in later chapters. 

1.1 Equilibrium 

It is useful to begin this chapter on thermodynamics by defining a few of the 
terms that will be frequently used. In the study of phase transformations we 
will be dealing with the changes that can occur within a given system, e.g. an 
alloy that can ex ist as a mixture of one or more phases. A phase can be 
defined as a portion of the system whose properties and composition are 
homogeneous and which is physically distinct from other parts of the system. 
The components of a given system are the different elements or chemical 
compounds which make up the system, and the composition of a phase or the 
system can be described by giving the relative amounts of each component. 

The study of phase transformations, as the name suggests, is concerned 
with how one or more phases in an alloy (the system) change into a new phase 
or mixture of phases. The reason why a transformation occurs at all is because 
the initial state of the alloy is unstable relative to the final state. But how is 
phase stability measured? The answer to this question is provided by thermo­
dynamics. For transformations that occur at constant temperature and pres­
sure the relative stability of a system is determined by its Gibbs free energy 
(G). 

The Gibbs free energy of a system is defined by the equation 

G = H - TS (1.1) 

where His the enthalpy, T the absolute temperature, and S the entropy of the 
system. Enthalpy is a measure of the he at content of the system and is given 
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by 

H = E + PV (1.2) 

where E is the internal energy of the system, P the pressure, and V the 
volume. The internal energy arises from the total kinetic and potential ener­
gi es of the atoms within the system. Kinetic energy can arise from atomic 
vibration in so lids or liquids and from translational and rotational energies for 
the atoms and molecules within a liquid or gas; whereas potential energy 
arises from the interactions, or bonds, between the atoms within the system. 
If a transformation or re action occurs the heat that is absorbed or evolved will 
depend on the change in the internal energy of the system. However it will 
also depend on changes in the volume of the system and the term PV takes 
this into account, so that at constant pressure the heat absorbed or evolved is 
given by the change in H. When dealing with condensed phases (solids and 
liquids) the PV term is usually very small in comparison to E, that is H = E. 
This approximation will be made frequently in the treatments given in this 
book. The other function that appears in the expression for Gis entropy (S) 
which is a measure of the randomness of the system. 

A system is said to be in equilibrium when it is in the most stable state, i.e. 
shows no desire to change ad infinitum. An important consequence of the 
laws of classical thermodynamics is that at constant temperature and pressure 
a closed system (i.e. one of fixed mass and composition) will be in stable 
equilibrium if it has the lowest possible value of the Gibbs free energy, or in 
mathematical terms 

dG = 0 (1.3) 

It can be seen from the definition of G, Equation 1.1, that the state with the 
highest stability will be that with the best compromise between low enthalpy 
and high entropy. Thus at low temperatures solid phases are most stable since 
they have the strongest atomic bin ding and therefore the lowest internal 
energy (enthalpy). At high temperatures however the -TS term dominates 
and phases with more freedom of atom movement, liquids and gases, become 
most stable. If pressure changes are considered it can be seen from 
Equation 1.2 that phases with sm all volumes are favoured by high pressures. 

The definition of equilibrium given by Equation 1.3 can be illustrated 
graphically as folfows. If it were possible to evaluate the free energy of a given 
system for all conceivable configurations the stable equilibrium configuration 
would be found to have the lowest free energy. This is illustrated in Fig. 1.1 
where it is imagined that the various atomic configurations can be represented 
by points along the abscissa. Configuration A would be the stable equilibrium 
state. At this point small changes in the arrangement of atoms to a first 
approximation produce no change in G, i.e. Equation 1.3 applies. However 
there will always be other configurations, e.g. B, which lie at a local minimum 
in free energy and therefore also satisfy Equation 1.3, but which do not have 
the lowest possible value of G. Such configurations are called metastable 
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Fig. 1.1 A schematic variation of Gibbs free energy with the arrangement of atoms. 
Configuration 'A' has the lowest free energy and is therefore the arrangement when 
the system is at stable equilibrium. Configuration 'B' is a metastable equilibrium. 

equilibrium states to distinguish them from the stable equilibrium state. The 
intermediate states for which dG 1= 0 are unstable and are only ever realized 
momentarily in practice. If, as the result of thermal fluctuations, the atoms 
become arranged in an intermediate state they will rapidly rearrange into one 
of the free energy minima. If by a change of temperature or pressure, for 
example, a system is moved from a stable to a metastable state it will, given 
time, transform to the new stable equilibrium state. 

Graphite and diamond at room temperature and pressure are examples of 
stable and metastable equilibrium states. Given time, therefore, aB diamond 
under these conditions will transform to graphite. 

Any transformation that results in a decrease in Gibbs free energy is 
possible. Therefore a necessary criterion for any phase transformation is 

(1.4) 

where GI and G2 are the free energies of the initial and final states respec­
tively. The transformation need not go directly to the stable equilibrium state 
but can pass through a whole series of intermediate metastable states. 

The answer to the question "How fast does a phase transformation occur?" 
is not provided by classical thermodynamics. Sometimes metastable states can 
be very short-lived; at other times they can exist alm ost indefinitely as in the 
case of diamond at room temperature and pressure. The reason for these 
differences is the presence of the free energy hump between the metastable 
and stable states in Fig. 1.1. The study of transformation rates in physical 
chemistry belongs to the realm of kinetics. In general, higher humps or energy 
barriers lead to slower transformation rates. Kinetics obviously plays a central 
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role in the study of phase transformations and many examples of kinetic 
processes will be found throughout this book. 

The different thermodynamic functions that have been mentioned in this 
section can be divided into two types called intensive and extensive prop­
erties. The intensive properties are those which are independent of the size of 
the system such as T and P, whereas the extensive properties are directly 
proportional to the quantity of material in the system, e.g. V, E, H, Sand G. 
The usual way of measuring the size of the system is by the number of moles 
of material it contains. The extensive properties are then molar quantities, 
i.e. expressed in units per mole. The number of moles of a given component 
in the system is given by the mass of the component in grams divided by its 
atomic or molecular weight. 

The number of atoms or molecules within I mol of material is given by 
Avogadro's number (Na) and is 6.023 X 1023 • 

1.2 Single Component Systems 

Let us begin by dealing with the phase changes that can be induced in a single 
component by changes in temperature at a fixed pressure, say I atm. A single 
component system could be one containing a pure element or one type of 
molecule that does not dissociate over the range of temperature of interest. In 
order to predict the phases that are stable or mixtures that are in equilibrium 
at different temperatures it is necessary to be able to calculate the variation of 
G with T. 

1.2.1 Gibbs Free Energy as a Function of Temperature 

The specific he at of most substances is easily measured and readily available. 
In general it varies with temperature as shown in Fig. I.2a. The specific he at 
is the quantity of heat (in joules) required to raise the temperature of the 
substance by one degree Kelvin. At constant pressure this is denoted by Cp 

and is given by 

C = (aH) 
p aT 

p 
(1.5) 

Therefore the variation of H with T can be obtained from a knowledge of the 
variation of Cp with T. In considering phase transformations or chemical 
reactions it is only changes in thermodynamic functions that are of interest. 
Consequently H can be measured relative to any reference level which is 
usually done by defining H = 0 for a pure element in its most stable state at 
298 K (25°C). The variation of H with T can then be calculated by integrating 
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Fig. 1.2 (a) Variation of Cp with temperature, Cp tends to a limit of ~3R. (b) 
Variation of enthalpy (H) with absolute temperature for a pure meta!. (c) Variation 
of entropy (S) with absolute temperature. 
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Equation 1.5, i.e. 

H = (T CpdT (1.6) 
)298 

The variation is shown schematically in Fig. 1.2b. The slope of the H-T 
curve is Cp. 

The variation of entropy with temperature can also be derived from the 
specific heat Cp . From classical thermodynamics 

~ = (:~t (1.7) 

Taking entropy at zero degrees Kelvin as zero, Equation 1.7 can be inte­
grated to give 

S = (TS: dT 
)0 T 

as shown in Fig. 1.2c. 

(1.8) 

Finally the variation of G with temperature shown in Fig. 1.3 is obtained 
by combining Fig. 1.2b and c using Equation 1.1. When temperature and 
pressure vary the change in Gibbs free energy can be obtained from the 
following result of classical thermodynamics: for a system of fixed mass 
and composition 

dG = -SdT + VdP (1.9) 

At constant pressure dP = 0 and 

(~~t = -s (1.10) 

This me ans that G decreases with increasing Tat a rate given by -So The 
relative positions of the free energy curves of solid and liquid phasesare 
illustrated in Fig. 1.4. At all temperatures the liquid has a higher enthalpy 
(internal energy) than the solid. Therefore at low temperatures GL > GS• 

However, the liquid phase has a higher entropy than the solid phase and the 
Gibbs free energy of the liquid therefore decreases more rapidly with increas­
ing temperature than that of the solid. For temperatures up to Tm the solid 
phase has the lowest free energy and is therefore the stable equilibrium 
phase, whereas above Tm the liquid phase is the equilibrium state of the 
system. At Tm both phases have the same value of G and both solid and liquid 
can exist in equilibrium. Tm is therefore the equilibrium melting temperature 
at the pressure concerned. 

If a pure component is heated from absolute zero the he at supplied will 
raise the enthalpy at a rate determined by Cp (solid) along the line ab in 
Fig. 1.4. Meanwhile the free energy will decrease along ae. At Tm the heat 
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H 

~------------~~--------------~T(K) 

G 

Fig. 1.3 Variation of Gibbs free energy with temperature. 

supplied to the system will not raise its temperature but will be used in 
supplying the latent heat of melting (L) that is required to eonvert solid into 
liquid (be in Fig. 1.4). Note that at Tm the specific he at appears to be infinite 
sinee the addition of heat does not appear as an inerease in temperature. 
When all solid has transformed into liquid the enthalpy of the system will 
follow the line ed while the Gibbs free energy decreases along ef. At still 
higher temperatures than shown in Fig. 1.4 the free energy of the gas phase 
(at atmospherie pressure ) beeomes lower than that of the liquid and the liquid 
transforms to agas. If the solid phase ean exist in different erystal struetures 
(allotropes or polymorphs) free energy eurves ean be eonstrueted for eaeh of 
these phases and the temperature at whieh they intersect will give the equilib­
rium temperature for the polymorphie transformation. For ex am pie at atmos­
pheric pressure iron can exist as either bee ferrite below 910 oe or fee 
austenite above 910 oe, and at 910 oe both phases ean exist in equilibrium. 

1.2.2 Pressure Effects 

The equilibrium temperatures diseussed so far only apply at a speeifie pres­
sure (1 atm, say). At other pressures the equilibrium temperatures will differ. 
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Fig. 1.4 Variation of enthalpy (H) and free energy (G) with temperature for the 
solid and liquid phases of a pure meta!. L is the latent he at of melting, Tm the 
equilibrium melting temperature. 

For example Fig. 1.5 shows the effect of pressure on the equilibrium tempera­
tures for pure iron. Increasing pressure has the effect of depressing the a/'y 
equilibrium temperature and raising the equilibrium melting temperature. At 
very high pressures hcp €-Fe becomes stable. The reason for these changes 
derives from Equation 1.9. At constant temperature the free energy of a 
phase increases with pressure such that 

(~~)T = V (1.11) 

If the two phases in equilibrium have different molar volumes their 
respective free energies will not increase by the same amount at a given 
temperature and equilibrium will, therefore, be disturbed by changes in 
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Fig. 1.5 Effect of pressure on the equilibrium phase diagram for pure iron. 

pressure. The only way to maintain .equilibrium at different pressures is by 
varying the temperature. 

If the two phases in equilibrium are a and ß, application of Equation 1.9 to 
1 mol of both gives 

dGa = V~dP - sadT 

dGß = V~dP - SßdT 

If a and ß are in equilibrium Ga. = Gß therefore dGa = dGß and 

Sß - Sex !::.S 

V~ - V~ AV 

(1.12) 

(1.13) 

This equation gives the change in temperature dT required to maintain 
equilibrium between a and ß if pressure is increased by dP. The equation can 
be simplified as folIows. From Equation 1.1 

Ga = Ha - TSa 

Gß = Hß - TSß 

Therefore, putting AG = Gß - Ga etc. gives 

AG = AH - TAS 

But since at equilibrium Gß = Ga, AG = 0, and 

AH - TAS = 0 

Consequently Equation 1.13 becomes 

(~) _ AH 
dTeq TeqAV 

(1.14) 
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which is known as the Clausius-Clapeyron equation. Since close-packed 
y-Fe has a smaller molar volume than a-Fe, ß V = VJ; - V:;', < 0 whereas 
ßH = HY - Ha > 0 (for the same reason that a liquid has a higher enthalpy 
than a solid), so that (dP/dT) is negative, Le. an increase in press ure lowers 
the equilibrium transition temperature. On the other hand the OlL equilib­
rium temperature is raised with increasing press ure due to the larger molar 
volume of the liquid phase. It can be seen that the effect of increasing 
press ure is to increase the area of the phase diagram over which the phase 
with the smallest molar volume is stable (y-Fe in Fig. 1.5). It should also be 
noted that E-Fe has the highest density of the three allotropes, consistent 
with the slopes of the phase boundaries in the Fe phase diagram. 

1.2.3 The Driving Force Jor Solidification 

In dealing with phase transformations we are often concerned with the 
difference in free energy between two phases at temperatures away from the 
equilibrium temperature . For example, if a liquid metal is undercooled by ßT 
below Tm be fore it solidifies, solidification will be accompanied by a decrease 
in free energy AG (J mol- i) as shown in Fig. 1.6. This free energy decrease 
provides the driving force for solidification. The magnitude of this change can 
be obtained as folIows. 

The free energies of the liquid and solid at a temperature T are given by 

GL = H L - TSL 

GS = H S - TSs 

Therefore at a temperature T 

AG = AH - TAS 

~ 

o 
o 
2: 

T 

(1.15) 

Temperoture 

Fig. 1.6 Difference in free energy between liquid and solid dose to the melting point. 
The curvature of the GS and GL lines has been ignored. 
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where 

llH = H L - H S and ll.S = SL - SS 

At the equilibrium melting temperature Tm the free energies of solid and 
liquid are equal, i.e. ll.G = O. Consequently 

ll.G = ll.H - T mll.S = 0 

and therefore at Tm 

ll.H L 
ll.S = - =-

Tm Tm 
(1.16) 

This is known as the entropy of fusion. It is observed experimentally that 
the entropy of fusion is a constant ==<R(8.3 J mol-1 K- 1) for most metals 
(Richard's rule). This is not unreasonable as metals with high bond strengths 
can be expected to have high values for both L and Tm. 

For small undercoolings (ll.T) the difference in the specific heats of the 
liquid and solid (C; - C~) can be ignored. ll.H and ll.S are therefore approx­
imately independent of temperature. Combining Equations 1.15 and 1.16 
thus gives 

L 
ll.G = L - T­

Tm 

i.e. for smallll.T 

Lll.T 
ll.G =­

Tm 
(1.17) 

This is a very useful result which will frequently recur in subsequent chapters. 

1.3 Binary Solutions 

In single component systems all phases have the same composition, and 
equilibrium simply involves pressure and temperature as variables. In alloys, 
however, composition is also variable and to understand phase changes in 
alloys requires an appreciation of how the Gibbs free energy of a given phase 
depends on composition as well as temperature and pressure. Since the phase 
transformations described in this book mainly occur at a fixed pressure of 
1 atm most attention will be given to changes in composition and tempera­
ture. In order to introduce some of the basic concepts of the thermodynamics 
of alloys a simple physical model for binary solid solutions will be described. 

1.3.1 The Gibbs Free Energy o[ Binary Solutions 

The Gibbs free energy of a binary solution of A and B atoms can be 
calculated from the free energies of pure A and pure B in the following way. 
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It is assumed that A and B have the same crystal structures in their pure states 
and can be mixed in any proportions to make a solid solution with the same 
crystal structure. Imagine that 1 mol of homogeneous solid solution is made 
by mixing together XA mol of A and X B mol of B. Since there is a total of 
1 mol of solution 

(1.18) 

and X A and X B are the mole fractions of A and B respectively in the alloy. In 
order to calculate the free energy of the alloy, the mixing can be made in two 
steps (see Fig. 1.7). These are: 

1. bring together XA mol of pure A and XB mol of pure B; 
2. allow the A and B atoms to mix together to make a homogeneous solid 

solution. 

After step 1 the free energy of the system is given by 

GI = XAGA + XBGB J mol- I (1.19) 

where GA and GB are the molar free energies of pure A and pure B at the 
temperature and pressure of the above experiment. GI can be most conve­
niently represented on a molar free energy diagram (Fig. 1.8) in which molar 
free energy is plotted as a function of X B or X A • For all alloy compositions GI 
lies on the straight line between GA and GB. 

The free energy of the system will not remain constant during the mixing of 
the A and B atoms and after step 2 the free energy of the solid solution G2 can 

\. 

Before mixing 

XA molA 

F.E'XA GA 
y 

Total free energy= 

G1 =XAGA+XBGB 

MIX 

I 

After mixing 

1 mol solid 
solution 

, ) ----..... y------
Tota l free energy = 

G2 = G1 + flGmix 
Fig. 1.7 Free energy of mixing. 
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Fig. 1.8 Variation of GI (the free energy before mixing) with alloy composition (XA 

or XB). 

be expressed as 

G2 = Gi + LlGmix (1.20) 

where LlGmix is the change in Gibbs free energy caused by the mixing. 

Since 

and 

G2 = H 2 - TS2 

putting 

and 

gives 

LlGmix = LlHmix - TLlSmix (1.21 ) 

LlHmix is the heat absorbed or evolved during step 2, i.e. it is the heat of 
solution, and ignoring volume changes during the process, it represents 
only the difference in internal energy (E) before and after mixing. LlSmix is the 
difference in entropy between the mixed and unmixed states. 

1.3.2 Ideal Solutions 

The simplest type of mixing to treat first is when LlHmix = 0, in which case the 
resultant solution is said to be ideal and the free energy change on mixing is 
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only due to the change in entropy: 

ßGmix = - TßSmix (1.22) 

In statistical thermodynamics, entropy is quantitatively related to random­
ness by the Boltzmann equation, i.e. 

S = k In w (1.23) 

where k is Boltzmann's constant and w is a measure of randomness. There are 
two contributions to the entropy of asolid solution-a thermal contribution 
Sth and a configurational contribution Sconfig' 

In the case of thermal entropy, w is the number of ways in which the 
thermal energy of the solid can be divided among the atoms, that is, the total 
number of ways in which vibrations can be set up in the solid. In solutions, 
additional randomness exists due to the different ways in which the atoms can 
be arranged. This gives extra entropy Sconfig for which w is the number of 
distinguishable ways of arranging the atoms in the solution. 

If there is no volume change or he at change during mixing then the only 
contribution to ßSmix is the change in configurational entropy. Before mixing, 
the A and B atoms are held separately in the system and there is only one 
distinguishable way in which the atoms can be arranged. Consequently 
SI = kin 1 = 0 and therefore ßSmix = S2. 

Assuming that A .and B mix to form a substitution al solid solution and that 
all configurations of A and B atoms are equally probable, the number of 
distinguishable ways of arranging the atoms on the atom sites is 

(NA + NB)! 
Wconfig = " NA·NB· 

(1.24) 

where NA is the number of A atoms and NB the number of B atoms. 
Since we are dealing with 1 mol of solution, Le. Na atoms (Avogadro's 

number), 

and 

NB = XBNa 

By substituting into Equations 1.23 and 1.24, using Stirling's approxima­
tion (In N! = N In - N) and the relationship Nak = R (the universal gas 
constant) gives 

(1.25) 

Note that, since X A and X B are less than unity, ßSmix is positive, i.e. there is 
an increase in entropy on mixing, as expected. The free energy of mixing, 
ßGmix , is obtained from Equation 1.22 as 

ßGmix = RT(XA In X A + X B In X B) (1.26) 

Figure 1.9 shows ßGmix as a function of composition and temperature. 
The actual free energy of the solution G will also depend on GA and GB . 

From Equations 1.19, 1.20 and 1.26 
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XB -
O~------------------~ 

A B 
Fig. 1.9 Free energy of mixing for an ideal solution. 

(1.27) 

This is shown schematically in Fig. 1.10. Note that, as the temperature 
increases, GA and GB decrease and the free energy curves assume a greater 
curvature. The decrease in GA and GB is due to the thermal entropy of both 
components and is given by Equation 1.10. 

It should be noted that all of the free energy-composition diagrams in this 
book are essentially schematic; if properly plotted the free energy curves 
must end asymptotically at the vertical axes of the pure components, 
i.e. tangential to the vertical axes of the diagrams. This can be shown by 
differentiating Equation 1.26 or 1.27. 

Molar 
free energy 

o Xa -
Fig. 1.10 The molar free energy (free energy per mole of solution) for an ideal solid 
solution. A combination of Figs. 1.8 and 1.9. 
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1.3.3 Chemical Potential 

In alloys it is of interest to know how the free energy of a given phase will 
change when atoms are added or removed. If a small quantity of A, dnA mol, 
is added to a large amount of a phase at constant temperature and pressure, 
the size of the system will increase by dnA and therefore the total free energy 
of the system will also increase by a small amount dG'. If dnA is sm all enough 
dG' will be proportional to the amount of A added. Thus we can write 

dG' = /-LAdnA (T, P, nB constant) (1.28) 

The proportionality constant /-LA is called the partial molar Iree energy of A or 
alternatively the chemical potential of A in the phase. /-LA depends on the 
composition of the phase, and therefore dnA must be so small that the 
composition is not significantly altered. If Equation 1.28 is rewritten it can be 
seen that adefinition of the chemical potential of A is 

(aG') /-LA = -
iJnA T,P,nB 

(1.29) 

The symbol G' has been used for the Gibbs free energy to emphasize the fact 
that it refers to the whole system. The usual symbol G will be used to denote 
the molar free energy and is therefore independent of the size of the system. 

Equations similar to 1.28 and 1.29 can be written for the other components 
in the solution. For a binary solution at constant temperature and pressure 
the separate contributions can be summed: 

dG' = /-LAdnA + /-LBdnB (1.30) 

This equation can be extended by adding further terms for solutions contain­
ing more than two components. If T and P changes are also allowed 
Equation 1.9 must be added giving the general equation 

dG' = -SdT + VdP + /-LAdnA + /-LBdnB + /-Lcdnc + ... 

If 1 mol of the original phase contained X A mol A and X B mol B, the size of 
the system can be increased without alte ring its composition if A and Bare 
added in the correct proportions, i.e. such that dnA:dnB = XA:XB • For 
example if the phase contains twice as many A as B atoms 
(XA = 2/3, XB = 1/3) the composition can be maintained constant by 
adding two A atoms for every one B atom (dnA:dnB = 2). In this way the 
size of the system can be increased by 1 mol without changing /-LA and /-LB' To 
do this X A mol A and XB mol B must be added and the free energy of the 
system will increase by the molar free energy G. Therefore from 
Equation 1.30 

(1.31) 

When Gis known as a function of X A and XB , as in Fig. 1.10 for example, 
/-LA and /-LB can be obtained by extrapolating the tangent to the G curve to the 
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Molor 
free energy 

~B 

A Xe B 

Fig. 1.11 The relationship between the free energy CUfve for a solution and the 
chemical potentials of the components. 

sides of the molar free energy diagram as shown in Fig. 1.11. This can be 
obtained from Equations 1.30 and 1.31, remembering that X A + X B = 1, i.e. 
dXA = -dXB , and this is left as an exercise for the reader. It is clear from 
Fig. 1.11 that IlA and IlB vary systematically with the composition of the 
phase. 

Comparison of Equations 1.27 and 1.31 gives f-lA and f-lB for an ideal 
solution as 

f-lA = GA + RT In X A 

f-lB = G B + RT In X B 
(1.32) 

which is a much simpler way of presenting Equation 1.27. These relationships 
are shown in Fig. 1.12. The distances ac and bd are simply -RT In X A and 
-RTln XB' 

b G9 

-RTlnXA 
-RT In X B 

IJ.A C d 

A XB~ B 

Fig. 1.12 The relationship between the free energy CUfve and chemical potentials for 
an ideal solution. 
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1.3.4 Regular Solutions 

Returning to the model of a solid solution, so far it has been assumed that 
aHmix = 0; however, this type of behaviour is exceptional in practice and 
usually mixing is endothermic (heat absorbed) or exotherrnie (heat evolved). 
The simple model used for an ideal solution can, however, be extended to 
include the aHmix term by using the so-called quasi-chemical approach. 

In the quasi-chemical model it is assumed that the heat of mixing, aHmix, is 
only due to the bond energies between adjacent atoms. For this assumption to 
be valid it is necessary that the volumes of pure A and Bare equal and do not 
change during mixing so that the interatomic distances and bond energies are 
independent of composition. 

The structure of a binary solid solution is shown schematically in Fig. 1.13. 
Three types of interatomic bonds are present: 

1. A-A bonds each with an energy EAA, 

2. B-B bonds each with an energy EBB, 

3. A-B bonds each with an energy EAB. 

By considering zero energy to be the state where the atoms are separated to 
infinity E AA, EBB and E AB are negative quantities, and become increasingly 
more negative as the bonds become stronger. The internal energy of the 
solution E will depend on the number of bonds of each type P AA, PBB and 
P AB such that 

E = PAAEAA + PBBEBB + PABEAB 

Before mixing pure A and B contain only A-A and B-B bonds respec­
tively and by considering the relationships between P AA, P BB and P AB in the 
solution it can be shown1 that the change in internal energy on mixing is given 

Fig. 1.13 The different types of interatomic bond in a solid solution. 



by 

aHmix = PABE 

where 

E = EAB - !(EAA + EBB) 
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(1.33) 

(1.34) 

that is, Eis the difference between the A-B bond energy and the average of 
the A-A and B-B bond energies. 

If E = 0, aHmix = 0 and the solution is ideal, as considered in 
Section 1.3.2. In this case the atoms are completely randomly arranged and 
the entropy of mixing is given by Equation 1.25. In such a solution it can also 
be shown! that 

(1.35) 

where Na is Avogadro's number, and Z is the number of bonds per atom. 
If E < 0 the atoms in the solution will prefer to be surrounded by atoms of 

the opposite type and this will increase P AB, whereas, if E > 0, P AB will tend 
to be less than in a random solution. However, provided E is not too different 
from zero, Equation 1.35 is still a good approximation in which case 

aHmix = OXAXB 

where 

o = NazE 

(1.36) 

(1.37) 

Real solutions that closely obey Equation 1.36 are known as regular solu­
tions. The variation of aHmix with composition is parabolic and is shown in 
Fig. 1.14 for 0 > O. Note that the tangents at X A = 0 and 1 are related to 0 
as shown. 

t:..Hmix 
per mol 

A 

"­
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"­ " / 
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Fig. 1.14 The variation of ~Hmix with composition for a regular solution. 
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The free energy change on mixing a regular solution is given by 
Equations 1.21, 1.25 and 1.36 as 

aGmix = nxAXS + RT(XA In XA + X s In Xs ) (1.38) 
, . \ . 

This is shown in Fig. 1.15 for different values of n and temperature. For 
exothermic solutions aHmix< 0 and mixing results in a free energy decrease 
at all temperatures (Fig. 1.15a and b). When aHmix> 0, however, the situa­
tion is more complicated. At high temperatures TaSmix is greater than aHmix 
for all compositions and the free energy curve has a positive curvature at 
all points (Fig. 1.15c). At low temperatures, on the other hand, TaSmix is 
smaller and aGmix develops a negative curvature in the middle (Fig. 1.15d). 

Differentiating Equation 1.25 shows that, as X A or Xs ~ 0, the -TaSmix 
curve becomes vertical whereas the slope of the aHmix curve tends to a finite 

+ XB ~ 
O~--------------~ 

+ XB~ 
Or---------------~ 

t.G mix 

A t.Gmix B A B 

(a) n< 0, high T (b) n< Q,low T 

6Hmix 

+ + 

o~--------------~ OIf-----.I''-----~-___tI 

-T t. Smix 

A B A 8 

(e) n> 0, high T (d),I n > 0 low T 
Fig. 1.15 The effect of tJ.Hmix and Ton tJ.Gmix ' 
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value 0 (Fig. 1.14). This me ans that, except at absolute zero, dGmix always 
decreases on addition of a small amount of solute. 

The actual free energy of the alloy depends on the values chosen for GA 
and GB and is given by Equations 1.19, 1.20 and 1.38 as 

G = XAGA + XBGB + OX"XB + RT(XA In X A + X B In X B) (1.39) 

This is shown in Fig. 1.16 along with the chemical potentials of A and Bin the 
solution. Using the relationship XAXB = X;"XB + X~XA and comparing 
Equations 1.31 and 1.39 shows that for a regular solution 

J-LA = GA + 0(1 - X A )2 + RT In X A 

and (1.40) 

1.3.5 Activity 

Expression 1.32 for the chemical potential of an ideal alloy was simple and it 
is convenient to retain a similar expression for any solution. This can be done 
by defining the activity of a component, a, such that the distances ac and bd in 
Fig. 1.16 are -RT In aA and -RTln aB' In this case 

J-LA = GA + RT In aA 

and (1.41) 

J-LB = GB + RT In aB 

-RTlnG B 

!:::.Gmix 

IlB 

IlA C 

o 
xB ____ 

Fig. 1.16 The relationship between molar free energy and activity. 
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In general aA and aB will be different from X A and X B and the relationship 
between them will vary with the composition of the solution. For a regular 
solution , comparison of Equations 1.40 and 1.41 gives 

In (~:) = ~T (1 - XA)2 

and (1.42) 

( aB) n 2 In -. = - (1 - XB ) 
X B RT 

Assuming pure A and pure B have the same crystal structure, the rela­
tionship between a and X for any solution can be represented graphically 
as illustrated in Fig. 1.17. Line 1 represents an ideal solution for which 
aA = X A and aB = X B • If I1Hmix < 0 the activity of the components in 
solution will be less in an ideal solution (line 2) and vice versa when I1Hmix 

> 0 (line 3). 
The ratio (aAl X A) is usually referred to as 'Y A, the activity coefficient of A, 

that is 

'YA = aAIXA (1.43) 

For a dilute solution of B in A, Equation 1.42 can be simplified by letting 
X B - 0 in which case 

and 

0 

(0) 

aB 
'YB = X

B 
= constant (Henry's law) 

aA 
'YA = - = 1 (Raoult's law) 

X A 

----- Henry's law 

0 XB~ 
A 

0 
1 
B 

(1.44) 

(1.45) 

0 
1 +-XA 0 
A 8 

(b) 
Fig. 1.17 The variation of activity with composition (a) aB (b) aA' Line 1: ideal 
solution (Raoult's law). Line 2: tJ.Hmix < O. Line 3: tJ.Hmix > O. 
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Equation 1.44 is known as Henry's law and 1.45 as Raoult's law; they apply to 
all solutions when sufficiently dilute. 

Since activity is simply related to chemical potential via Equation 1.41 the 
activity of a component is just another means of describing the state of the 
component in a solution. No extra information is supplied and its use is simply 
a matter of convenience as it often leads to simpler mathematics. 

Activity and chemical potential are simply a measure of the tendency of an 
atom to leave a solution. If the activity or chemical potential is low the atoms 
are reluctant to leave the solution which means, for example, that the vapour 
pressure of the component in equilibrium with the solution will be relatively 
low. It will also be apparent later that the activity or chemical potential of a 
component is important when several condensed phases are in equilibrium. 

1.3.6 Real Solutions 

While the previous model provides a useful description of the effects of 
configurational entropy and interatomic bonding on the free energy of binary 
solutions its practical use is rather limited. For many systems the model is an 
oversimplification of reality and does not predict the correct dependence of 
.lGmix on composition and temperature. 

As al ready indicated, in alloys where the enthalpy of mixing is not zero 
(E and n 1= 0) the assumption that a random arrangement of atoms is the 
equilibrium, or most stable arrangement is not true, and the calculated value 
for .lGmix will not give the minimum free energy. The actual arrangement of 
atoms will be a compromise that gives the lowest internal energy consistent 
with sufficient entropy, or randomness, to achieve the minimum free energy. 
In systems with E < 0 the intern al energy of the system is reduced by increas­
ing the number of A-B bonds, i.e . by ordering the atoms as shown in 
Fig. 1.18a. If E > 0 the internal energy can be reduced by increasing the 
number of A-A and B-B bonds, i.e. by the clustering of the atoms into 
A-rich and B-rich groups, Fig. 1.18b. However, the degree of ordering or 

,... 
I,.})!,. h.) --V""t IC ... '{ 

X - -IIJ! - I 

(a) (b) (c) 

Fig. 1.18 Schematic representation of solid solutions: (a) ordered substitution al , 
(b) clustering, (c) random interstitial. 
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dustering will decrease as temperature increases due to the increasing impor­
tance of entropy. 

In systems where there is a size difference between the atoms the quasi­
chemical model will underestimate the change in internal energy on mixing 
since no account is taken of the elastic strain fields which introduce astrain 
energy term into il.Hmix ' When the size difference is large this effect can 
dominate over the chemical term. 

When the size difference between the atoms is very large then interstitial 
solid solutions are energetically most favourable, Fig. 1. 18c. New mathemati­
cal models are needed to describe these solutions. 

In systems where there is strong chemical bonding between the atoms there 
is a tendency for the formation of intermetallic phases. These are distinct 
from solutions based on the pure components since they have a different 
crystal structure and mayaiso be highly ordered. Intermediate phases and 
ordered phases are discussed further in the next two sections. 

1.3.7 Ordered Phases 

If the atoms in a substitution al solid solution are completely randomly 
arranged each atom position is equivalent and the prob ability that any given 
site in the lattice will contain an A atom will be equal to the fraction of A 
atoms in the solution X A , similarly X B for the B atoms. In such solutions P AB, 
the number of A-B bonds, is given by Equation 1.35. If n < 0 and the 
number of A-B bonds is greater than this, the solution is said to contain 
short-range order (SRO). The degree of ordering can be quantified by de­
fining a SRO parameter s such that 

P AB - P AB(random) s = ----'-=----=...::::....:...----'--
P AB(max) - P AB(random) 

where P AB(max) and P AB (random) refer to the maximum number of bonds 
possible and the number of bonds for a random solution, respectively. 
Figure 1.19 illustrates the difference between random and short-range 
ordered solutions. 

In solutions with compositions that are dose to a simple ratio of A : B atoms 
another type of order can be found as shown schematically in Fig. 1.18a. This 
is known as long-range order. Now the atom sites are no longer equivalent 
but can be labelIed as A-sites and B-sites. Such a solution can be considered 
to be a different (ordered) phase separate from the random or nearly random 
solution. 

Consider Cu-Au alloys as a specific example. Cu and Au are both fee and 
totally miscible. At high temperatures Cu or Au atoms can occupy any site 
and the lattice can be considered as fee with a 'random' atom at each lattice 
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Fig. 1.19 (a) Random A-B solution with a total of 100 atoms and X A = X B = 0.5, 
P AB - 100, S = O. (b) Same alloy with short-range order P AB = 132, 
P AB(max) - 200, S = (132 - 100)/(200 - 100) = 0.32. 

point as shown in Fig. 1.20a. At low temperatures, however, solutions with 
XCu = X Au = 0.5, i.e. aSO/50 Cu/Au mixture, form an ordered structure in 
which the Cu and Au atoms are arranged in alternate layers, Fig. 1.20b. Each 
atom position is no longer equivalent and the lattice is described as a Cu Au 
superlattice. In alloys with the composition CU3Au another superlattice is 
found, Fig. 1.20c. 

The entropy of mixing of structures with long-range order is extremely 
sm all and with increasing temperature the degree of order decreases until 
above some critical temperature there is no long-range order at all. This 
temperature is a maximum when the composition is the ideal required for the 
superlattice. However, long-range order can still be obtained when the com­
position deviates from the ideal if so me of the atom sites are left vacant or if 
some atoms sit on wrong sites. In such cases it can be easier to disrupt the 
order with increasing temperature and the critical temperature is lower, see 
Fig. 1.21. 

The most common ordered lattices in other systems are summarized in 
Fig. 1.22 along with their Structurbericht notation and examples of alloys in 
which they are found. Finally, note that the critical temperature for loss of 
long-range order increases with increasing n, or tlHmix , and in many systems 
the ordered phase is stable up to the melting point. 

(0) (b)g(C)~ 
.Cu OAu @Cu or Au 

Fig. 1.20 Ordered substitution al struetures in the Cu-Au system: (a) high-tempera­
ture disordered structure, (b) CuAu superlattice, (e) CU,Au superlattice. 
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Fig. 1.21 Part of the Cu-Au phase diagram showing the regions where the CU3Au 
and CuAu superlaUiees are stable. 

(0) (b) (c) 

.Cu OZn .Cu OAu .CuOAu 

(d) (e) 

Fig. 1.22 The five eommon ordered laUiees, examples of whieh are: (a) L2o: CuZn, 
FeCo, NiAl, FeAl, AgMg; (b) Ll2 : CU3Au, AU3CU, Ni3Mn, Ni3Fe, Ni3Al, Pt3Fe; 
(e) Llo:CuAu, COPt, FePt; (d) 003:Fe3Al, Fe3Si, Fe3Be, CU3Al; (e) 0019 : Mg3Cd, 
Cd,Mg, Ti,AI, Ni3Sn. (After ·R.E. SmalIman, Modern Physical Metallurgy, 3rd 
edition, Butterworths, London , 1970.) 

1.3.8 Intermediate Phases 

Often the configuration of atoms that has the minimum free energy after 
mixing does not have the same crystal structure as either of the pure compo­
nents. In such cases the new structure is known as an intermediate phase. 
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Intermediate phases are often based on an ideal atom ratio that results in a 
minimum Gibbs free energy. For compositions that deviate from the ideal, 
the free energy is higher giving a characteristic 'U' shape to the G curve, as in 
Fig. 1.23. The range of compositions over which the free energy curve has a 
meaningful existence depends on the structure of the phase and the type of 
interatomic bonding-metallic, covalent or ionic. When sm all composition 
deviations cause a rapid rise in G the phase is referred to as an intermetallic 
compound and is usually stoichiometric, i.e. has a formula AmBn where m 
and n are integers, Fig. 1.23a. In other structures fluctuations in composition 
can be tolerated by some atoms occupying 'wrong' positions or by atom sites 
being left vacant, and in these cases the curvature of the G curve is much less, 
Fig. 1.23b. 

Some intermediate phases can undergo order-disorder transformations in 
which an almost random arrangement of the atoms is stable at high tempera­
tures and an ordered structure is stable below some critical temperature. Such 
a transformation occurs in the ß phase in the Cu-Zn system for example (see 
Section 5.10). 

The structure of intermediate phases is determined by three main factors: 
relative atomic size, valency and electronegativity. When the component 
atoms differ in size by a factor of about 1.1-1.6 it is possible for the atoms to 
fill space most efficiently if the atoms order themselves into one of the 
so-called Laves phases based on MgCU2, MgZn2 and MgNi2, Fig 1.24. 
Another example where atomic size determines the structure is in the forma­
tion of the interstitial compounds MX, M2X, MX2 and M6X where M can be 
Zr, Ti, V, Cr, etc. and X can be H, B, C and N. In this case the M atoms form 
a cubic or hexagonal close-packed arrangement and the X atoms are sm all 
enough to fit into the interstices between them. 

G 

A 
(a) Ideal 

composition 

8 

G 

A 
(b) 

8 

Fig. 1.23 Free energy curves for intermediate phases: (a) for an intermetallic com­
pound with a very narrow stability range, (b) for an intermediate phase with a wide 
stability range. 
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Mg o Cu 

Fig. 1.24 The structure of MgCU2 (A Laves phase). (From J.H. Wernick, chapter 5 
in Physical Metallurgy, 2nd edn., R. W. Cahn (Ed.) North Holland, 1974.) 

The relative valency of the atoms becomes important in the so-called 
electron phases, e.g. <X and ß brasses. The free energy of these phases depends 
on the number of valency electrons per unit cell, and this varies with composi­
tion due to the valency difference. 

The electronegativity of an atom is a measure of how strongly it attracts 
electrons and in systems where the two components have very different 
electronegativities ionic bonds can be formed producing normal valency 
compounds, e.g. Mg2+ and Sn4 - are ionically bonded in Mg2Sn.2 

1.4 Equilibrium in Heterogeneous Systems 

It is usually the case that A and B do not have the same crystal structure in 
their pure states at a given temperature. In such cases two free energy curves 
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must be drawn, one for eaeh strueture. The stable forms of pure A and B at a 
given temperature (and pressure) ean be denoted as a and ß respeetively. For 
the sake of illustration let a be fee and ß bee. The molar free energies of fee A 
and bee Bare shown in Fig. 1.25a as points a and b. The first step in drawing 
the free energy eurve of the fee a phase is, therefore, to eonvert the stable bee 
arrangement of B atoms into an unstable fee arrangement. This requires an 
inerease in free energy, be. The free energy eurve for the a phase ean now be 
eonstrueted as before by mixing fee A and fce B as shown in the figure. 
-LlGmix for (X of eomposition Xis given by the distanee de as usual. 

A similar proeedure produces the molar free energy eurve for the ß phase, 
Fig. 1.25b. The distanee af is now the differenee in free energy between bee A 
and fee A. 

It is clear from Fig. 1.25b that A-rieh alloys will have the lowest free energy 
as a homogeneous (X phase and B-rieh alloys as ß phase. For alloys with 

G c 

o b 

(0 ) x 

G 

f c 

a b 

( b) 
Fig. 1.25 (a) The molar free energy curve for the (X phase. (b) Molar free energy 
curves for (X and ß phases. 
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composItlOns near the cross-over in the G curves the situation is not so 
straightforward. In this case it can be shown that the total free energy can be 
minimized by the atoms separating into two phases. 

It is first necessary to consider a general property of molar free energy 
diagrams when phase mixtures are present. Suppose an alloy consists of two 
phases a and ß each of which has a molar free energy given by Ga and Gß, 
Fig. 1.26. If the overall composition of the phase mixture is x~ the lever rule 
gives the relative number of moles of a and ß that must be present, and the 
molar free energy of the phase mixt ure G is given by the point on the straight 
line between a and ß as shown in the figure. This result can be proven most 
readily using the geometry of Fig. 1.26. The lengths ad and cf respectively 
represent the molar free energies of the a and ß phases present in the alloy. 
Point g is obtained by the intersection of be and dc so that bcg and acd, as well 
as deg and dfc, form similar triangles. Therefore bg/ad = bc/ac and 
ge/cf = ab/ac. According to the lever rule 1 mol of alloy will contain bc/ac 
mol of a and ab/ac mol of ß. It follows that bg and ge represent the separate 
contributions from the a and ß phases to the total free energy of 1 mol of 
alloy. Therefore the length 'be' represents the molar free energy of. the phase 
mixture. 

Consider now alloy XO in Fig. 1.27a. If the atoms are arranged as a 
homogeneous phase, the free energy will be lowest as a, i.e. Gö per mole. 
However, from the above it is clear that the system can lower its free energy if 
the atoms separate into two phases with compositions al and ßl for example. 
The free energy of the system will then be reduced to G l . Further reductions 
in free energy can be achieved if the A and B atoms interchange between the 
a and ß phases until the compositions a e and ße are reached, Fig. l.27b. The 
free energy of the system Ge is now a minimum and there is no desire for 
further change. Consequently the system is in equilibrium and a e and ße are 
the equilibrium compositions of the a and ß phases. 

This result is quite general and applies to any alloy with an overall composi­
tion between -ae and ße: only the relative amounts of the two phases change, 

Molar free 
energy 

Gla+ ß)--* 

A 

I 

a : 
d ............. ~g 

I I ...... 

0 1 'b ...... 

x~ X~ 

ß 

... -. c 

B 
Fig. 1.26 The molar free energy of a two-phase mixture (0: + ß). 
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as given by the lever rule. When the alloy composition lies outside this range, 
however, the minimum free energy lies on the Ga or Gß curves and the 
equilibrium state of the alloy is a homogeneous single phase. 

From Fig. 1.27 it can be seen that equilibrium between two phases requires 
that the tangents to each G curve at the equilibrium compositions lie on a 
common line. In other words each component must have the same chemical 
potential in the two phases, i.e. for heterogeneous equilibrium: 

(1.46) 

The condition for equilibrium in a heterogeneous system containing 

(0) A B 

(b) A u e XO ße B 

Fig. 1.27 (a) Alloy XO has a free energy GI as a mixture of <XI + ßI' (b) At 
-equilibrium, alloy XO has a minimum free energy Ge when it is a mixture of <Xe + ße. 
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two phases can also be expressed using the activity concept defined for 
hOlllogeneous systems in Fig. 1.16. In heterogeneous systems containing 
more than one phase the pure components can, at least theoretically, exist 
in different crystal structures. The most stable state, with the lowest free 
energy, is usually defined as the state in which the pure component has unit 
activity. In the present example this would correspond to defining the 
activity of A in pure a - A as unity, i.e. when X A = 1, a~ = 1. Similarly 
when XB = 1, a~ = 1. This definition of activity is shown graphically in 
Fig. 1.28a; Fig. 1.28b and c show how the activities of Band A vary with 
the composition of the a and ß phases. Between A and ae, and ße and B, 
where single phases are stable, the activities (or chemical potentials) vary 
and for simplicity ideal solutions have been assumed in which case there is a 
straight line relationship between a and X. Between ae and ße the phase 
compositions in equilibrium do not change and the activities are equal and 
given by points q and r. In other words, when two phases exist in equilib­
rium, the activities of the components in the system must be equal in the 
two phases, i.e. 

(a) 

(b) 

(c) 

a u - aß B - B 

- RTlnoA { G" 

........ ~::..---...-..,.... 

°A t 

A a Pe B t 1 r---'-------''---.,.. S 

0 

r 

0 
0 XB -

(1.47) 

Fig. 1.28 The variation of a A and aB with composition for a binary system containing 
two ideal solutions, Cl ahd ß. 
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1.5 Binary Phase Diagrams 

In the previous section it has been shown how the equilibrium state of an alloy 
can be obtained from the free energy curves at a given temperature. The next 
step is to see how equilibrium is affected by temperature. 

1.5.1 A Simple Phase Diagram 

The simplest ca se to start with is when A and Bare completely miscible in 
both the solid and liquid states and both are ideal solutions. The free energy 
of pure A and pure B will vary with temperature as shown schematically in 
Fig. 1.4. The equilibrium melting temperatures of the pure components occur 
when GS = GL , i.e. at Tm(A) and Tm(B). The free energy of both phases 
decreases as temperature increases. These variations are important for A-B 
alloys also since they determine the relative positions of G1, GÄ, G~ and Gä 
on the molar free energy diagrams of the alloy at different temperatures, 
Fig. 1.29. 

At a high temperature Tl > T m(A) > T m(B) the liquid will be the stable 
phase for pure A and pure B, and for the simple case we are considering the 
liquid also has a lower free energy than the solid at all the intermediate 
compositions as shown in Fig. 1.29a. 

Decreasing the temperature will have two effects: firstly GÄ and Gä will 
increase more rapidly than G1 and G~, secondly the curvature of the G 
curves will be reduced due to the sm aller contribution of - T6.Smix to the free 
energy. 

At Tm(A), Fig. 1.29b, G1 = GÄ, and this corresponds to point a on the 
A-B phase diagram, Fig. 1.29f. At a lower temperature T2 the free energy 
curves cross, Fig. 1.29c, and the common tangent construction indicates 
that alloys between A and b are solid at equilibrium, between c and B they 
are liquid, and between band c equilibrium consists of a two-phase mixture 
(S + L) with compositions band c. These points are plotted on the equilib­
rium phase dia gram at T2 . 

Between T2 and T m(B) GL continues to rise faster than GS so that points b 
and c in Fig. 1.29c will both move to the right tracing out the solidus and 
liquidus lines in the phase diagram. Eventually at T m(B) band c will meet at a 
single point, d in Fig. 1. 29f. Below T m(B) the free energy of the solid phase is 
everywhere below that of the liquid and all alloys are stable as a single phase 
solid. 

1.5.2 Systems with a Miscibility Gap 

Figure 1.30 shows the free energy curves for a system in which the liquid 
phase is approximately ideal, but for the solid phase 6.Hmix > 0, i.e. the A 
and B atoms 'dislike' each other. Therefore at low temperatures (T3) the free 
energy curve for the solid assumes a negative curvature in the middle, 
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liquid 

solid 

liquid 

(0 ) (b) 

T, 
liquid 

T2 , 
a 

T 

T3 

A XB -
(d) (c) 

Fig. 1.30 The derivation of a phase diagram where tlH~ix > tlH~ix = O. Free 
energy v. eomposition eurves for (a) Tl, (b) T2 , and (e) TJ . 

Fig. 1.30c, and the solid solution is most stable as a mixture of two phases a' 
and a" with compositions e and f. At higher temperatures, when - T/iSmix 
becomes larger, e and f approach each other and eventually disappear as 
shown in the phase diagram, Fig. 1.30d. The a' + a" region is known as a 
miscibility gap. 

The effect of a positive ,~.Hmix in the solid is already apparent at higher 
temperatures where it gives rise to a minimum melting point mixture. The 
reason why all alloys should melt at temperatures below the melting points of 
both components can be qualitatively understood since the atoms in the alloy 
'repel' each other making the disruption of the solid into a liquid phase 
possible at lower temperatures than in either pure A or pure B. 

1.5.3 Ordered Alloys 

The opposite type of effect arises when 6.Hmix < O. In these systems melting 
will be more difficult in the alloys and a maximum melting point mixture may 
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A 
(0) 

Thermodynamics and phase diagrams 

liquid liquid 

a a+ß 

8 Xs ----
8 A Xs -----e __ 

(b) 
Fig. 1.31 (a) Phase diagram when ~H~ix < 0; (b) as (a) but even more negative 
~H~ix. (After R.A. Swalin, Thermodynamics 0/ Solids, John Wiley, New York, 
1972). 

appear. This type of alloy also has a tendency to order at low temperatures as 
shown in Fig. 1.31a. If the attraction between unlike atoms is very strong the 
ordered phase may extend as far as the liquid, Fig. 1.31b. 

1.5.4 Simple Eutectic Systems 

If aH~ix is much larger than zero the miscibility gap in Fig. 1.30d can extend 
into the liquid phase. In this case a simple eutectic phase diagram results as 
shown in Fig. 1.32. A similar phase diagram can result when A and B have 
different crystal structures as illustrated in Fig. 1.33 

1.5.5 Phase Diagrams Containing Intermediate Phases 

When stable intermediate phases can form, extra free energy curves appear in 
the phase diagram. An example is shown in Fig. 1.34, which also illustrates 
how a peritectic transformation is related to the free energy curves. 

An interesting result of the common tangent construction is that the stable 
composition range of the phase in the phase diagram need not include the 
composition with the minimum free energy, but is determined by the relative 
free energies of adjacent phases, Fig. 1.35. This can explain why the composi­
tion of the equilibrium phase appears to deviate from that wh ich would be 
predicted from the crystal structure. For example the e phase in the Cu-Al 
system is usually denoted as CuAl2 although the composition XCu = 1/3, 
X A1 = 2/3 is not covered by the e field on the phase diagram. 

1.5.6 The Gibbs Phase Rule 

The condition for equilibrium in a binary system containing two phases is 
given by Equation 1.46 or 1.47. A more general requirement for systems 
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G 

A 4+ i 
Stable composition( 

Stoichiometric 

B 

composition (Am Sn) 

Minimum G 
Fig. 1.35 Free energy diagram to illustrate that the range of compositions over which 
a phase is stable depends on the free energies of the other phases in equilibrium. 

containing several components and phases is that the chemical potential of 
each component must be identical in every phase, i.e. 

!-LÄ = !-L~ = !-LA = ... 
!-La = !-L~ = !-Li) = . . . 
!-Lc = !-L~ = !-LC = . . . 

(1.48) 

The proof of this relationship is left as an exercise for the reader (see 
Exercise 1.10). A consequence of this general condition is the Gibbs phase 
rule. This state~ that if a system containing C components and P phases is in 
equilibrium the number of degrees of freedom F is given by 

P+F=C+2 (1.49) 

A degree of freedom is an intensive variable such as T, P, X A , X B ..• that 
can be varied independently while still maintaining equilibrium. If pressure is 
maintained constant one degree of freedom is lost and the phase rule becomes 

P+F=C+1 

At present we are considering binary alloys so that C = 2 therefore 

P+F=3 

(1.50) 

This means that a binary system containing one phase has two degrees of 
freedom, Le. Tand X B can be varied independently. In a two-phase region of 
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a phase diagram P = 2 and therefore F = 1 wh ich means that if the tempera­
ture is chosen independently the compositions of the phases are fixed. When 
three phases are in equilibrium, such as at a eutectic or peritectic tempera­
ture, there are no degrees of freedom and the compositions of the phases and 
the temperature of the system are all fixed. 

1.5.7 The Effect of Temperature on Solid Solubility 

The equations for free energy and chemical potential can be used to derive 
the effect of temperature on the limits of solid solubility in a terminal solid 
solution. Consider for simplicity the phase diagram shown in Fig. 1.36a where 
B is soluble in A, but A is virtually insoluble in B. The corresponding free 
energy curves for temperature Tl are shown schematically in Fig. 1.36b. Since 
A is alm ost insoluble in B the Gß curve rises rapidly as shown. Therefore the 
maximum concentration of B soluble in A (Xs) is given by the condition 

f1s = f1~ = G~ 

For a regular solid solution Equation 1.40 gives 

f1s = Gs + 0(1 - X B )2 + RTln X B 

But from Fig. 1.36b, Gs - f1s = ~GB, the difference in free energy between 
pure B in the stable ß-form and the unstable a-form. Therefore for X B = Xs 

-RT In Xs - 0(1 - X s)2 = ~GB (1.51) 

If the solubility is low Xs ~ 1 and this gives 

X B = exp {_ ~G~; O} 

Putting 

~GB = ~HB - T~SB 

gives 

xe = A exp -Q 
B RT 

where A is a constant equal to exp (~SB/ R) and 

Q = ~HB + 0 

(1.52) 

(1.53) 

(1.54) 

~HB is the difference in enthalpy between the ß-form of Band the a-form in 
J mol-I. 0 is the change in energy when 1 mol of B with the a-structure 
dissolves in A to make a dilute solution. Therefore Q is just the enthalpy 
change, or heat absorbed, when 1 mol of B with the ß-structure dissolves in A 
to make a dilute solution. 
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G~ 

G~ = ~B 
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ß 

B 

Fig. 1.36 Solubility of B in A. 
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A5B is the difference in entropy between ß-B and a-B and is approximately 
independent of temperature. Therefore the solubility of B in a increases 
exponentially with temperature at a rate determined by Q. It is interesting to 
note that, except at absolute zero, XB can never be equal to zero, that is, no 
two components are ever completely insoluble in each other. 

1.5.8 Equilibrium Vacancy Concentration 

So far it has been assumed that in a metallattice every atom site is occupied. 
However, let us now consider the possibility that some sites remain without 
atoms, that is, there are vacancies in the lattice. The removal of atoms from 
their sites not only increases the internal energy of the metal, due to the 
broken bonds around the vacancy, but also increases the randomness or 
configurational entropy of the system. The free energy of the alloy will 
depend on the concentration of vacancies and the equilibrium concentration 
X~ will be that which gives the minimum free energy. 

If, for simplicity, we consider vacancies in a pure metal the problem of 
calculating X~ is almost identical to the calculation of AGmix for A and B 
atoms when ARmix is positive. Because the equilibrium concentration of 
vacancies is sm all the problem is simplified because vacancy-vacancy interac­
tions can be ignored and the increase in enthalpy of the solid (AR) is directly 
proportional to the number of vacancies added, i.e. 

AR = ARvXv 

where Xv is the mole fraction of vacancies and ARv is the increase in enthalpy 
per mole of vacancies added. (Each vacancy causes an increase of ARvl Na 
where Na is Avogadro's number.) 

There are two contributions to the entropy change A5 on adding vacancies. 
There is a sm all change in the thermal entropy of A5v per mole of vacancies 
added due to changes in the vibrational frequencies of the atoms around a 
vacancy. The largest contribution, however, is due to the increase in con­
figurational entropy given by Equation 1.25. The total entropy change is thus 

A5 = X vA5v - R(Xv In Xv + (1 - Xv) In (1 - Xv)) 

The molar free energy of the crystal containing Xv mol of vacancies is 
therefore given by 

G = GA + AG = GA + ARvXv - TA5vX v 

+ RT(Xv In Xv + (1 - Xv) In (1 - Xv)) (1.55) 

This is shown schematically in Fig. 1.37. Given time the number of vacancies 
will adjust so as to reduce G to aminimum. The equilibrium concentration of 
vacancies X~ is therefore given by the condition 

dG I - -0 
dXv x =xe , , 
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- T ß 5 = R T In Xv 

Fig. 1.37 Equilibrium vacancy concentration. 

Differentiating Equation 1.55 and making the approximation Xv ~ 1 gives 

AHv - TASv + RT In X~ = 0 

Therefore the expression for X~ is 

ASv -AHv 
X~ = exp R . exp IiT 

or, putting AGv = AHv - TASv gives 

-AG 
Xe = exp--v 

v RT 

(1.56) 

(1.57) 

The first term on the right-hand side of Equation 1.56 is a constant -3, 
independent of T, whereas the second term increases rapidly with increasing 
T. In practice AHv is of the order of 1 eV per atom and X~ reaches a value of 
about 10-4_10-3 at the melting point of the solid. 

1.6 The Inftuence of Interfaces on Equilibrium 

The free energy curves that have been drawn so far have been based on 
the molar free energies of infinitely large amounts of material of a perfect 
single crystal. Surfaces, grain boundaries and interphase interfaces have been 
ignored. In real situations these and other crystal defects such as dislocations 
do exist and raise the free energies of the phases. Therefore the minimum free 
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energy of an alloy, i.e. the equilibrium state, is not reached until virtually 
all interfaces and dislocations have been annealed out. In practice such a 
state is unattainable within reasonable periods of time. 

Interphase interfaces can become extremely important in the early stages of 
phase transformations when one phase, ß, say, can be present as very fine 
particles in the other phase, IX, as shown in Fig. 1.38a. If the IX phase is acted 
on by apressure of 1 atm the ß phase is subjected to an extra press ure 6.P due 
to the curvature of the IX/ß interface, just as a soap bubble exerts an extra 
pressure 6.P on its contents. If -y is the IX/ß interfacial energy and the particles 
are spherical with a radius r, 6.P is given approximately by 

t 
G 

6.P = 2-y 
r 

(a) 

(b) 

x~ x, 

~/ 
I 

p 

...... 
Almospheric 
pressure 

...... 

xs -

Fig. 1.38 The effect of interfacial energy on the solubility of sm all particles. 
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By definition, the Gibbs free energy contains a 'PV' term and an increase of 
pressure P therefore causes an increase in free energy G. From Equation 1.9 
at constant temperature 

flG = flP . V 

Therefore the ß curve on the molar free energy-composition dia gram in 
Fig. 1.38b will be raised by an amount 

flG = 2"1 V m (1.58) 
'Y r 

where V m is the molar volume of the ß phase. This free energy increase due to 
interfacial energy is known as a capillarity effect or the Gibbs-Thomson 
effecL 

The concept of apressure difference is very useful for spherical liquid 
particles, but it is less convenient in solids. This is because, as will be 
discussed in Chapter 3, finely dispersed solid phases are often non-spherical. 
For illustration, therefore, consider an alternative derivation of Equa­
tion 1.58 which can be more easily modified to deal with non-spherical cases3 . 

Consider a system containing two ß particles one with a spherical interface 
of radius rand the 0ther with a planar interface (r = (0) embedded in an u 
matrix as shown in Fig. 1.39. If the molar free energy difference between the 
two particles is flG'Y' the transfer of a small quantity (dn mol) of ß from the 
large to the small particle will increase the free energy of the system by a small 
amount (dG) given by 

dG = flG'Ydn 

If the surface area of the large particle remains unchanged the increase in free 
energy will be due to the increase in the interfacial area of the spherical 

/® a 
mol ß 

Fig. 1.39 Transfer of dn mol of ß from large to a small particle. 
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particle (dA). Therefore assuming -y is constant 

dG = -ydA 

Equating these two expressions gives 

dA 
6.G 'Y = -y dn 

Since n = 41Tr3 /3V rn and A = 41T"z it can easily be shown that 

dA dA/dr 2Vrn 
-=--=--
dn dn/dr r 

from which Equation 1.58 can be obtained. 
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(1.59) 

An important practical consequence of the Gibbs-Thomson effect is that 
the solubility of ß in a is sensitive to the size of the ß particles. From the 
common tangent construction in Fig. 1.38b it can be seen that the concentra­
tion of solute B in a in equilibrium with ß across a curved interface (Xr) is 
greater than X"' the equilibrium concentration for a planar interface. Assum­
ing for simplicity that the a phase is a regular solution and that the ß phase is 
almost pure B, i.e. X~ - 1, Equation 1.52 gives 

{ 6.Gs + n} 
X"" = exp RT 

Similarly X r can be obtained by using (6.Gs - 2-yVrn/r) in place of 6.Gs 

_ {6.Gs + n - 2-YVrn/r} 
X r - exp RT 

Therefore 

2-yVrn 

X r = X"" exp RTr 

and for small values of the exponent 

(1.60) 

(1.61) 

Taking the following typical values: -y = 200 mJ m-2 , Vrn = 10-5 m3 , 

R = 8.31 J mol- 1 K- 1 , T = 500 K gives 

Xr 1 
-=1+-­
XYo r(nm) 

e.g. for r = 10 nm X r/ X"" - 1.1. It can be seen therefore that quite large 
solubility differences can arise for particles in the range r = 1-100 nm. 
However, for particles visible in the light microscope (r > 1 j.lm) capillarity 
effects are very smalI. 
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1. 7 Ternary EquiIibrium 

Since most commercial alloys are based on at least three components, an 
understanding of ternary phase diagrams is of great practical importance. The 
ideas that have been developed for binary systems can be extended to systems 
with three or more components4 . 

Thecomposition of a ternary alloy can be indicated on an equilateral 
triangle (the Gibbs triangle) whose corners represent 100% A, B or C as 
shown in Fig. 1.40. The tri angle is usually divided by equidistant lines parallel 
to the sides marking 10% intervals in atomic or weight per cent. All points on 
lines parallel to BC contain the same percentage of A, the lines parallel to AC 
represent constant B concentration, and lines parallel to AB constant C 
concentrations. Alloys on PQ for example contain 60% A, on RS 30% B, 
and TU 10% C. Clearly the total percentage must sum tp 100%, or expressed 
as mole fractions 

(1.62) 

The Gibbs free energy of any phase can now be represented by a vertical 
distance from the point in the Gibbs triangle. If this is done for all possible 
compositions the points trace out the free energy surfaces for all the possible 
phases, as shown in Fig. 1.41a. The chemical potentials of A, Band C in any 
phase are then given by the points where the tangential plane to the free 
energy surfaces intersects the A, Band C axes. Figure 1.41a is drawn for a 

8 

A T c 
Fig. 1.40 The Gibbs triangle. 
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system in whieh the three binary systems AB, BC and CA are simple eutee­
ties. Free energy surfaees exist for three solid phases 0:, ß and 'Y and the liquid 
phase, L. At this temperature the liquid phase is most stable for all alloy 
eompositions. At lower temperatures the GL surfaee moves upwards and 
eventually interseets the Ga surfaee as shown in Fig. 1.41b. Alloys with 
eompositions in the vieinity of the interseetion of the two eurves eonsist of 
a + L at equilibrium. In order for the ehemieal potentials to be equal in both 

G 

(01 

Fig. 1.41 (a) Free energies of a liquid and three solid phases of a ternary system. 
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{j 

c 

q 

(b) (cl 

Fig. 1.41 (Cont.) (b) A tangential plane eonstruetion to the free energy surfaees 
defines equilibrium between sand I in the ternary system. (e) Isothermal seetion 
through a ternary phase diagram obtained in this way with a two-phase region (L+S) 
and various tie-lines. The amounts of land s at point x are determined by the lever 
rule. (After P. Haasen, Physical Metallurgy, Cambridge University Press, Cambridge, 
1978.) 

phases the compositions of the two phases in equilibrium must be given by 
points connected by a common tangential plane, for example sand I in 
Fig. 1.4lb. These points can be marked on an isothermal seetion of the 
equilibrium phase dia gram as shown in Fig. 1.41c. The lines joining the 
compositions in equilibrium are known as tie-lines. By rolling the tangential 
plane over the two free energy surfaces a whole series of tie-lines will be 
generated, such as pr and qt, and the region covered by these tie-lines pqtr is 
a two-phase region on the phase diagram. An alloy with composition x in 
Fig. 1.4lc will therefore minimize its free energy by separating into solid a 
with composition sand liquid with composition I. The relative amounts of a 
and L are simply given by the lever rule. Alloys with compositions within Apq 
will be a homogeneous a phase at this temperature, whereas alloys within 
Bert will be liquid. 

On further cooling the free energy surface for the liquid will rise through 
the other free energy surfaces producing the sequence of isotherm al sections 
shown in Fig. 1.42. In Fig. 1.42f, for example, the liquid is stable near the 
centre of the diagram whereas at the corners the a, ß and 'Y solid phases are 
stable. In between are several two-phase .regions containing bundles of tie­
lines. In addition there are three-phase regions known as tie-triangles. The 
L + a + ß tri angle for example arises because the common tangential plane 
simultaneously touches the Ga, Gß and G L surfaces. Therefore any alloy with 
a composition within the L + a + ß tri angle at this temperature will be in 
equilibrium as a three-phase mixture with compositions given by the corners 
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(9) T=E (h) E;;..T 

Fig. 1.42 Isothermal seetions through Fig. 1.44. (After A. Prince, Al/ay Phase 
Equilibria, Elsevier , Amsterdam, 1966.) 

of the triangle. If the temperature is lowered still further the L region shrinks 
to a point at wh ich four phases are in equilibrium L + IX + ß + 'Y. This is 
known as the ternary eutectic point and the temperature at which it occurs is 
the ternary eutectic temperature, Fig. 1.42g. Below this temperature the 
liquid is no longer stable and an isothermal section contains three two-phase 
regions and one three-phase tie triangle IX + ß + 'Y as shown in Fig. 1.42h. If 
isothermal sections are constructed for all temperatures they can be combined 
into a three-dimensional ternary phase diagram as shown in Fig. 1.44. 

In order to follow the course of solidification of a ternary alloy, assuming 
equilibrium is maintained at all temperatures, it is useful to plot the liquidus 
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A 

c B 

Fig. 1.43 A projection of the liquidus surfaces of Fig. 1.44 onto the Gibbs triangle. 

surface contours as shown in Fig. 1.43. During equilibrium freezing of alloy X 
the liquid composition moves approximately along the line Xe (drawn 
through A and X) as primary a phase is solidified; then along the eutectic 
valley eE as both a and ß solidify simultaneously. Finally at E, the ternary 
eutectic point, the liquid transforms simultaneously into a + ß + 'Y. This 
sequence of events is also illustrated in the perspective drawing in Fig. 1.44. 

The phases that form during solidification can also be represented on a 
vertical section through the ternary phase diagram. Figure 1.45 shows such a 
section taken through X parallel to AB in Fig. 1.44. It can be seen that on 
cooling from the liquid phase the alloy first passes into the L + a region, then 
into L + a + ß, and finally all liquid disappears and the a + ß + 'Y region is 
entered, in agreement with the above. 

An important limitation of vertical sections is that in general the section 
will not coincide with the tie-lines in the two-phase regions and so the diagram 
only shows the phases that exist in equilibrium at different temperatures and 
not their compositions. Therefore they can not be used like binary phase 
diagrams, despite the superficial resemblance. 

1.8 Additional Thermodynamic Relationships for Binary Solutions 

It is often of interest to be able to calculate the change in chemical potential 
(df.L) that results from a change in alloy composition (dX). Considering 
Fig. 1.46 and comparing triangles it can be seen that 

df.LA df.LB d(f.LB - f.LA) --- = -- = 
1 

(1.63) 

and that the slope of the free energy-composition curve is given by 

dG f.LB - f.LA 
dXB 1 

(1.64) 
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Fig. 1.44 The equilibrium solification of alloy X. (After A. Prince, Alloy Phase 
Equilibria, Elsevier, Amsterdam, 1966.) 

Fig. 1.45 A vertical seetion between points 1, 2 and X in Fig. 1.44. (After A. Prince, 
Alloy Phase Equilibria, Elsevier, Amsterdam, 1966.) 
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d!J.B 

o XB~ 

Fig. 1.46 Evaluation of the change in chemical potential due to a change in composi­
tion. (After M. Hillert, in Lectures on the Theory of Phase Transformations, H.1. 
Aaronson (Ed.), ©The American Society for Metals and The Metallurgical Society of 
AlME, New York, 1969.) 

Substituting this expression into Equation 1.63 and multiplying throughout 
by XAXB leads to the following equalities: 

d2G 
-XAdf.lA = XBdf.lB = XAXBdX2dXB (1.65) 

wh ich are the required equations relating df.lA, df.lB and dXB • The first 
equality in this equation is known as the Gibbs.-Duhem relationship for 
a binary solution. Note that the B subscript has been dropped from d2G/dX2 

as d2G/dX~ == d2G/dXi. For a regular solution differentiation of 
Equation 1.39 gives 

d2G RT 
dX2 = XAXB - 20 (1.66) 

For an ideal solution 0 = 0 and 

d2G RT 

dX2 XAXB 
(1.67) 

Equation 1.65 can be written in a slightly different form by making use of 
activity coefficients. Combining Equations 1.41 and 1.43 gives 

J.lB=GB+RTlnyBXB 

Therefore 

df.lB = RT{l + XB d'YB} = RT{l + d In 'YB} 
dXB XB 'YB dXB XB d In X B 

(1.68) 

(1.69) 
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A similar relationship can be derived for dJ.LA/dXB . Equation 1.65 therefore 
becomes 

(1.70) 

Comparing Equations 1.65 and 1.70 gives 

X X d2C = RT{1 + d In 'YA} = RT{1 + d In 'YB} 
A B dX2 d In X A d In X B 

(1.71) 

1.9 The Kinetics of Phase Transformations 

The thermodynamic functions that have been described in this chapter apply 
to systems that are in stable or metastable equilibrium. Thermodynamics can 
therefore be used to calculate the driving force for a transformation, 
Equation 1.4, but it cannot say how fast a transformation will proceed. The 
study of how fast processes occur belongs to the science of kinetics. 

Let us redraw Fig. 1.1 for the free energy of a single atom as it takes part in 
a phase transformation from an initially metastable state into astate of lower 
free energy, Fig. 1.47. If Cl and C2 are the free energies of the initial and 

G 

G, 

Ini liol 
stote 

Activated 
stote 

Final 
stote 

Fig. 1.47 Transformations from initial to final state through an activated state of 
higher free energy. 
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final states, the driving force for the transformation will be llG = G2 - GI' 
However, before the free energy of the atom can decrease from GI to G2 the 
atom must pass through a so-called transition or activated state with a free 
energy llGa above GI' The energies shown in Fig. 1.47 are average energies 
associated with large numbers of atoms. As a result of the random thermal 
motion of the atoms the energy of any particular atom will vary with time and 
occasionally it may be sufficient for the atom to reach the activated state. This 
process is known as thermal activation. 

According to kinetic theory, the probability of an atom reaching the acti­
vated state is given by exp (-llGajkT) where k is Boltzmann's constant 
(RjNa) and llGa is known as the activation free energy barrier. The rate at 
which a transformation occurs will depend on the frequency with which atoms 
reach the activated state. Therefore we can write 

( llGa) rate oe exp - kT 

Putting llGa = llRa - TllSa and chan ging from atomic to molar quantities 
enables this equation to be written as 

rate oe exp ( - ~~) (1.72) 

This equation was first derived empirically from the observed temperature 
dependence of the rate of chemical reactions and is known as the Arrhenius 
rate equation. It is also found to apply to a wide range of processes and 
transformations in metals and alloys, the simplest of these is the process of 
diffusion which is discussed in Chapter 2. 
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Exercises 

1.1 The specific heat of solid copper above 300 K is given by 

Cp = 22.64 + 6.28 x 10-3 T J mol- 1 K- 1 

By how much does the entropy of copper increase on heating from 300 
to 1358 K? 

1.2 With the aid of Equation 1.11 and Fig. 1.5, draw schematic free energy­
pressure curves for pure Fe at 1600, 800, 500 and 300 oe. 

1.3 Estimate the change in the equilibrium melting point of copper caused 
by a change of pressure of 10 kbar. The molar volume of copper is 
8.0 x 10-6 m3 for the liquid, and 7.6 x 10-6 for the solid phase. The 
latent heat of fusion of copper is 13.05 kJ mol-I. The melting point is 
1085 oe. 

1.4 For a single component system, why do the allotropes stable at high 
temperatures have higher enthalpies than allotropes stable at low 
temperatures, e.g. H(y-Fe) > H(a-Fe)? 

1.5 Determine, by drawing, the number of distinguishable ways of arrang­
ing two black balls and two white balls in a square array. Check your 
answer with Equation 1.24. 
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1.6 By using Equations 1.30 and 1.31, show that the chemical potentials 
of A and B can be obtained by extrapolating the tangent to the G-X 
curve to X A = 0 and XB = O. 

1.7 Derive Equation 1.40 from 1.31 and 1.39. 
1.8 15 g of gold and 25 g of silver are mixed to form a single-phase ideal 

solid solution. 
(a) How many moles of solution are there? 
(b) What are the mole fractions of gold and silver? 
(c) What is the molar entropy of mixing? 
(d) What is the total entropy of mixing? 
(e) What is the molar free energy change at 500 °C? 
(f) What are the chemical potentials of Au and Ag at 500°C taking 

the free energies of pure Au and Ag as zero? 
(g) By how much will the free energy of the solution change at 500°C if 

one Au atom is added? Express your answer in eV /atom. 
1.9 In the Fe-C system Fe3C is only a metastable phase, whilst graphite is 

the most stable carbon-rich phase. By drawing schematic free energy­
composition diagrams show how the Fe-graphite phase diagram com­
pares to the Fe-Fe3C phase diagram from 0 to 2 wt% Fe. Check your 
answer with the published phase diagram in the Metals Handbook for 
example. 

1.10 Consider a multicomponent system A, B, C ... containing several 
phases IX, ß, 'Y .•• at equilibrium. If a small quantity of A (dnAmol) is 
taken from the IX phase and added to the ß phase at constant T and P 
what are the changes in the free energies of the IX and ß phases, dG" 
and dGß? Since the overall mass and composition of the system is un­
changed by the above process the total free energy change 
dG = dG" + dGß = O. Show, therefore, that IJ.Ä = IJ.~. Repeating for 
other pairs of phases and other components gives the general equilib­
rium conditions, Equation 1.48. 

1.11 For aluminium IlHv = 0.8 eV atom-1 and IlSv/R = 2. Calculate the 
equilibrium vacancy concentration at 660 °c (Tm) and 25°C. 

1.12 The solid solubility of silicon in aluminium is 1.25 atomic % at 550°C 
and 0.46 atomic % at 450°C. What solubility would you expect at 
200°C? Check your answer by reference to the published phase dia­
gram. 

1.13 The met als A and B form an ideal liquid solution but are almost 
immiscible in the solid state. The entropy of fusion of both A and B is 
8.4 J mol-1K-1 and the melting temperatures are 1500 and 1300 K 
respectively. Assuming that the specific heats of the solid and liquid are 
identical calculate the eutectic composition and temperature in the A-B 
phase diagram. 

1.14 Write down an equation that shows by how much the molar free energy 
of solid Cu is increased when it is present as a small sphere of radius r in 
liquid Cu. By how much must liquid Cu be cooled below Tm before a 
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solid particle of Cu can grow if the particle diameter is (i) 2 !-Lm, 
(ii) 2 nm (20 A)? (Cu: Tm = 1085 °c = 1358 K. Atomic weight 63.5. 
Density 8900 kg m-3. Solid/liquid interfacial energy 'Y = 0.144 J m-2 . 

Latent heat of melting L = 13 300 J mol-I.) 
1.15 Suppose a ternary alloy containing 40 atomic % A, 20 atomic % B, 40 

atomic % C solidifies through a ternary eutectic re action to a mixture of 
a, ß and 'Y with the following compositions: 80 atomic % A, 5 
atomic % B, 15 atomic % C; 70 atomic % B, 10 atomic % A, 20 
atomic % C; and 20 atomic % B, 10 atomic % A, 70 atomic % C. 
Wh at will be the mole fractions of a, ß and 'Y in the microstructure? 

1.16 Show that a general expression for the chemical potential of a compo­
nent in solution is given by 

!-LA = G~ + SA(To - T) + RTln 'YAXA + (P - PO)Vm 

where G~ is the free energy of pure A at temperature Ta and pressure 
Po, SA is the entropy of A, R is the gas constant, 'YA the activity 
coefficient for A, X A the mole fraction in solution, V m is the molar 
volume which is assumed to be constant. Under what conditions is the 
above equation valid? 



2 
Diffusion 

The previous chapter was mainly concerned with stable or equilibrium 
arrangements of atoms in an alloy. The study of phase transformations 
concerns those mechanisms by which a system attempts to reach this state and 
how long it takes. One of the most fundamental processes that controls the 
rate at which many transformations occur is the diffusion of atoms. 

The reason why diffusion occurs is always so as to produce a decrease in 
Gibbs free energy. As a simple illustration of this consider Fig. 2.1. Two 
blocks of the same A-B solid solution, but with different compositions, are 
welded together and held at a temperature high enough for long-range 
diffusion to occur. If the molar free energy diagram of the alloy is as shown in 
Fig. 2.1b, the molar free energy of each part of the alloy will be given by GI 
and G2 , and initially the total free energy of the welded block will be G3 • 

However, if diffusion occurs as indicated in Fig. 2.1a so as to eliminate the 
concentration differences, the free energy will decrease towards G4 , the free 
energy of a homogeneous alloy. Thus, in this case, a decrease in free energy is 
produced by A and B atoms diffusing away from the regions of high concen­
tration to that of low concentration, i.e. down the concentration gradients. 
However, this need not always be the case as was indicated in Section 1.4. In 
alloy systems that contain a miscibility gap the free energy curves can have a 
negative curvature at low temperatures. If the free energy curve and composi­
tion for the A-B alloy shown in Fig. 2.1a were as drawn in Fig. 2.1d the A 
and B atoms would diffuse towards the regions of high concentration, i.e. up 
the concentration gradients, as shown in Fig. 2.1c. However, this is still the 
most natural process as it reduces the free energy from G3 towards G4 again. 

As can be seen in Fig. 2.1e and f the A and B atoms are diffusing from 
regions where the chemical potential is high to regions where it is low, Le. 
down the chemical potential gradient in both cases. In practice the first case 
mentioned above is far more common than the second case, and it is usually 
assumed that diffusion occurs down concentration gradients. However, it can 
be seen that this is only true under special circumstances and for this reason it 
is strictly speaking better to express the driving force for diffusion in terms of 
a chemical potential gradient. Diffusion ceases when the chemical potentials 
of all atoms are everywhere the same and the system is in equilibrium. 
However, since case 1 above is mainly encountered in practice and because 
concentration differences are much easier to measure than chemical potential 
differences, it is nevertheless more convenient to relate diffusion to concen­
tration gradients. The remainder of this chapter will thus be mainly concerned 
with this approach to diffusion. 



Atomic mechanisms of diffusion 

~cvl 
B-rich A-rich 

(0) 

~~cvl 
B-rich A-rich 

(c) 

~Ä 

~1 
A 

(e) 

~---~------~------~ 

Q) B 

~~ 

~~ 

(d)A 

A 
(f) 

® CD B 

B 

~2 
8 

61 

Fig. 2.1 Free energy and chemical potential changes during diffusion. (a) and (b) 
'down-hili' diffusion, (c) and (d) 'up-hill ' diffusion. (e) fLi > fLl therefore A atoms 
move from (2) to (1), fL~ > fL~ therefore B atoms move from (1) to (2). (f) fLl > fLi 
therefore A atoms move from (1) to (2), fL~ > fL~ therefore B atoms move from (2) 
to (1). 

2.1 Atomic Mechanisms of Diffusion 

There are two common mechanisms by which atoms can diffuse through a 
solid and the operative mechanism depends on the type of site occupied in the 
lattice. Substitutional atoms usually diffuse by a vacancy mechanism whereas 
the smaller interstitial atoms migrate by forcing their way between the larger 
atoms, i.e. interstitially. 

Normally a substitution al atom in a crystal oscillates about a given site and 
is surrounded by neighbouring atoms on similar sites. The me an vibrational 
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energy possessed by each atom is given by 3 kT, and therefore increases in 
proportion to the absolute temperature. Since the mean frequency ofvibration 
is approximately constant the vibration al energy is increased by increas­
ing the amplitude of the oscillations. Normally the movement of a substitu­
tional atom is limited by its neighbours and the atom cannot move to another 
site. However; if an adjacent site is vacant it can happen that a particularly 
violent oscillation results in the atom jumping over on to the vacancy. This is 
illustrated in Fig. 2.2. Note that in order for the jump to occur the shaded 
atoms in Fig. 2.2b must move apart to create enough space for the migrating 
atom to pass between. Therefore the probability that any atom will be able to 
jump into a vacant site depends on the probability that it can aquire sufficient 
vibration al energy. The rate at which any given atom is able to mi grate 
through the solid will clearly be determined by the frequency with which it 
encounters a vacancy and this in turn depends on the concentration of 
vacancies in the solid. It will be shown that both the prob ability of jumping 
and the concentration of vacancies are extremely sensitive to temperature. 

(0) (b) 

Fig. 2.2 Movement of an atom into an adjaeent vaeaney in an fee lattice. (a) A 
close-paeked plane. (b) A unit eell showing the four atoms (shaded) whieh must move 
before the jump ean oeeur. (After P.G. Shewmon, Diffusion in Solüls, MeGraw-Hill, 
New York, 1963.) 

When a solute atom is appreciably smaller in diameter than the sol­
vent, it occupies one of the interstitial sites between the solvent atoms. 
In fcc materials the interstitial sites are midway along the cube edges 
or, equivalently, in the middle of the unit cell, Fig. 2.3a. These are known as 
octahedral sites since the six atoms around the site form an octahedron. In the 
bcc lattice the interstitial atoms also often occupy the octahedral sites wh ich 
are now located at edge-centring or face-centring positions as shown in 
Fig.2.3b. 

Usually the concentration of interstitial atoms is so low that only a small 
fraction of the available sites is occupied. This me ans that each interstitial 
atom is always surrounded by vacant sites and can jump to another position as 
often as its thermal energy permits it to overcome the strain energy barrier to 
migration, Fig. 2.4. 
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Fig. 2.3 (a) Oetahedral interstiees (0) in an fee erystal. (b) Oetahedral interstiees in a 
bee erystal. (After P. Haasen, Physical Metallurgy, Cambridge University Press, 
Cambridge,1978.) 

Fig. 2.4 A {lOO} plane in an fee lattlee showing the path of an interstitial atom 
diffusing by the interstitial meehanism. 

2.2 Interstitial Diffusion 

2.2.1 lnterstitial Diffusion as a Random lump Process 

Let us consider first a simple model of a dilute interstitial solid solution where 
the parent atoms are arranged on a simple cubic lattice and the solute 
B atoms fit perfectly into the interstices without causing any distortion of the 
parent lattice. We assume that the solution is so dilute that every interstitial 
atom is surrounded by six vacant interstitial sites. If the concentration of B 
va ries in one dimension (x) through the solution (see Fig. 2.5) the B atoms 
can diffuse throughout the material until their concentration is the same 
everywhere. The problem to be considered then, concerns how this diffusion 
is related to the random jump characteristics of the interstitial atoms. 
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Fig. 2.5 InterstitiaI diffusion by random jumps in a concentration gradient. 

To answer this question consider the exchange of atoms between two 
adjacent atomic planes such as (1) and (2) in Fig. 2.5a. Assurne that on 
average an interstitial atom jumps rB times per second (r = Greek capital 
gamma) and that each jump is in a random direction, i.e. there is an equal 
prob ability of the atom jumping to every one of the six adjacent sites. If plane 
(1) contains nl B-atoms per m2 the number of atoms that will jump from plane 
(1) to (2) in 1 s (I) will be given by: 

1 -2 -1 JB = 6r Bnl atoms m s (2.1) 

During the same time the number of atoms that jump from plane (2) to (1), 
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assuming f B is independent of concentration, is given by: 

~ 1 -2 -1 
JB = 6f Bn2 atoms m s 

Since nl > n2 there will be a net flux of atoms from left to right given by: 

(2.2) 

where nl and n2 are related to the concentration of B in the lattice. If the 
separation of planes (1) and (2) is a the concentration of B at the position of 
plane (1) CB(1) = nda atoms m-3. Likewise CB(2) = n2/a. Therefore 
(nI - n2) = a( CB (1) - CB (2)) and from Fig. 2.5b it can be seen that 
CB (1) - CB (2) = -a(acB/ax). Substituting these equations into Equation 
2.2 gives: 

JB = -(~f Ba2)aCB atoms m-2 S-1 
6 ax 

The partial derivative acB / ax has been used to indicate that the concentration 
gradient can change with time. Thus in the presence of a concentration 
gradient the random jumping of individual atoms produces a net flow of atoms 
down the concentration gradient. 

Substituting 

1 2 
D B = 6fBa 

yields: 

aCB 
JB = -DBTx 

(2.3) 

(2.4) 

This equation is identical to that proposed by Fick in 1855 and is usually 
known as Fick's first law of diffusion. DB is known as the intrinsic diffusivity 
or the diffusion coefficient of B, and has units [m2 S-I]. The units for J are 
[quantity m-2 S-I] and for 8C/8x [quantity m-4], where the unit of quantity 
can be in terms of atoms, moles, kg, etc. as long it is the same for J and C. 

When the jumping of B atoms is truly random with a frequency independ­
ent of concentration, D B is given by Equation 2.3 and is also a constant 
independent of concentration. Although this equation for DB was derived for 
interstitial diffusion in a simple cubic lattice it is equally applicable to any 
randomly diffusing atom in any cubic lattice provided the correct substitution 
for the jump distance a is made. In non-cubic lattices the prob ability of jumps 
in different crystallographic directions is not equal and D varies with direc­
tion. Atoms in hexagonal lattices, for example, diffuse at different rates 
parallel and perpendicular to the basal plane. 
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The condition that the atomic jumps occur completely randomly and inde­
pendently of concentration is usually not fulfilled in real alloys. Nevertheless 
it is found from experiment that Fick's first law is still applicable, though only 
if the diffusion coefficient D is made to vary with composition. For example 
the diffusion coefficient for carbon in fee-Fe at 1000 °C is 2.5 X 10-11 m2 S-l 

at 0.15 wt% C, but it rises to 7.7 x 10-11 m2 S-l in solutions containing 
1.4 wt% C. The reason for the increase of Di: with concentration is that the C 
atoms strain the Fe lattice thereby making diffusion easier as the amount of 
strain increases. 

As an example of the use of Equation 2.3 the following data can be used to 
estimate the jump frequency of a carbon atom in 'Y-Fe at 1000 °C. The lattice 
parameter of 'Y-Fe is -0.37 nm thus the jump distance 
a = 0.37/j2 = 0.26 nm (2.6 Ä). Assuming D = 2.5 X 10-11 m2 s-t, leads 
to the result that r = 2 x 109 jumps s -1. If the vibration frequency of the 
carbon atoms is _1013, then only about one attempt in 104 results in a jump 
from one site to another. 

It is also interesting to consider the diffusion process from the point of view 
of a single diffusing atom. If the direction of each new jump is independent of 
the direction of the previous jump the process is known as a random walk. 
For a random walk in three dimensions it can be shown1 that after n steps of 
length a the 'average' atom will be displaced by a net distance ajn from its 
original position. (This is more precisely the root me an square displacement 
after n steps.) Therefore after a time t the average atom will have advanced a 
radial distance r from the origin, where 

r = aj(ft) (2.5) 

Substituting Equation 2.3 for r gives 

r = 2.4j(Dt) (2.6) 

It will be seen that the distance j(Dt) is a very important quantity in diffusion 
problems. 

For the example of carbon diffusing in 'Y-Fe above, in 1 s each carbon atom 
will move a total distance of -0.5 m but will only reach a net displacement of 
-10 ILm. It is obvious that very few of the atom jumps provide a useful 
contribution to the total diffusion distance. 

2.2.2 Effect of Temperature-Thermal Activation 

Let us now take a closer look at the actual jump process for an interstitial 
atom as in Fig. 2.6a. Due to the thermal energy of the solid all the atoms will 
be vibrating ab out their rest positions and occasionally a particularly violent 
oscillation of an interstitial atom, or so me chance coincidence of the move­
ments of the matrix and interstitial atoms, will result in a jump. Since the 
diffusion coefficient is closely related to the frequency of such jumps, r, it is of 

Semnan university
Highlight
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(a) (bI 

0.00 
000 

x-
Fig. 2.6 Interstitial atom, (a) in equilibrium position , (b) at the position of maximum 
lattiee distortion. (e) Variation of the free energy of the lattiee as a funetion of the 
position of interstitial. (After P.G. Shewmon, in Physical Metallurgy, 2nd edn., R.W. 
Cahn (Ed.), North-Holland, Amsterdam, 1974.) 

interest to know the factors controlling rand the effect of raising the 
temperature of the system. 

The rest positions of the interstitial atoms are positions of minimum poten­
tial energy . In order to move an interstitial atom to an adjacent interstice the 
atoms of the parent lattice must be forced apart into higher energy positions 
as shown in Fig. 2.6b . The work that must be done to accomplish this process 
causes an increase in the free energy of the system by !l.Gm (m refers to 
migration) as shown in Fig. 2.6c. !l.Gm is known as the activation energy for the 
migration of the interstitial atom. In any system in thermal equilibrium the 
atoms are constantly colliding with one another and changing their vibration al 
energy. On average, the fraction of atoms with an energy of !l.G or more than 
the mean energy is given by exp (-!l.G / RT). Thus if the interstitial atom in 
Fig. 2.6a is vibrating with a mean frequency u in the x direction it makes u 

attempts per second to jump into the next si te and the fraction of these 
attempts that are successful is given by exp (-!l.Gm/ RT). Now the atom is 
randomly vibrating in three-dimensional space , and if it is surrounded by z 
sites to which it can jump the jump frequency is given by 

-!l.G 
r B = zu exp RT m (2.7) 

!l.Gm can be considered to be the sum of a large activation enthalpy !l.Hm and 
a sm all activation entropy term - T!l.Sm. 

Combining this expression with Equation 2.3 gives the diffusion coefficient 
as 

(2.8) 
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This can be simplified to an Arrhenius-type equation, that is 

-Qm 
DB = DBO exp RT 

where 

1 2 aSm 
D BO = -(l zu exp --

6 R 

and 

(2.9) 

(2.10) 

(2.11) 

The terms that are virtually independent of temperature have been grouped 
into a single material constant Do. Therefore D or r increases exponentially 
with temperature at a rate determined by the activation enthalpy Qm (ID 
refers to Interstitial Diffusion). Equation 2.9 is found to agree with ex­
perimental measurements of diffusion coefficients in substitutional as weH as 
interstitial diffusion. In the case of interstitial diffusion it has been shown that 
the activation enthalpy Q is only dependent on the activation energy barrier 
to the movement of interstitial atoms from one site to another. 

Some experimental data for the diffusion of various interstitials in bcc-Fe 
are given in Table 2.1. Note that the activation enthalpy for interstitial 
diffusion increases as the size of the interstitial atom increases. (The atomic 
diameters decrease in the order C, N, H.) This is to be expected since smaHer 
atoms cause less distortion of the lattice during migration. 

A convenient graphical representation of D as a function of temperature 
can be obtained writing Equation 2.9 in the form 

log D = log Do - ~(~) 
2.3 R T 

(2.12) 

Thus if log D is plotted against (1IT) a straight line is obtained with a slope 
equal to -(QI2.3 R) and an intercept on the log D axis at log Do, see 
Fig. 2.7. 

Table 2.1 Experimental Diffusion Data ror Interstitials in Ferritic (bcc) Iron 

Solute 

C 
N 
H 

2.0 
0.3 
0.1 

QlkJ mol- 1 

84.1 
76.1 
13.4 

Ref. 

2 
3 
4 
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Fig. 2.7 The slope of log D v. 1/ T gives the activation energy far diffusion Q. 

2.2.3 Steady-State Diffusion 

The simplest type of diffusion to deal with is when a steady state exists, that is 
when the concentration at every point does not change with time. For exam­
pIe consider a thin-walled pressure vessel containing hydrogen. The concen­
tration of hydrogen at the inner surface of the vessel will be maintained at a 
level CH depending on the pressure in the vessel, while the concentration at 
the outer surface is reduced to zero by the escape of hydrogen to the 
surroundings. A steady state will eventually be reached when the concentra­
tion everywhere reaches a constant value. Provided DH is independent of 
concentration there will be a single concentration gradient in the wall given by 

ac 0 - CH 

ax 1 

where 1 is the wall thickness. On this basic the fl.ux through the wall is given by 

DHCH 
JH = -1-

2.2.4 Nonsteady-State Diffusion 

(2.13) 

In most practical situations steady-state conditions are not established, i.e. 
concentration varies with both distance and time, and Fick's first law can 
no longer be used. For simplicity let us consider the situation shown in 
Fig. 2.8a where a concentration profile exists along one dimension (x) only. 
The fl.ux at any point along the x-axis will depend on the local value of D B and 
acB/ax as shown in Fig. 2.8b. In order to calculate how the concentration of 
B at any point varies with time consider a narrow slice of material with an 
area A and a thickness 8x as shown in Fig. 2.8c. 
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Fig. 2.8 The derivation of Fick's second law. 

The number of interstitial B atoms that diffuse into the slice across plane 
(1) in a sm all time interval Bt will be 1l ABt. The number of atoms that leave 
the thin slice during this time, however, is only 12ABt. Since 12 < 11 the 
concentration of B within the slice will have increased by 

But since Bx is smalI, 

a1 
12 = 11 + - Bx 

ax 

and in the limit as Bt ~ 0 these equations give 

= 
at ax 

Substituting Fick's first law gives 

acS = !.-(D aCS) 
at ax S ax 

(2.14) 

(2.15) 

(2.16) 

(2.17) 
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which is referred to as Fick's second law. If variations of DB with concentra­
tion can be ignored this equation can be simplified to 

aCB a2cB ac = DB ax2 (2.18) 

These equations relate the rate of change of composition with time to the 
concentration profile CB(x). Equation 2.18 has a simple graphical interpreta­
tion as a2cB / ax2 is the curvature of the CB versus x curve. If the concentration 
profile appears as shown in Fig. 2.9a it has a positive curvature everywhere 
and the concentration at all points on such a curve will increase with time 
(acB / at positive). When the curvature is negative as in Fig. 2.9b CB de­
creases with time (acB / at negative). 

c c 

(0 ) x ( b) x 
Fig. 2.9 Ca) a2c/ax 2 > 0 all concentrations increase with time. (b) a2c/ax 2 < 0 all 
concentrations decrease with time. 

2.2.5 Solutions to the Diffusion Equation 

Two solutions will be considered which are of practical importance. One 
concerns the situation which is encountered in homogenization heat treat­
ments, and the other is encountered, for example, in the carburization of 
steel. 

Homogenization 
It is often of interest to be able to calculate the time taken for an in­
homogeneous alloy to reach complete homogeneity, as for example in the 
elimination of segregation in castings. 

The simplest composition variation that can be solved mathematically is if 
CB varies sinusoidally with distance in one dimension as shown in Fig. 2.10. 
In this ca se B atoms diffuse down the concentration gradients, and regions 
with negative curvature, such as between x = 0 and x = I, decrease in con­
centration, while regions between x = 1 and 21 increase in concentration. The 
curvature is zero at x = 0, I, 2/, so the concentrations at these points remain 
unchanged with time. Consequently the concentration profile after a certain 
time reduces to that indicated by the dashed line in Fig. 2.10. 
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c 

c 

X 
Fig. 2.10 The effect of diffusion on a sinusoidal variation of composition. 

At time t = 0 the concentration profile is given by 

_ 1l"X 
C= C+ ßosin-/ (2.19) 

where (; is the mean composition, and ßo is the amplitude of the initial 
concentration profile. Assuming D s is independent of concentration the 
solution of Equation 2.18 that satisfies this initial condition is 

- (1tX)-t C = C + ßo sin T exp ~ 

where ,. is a constant called the relaxation time and is given by: 

/2 
,. =--

1l"2Ds 

(2.20) 

(2.21) 

Thus the amplitude of the concentration profile after a time t (ß) is given by C 
at x = //2, i.e. 

-t 
ß = ßo exp­,. (2.22) 

In other words, the amplitude of the concentration profile decreases ex­
ponentially with time and after a sufficiently long time approaches zero so that 
C = (; everywhere. The rate at wh ich this occurs is determined by the 
relaxation time ,.. After a time t = ,., ß = ßo/e, that is, the amplitude has 
decreased to 1/2.72 of its value at t = O. The solute distribution at this stage 
would therefore appear as shown by the dashed line in Fig. 2.10. After a time 
t = 2,. the amplitude is reduced by a total of l/e2 , i.e. by about one order of 
magnitude. From Equation 2.21 it can be seen that the rate of homogeniza­
tion increases rapidly as the wavelength of the ftuctuations decreases. 

The initial concentration profile will not usually be sinusoidal, but in 
general any concentration profile can be considered as the sum of an infinite 
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series of sine waves of varying wavelength and amplitude, and each wave 
decays at a rate determined by its own T . Thus the short wavelength terms die 
away very rapidly and the homogenization will ultimately be determined by T 

for the longest wavelength component. 

The Carburization of Steel 
The aim of carburization is to increase the carbon concentration in the surface 
layers of a steel product in order to achieve a harder wear-resistant surface. 
This is usually done by holding the steel in agas mixture containing CH4 

and/or CO at a temperature where it is austenitic. By controlling the relative 
proportions of the two gases the concentration of carbon at the surface of the 
steel in equilibrium with the gas mixture can be maintained at a suitable 
constant value. At the same time carbon continually diffuses from the surface 
into the steel. 

The concentration profiles that are obtained after different times are shown 
in Fig. 2.11 . An analytical expression for these profiles can be obtained by 
solving Fick's second law using the boundary conditions: CB (at x = 0) = Cs 

and CB (00) = Co, the original carbon concentration of the steel. The speci­
men is considered to be infinitely long. In reality the diffusion coefficient of 
carbon in austenite increases with increasing concentration, but an approxi­
mate solution can be obtained by taking an average value and this gives the 
simple solution 

(2.23) 

Where 'erf' stands for error function which is an indefinite integral defined by 
the equation 

2 (z 
erf (z) = .fIT Jo exp (-l)dy 

c 

o x 
Fig. 2.11 Concentration profiles at successive times (f3 > f2 > (\) for diffusion into a 
semi-infinite bar when the surface concentration es is maintained constant. 
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The funetion is shown graphically in Fig. 2.12a. More aeeurate values ean be 
obtained from books of standard mathematieal funetions. Note that sinee erf 
(0.5) "'" 0.5 the depth at whieh the earbon eoneentration is midway between 
Cs and Co is given by (x/2j(Dt» === 0.5, that is 

x === j(Dt) (2.24) 

Thus the thickness of the earburized layer is -j(Dt). Note also that the depth 
of any isoeoneentration line is direetly proportional to j(Dt), i.e. to obtain a 
twofold inerease in penetration requires a fourfold inerease in time. 

For the ease of carbon diffusion in austenite at 1000 oe, D === 

4 X 10- 11 m2 S-I, wh ich means that a earburized layer 0.2 mm thiek 
requires a time of (0.2 x 1O-3)2/4X 10- 11 , Le. 1000 s (17 min). 

There are other situations in whieh the solution to the diffusion equation is 
very similar to Equation 2.23. For example during deearburization of steel 
the surfaee eoneentration is redueed to a very low value and earbon diffuses 

erf(z) 

--------~--~--~ __ ----__ ~z 

(0) 

o x 

( b) 
Fig. 2.12 (a) Schematic diagram illustrating the main features of the error function. 
(b) Concentration profiles at successive times (t2 > t, > 0) when two semi-infinite 
bars of different composition are annealed after welding. 



Substitutional diffusion 75 

out of the specimen. The carbon profile is then given by 

C = Co erf (2J~Dt)) (2.25) 

Another situation arises if two semi-infinite specimens of different composi­
tions Cl and C2 are joined together and annealed. The profiles in this case are 
shown in Fig. 2.12b and the relevant solution is 

C - - erf --_ (Cl + C2) (Cl - C2) (x) 
2 2 2J(Dt) 

(2.26) 

2.3 Substitutional Diffusion 

Diffusion in dilute interstitial alloys was relatively simple because the diffusing 
atoms are always surrounded by 'vacant' sites to which they can jump 
whenever they have enough energy to overcome the energy barrier for 
migration. In substitutional diffusion, however, an atom can only jump if 
there happens to be a vacant site at one of the adjacent lattice positions as 
shown in Fig. 2.2. The simplest case of substitutional diffusion is the self­
diffusion of atoms in a pure metal. This is amenable to a simple atomic model 
similar to the case of interstitial diffusion and will be treated first. Substitu­
tional diffusion in binary allOYS is more complex and will be dealt with 
separately. 

2.3.1 Self-Diffusion 

The rate of self-diffusion can be measured experimentally by introducing a 
few radioactive A atoms (A *) into pure A and measuring the rate at which 
penetration occurs at various temperatures. Since A * and A atoms are 
chemically identical their jump frequencies are also alm ost identical. Thus the 
diffusion coefficient can be related to the jump frequency by Equation 2.3, 
that is 

(2.27) 

where r is the jump frequency of both the A * and A atoms. Strictly 
speaking, Equation 2.3 was derived on the assumption that each atomic jump 
is unrelated to the previous jump. This is a good assumption for interstitial 
diffusion, but it is less valid for substitutional diffusion. The difference is that 
once an atom has jumped into a vacancy the next jump is not equally 
probable in all directions, but is most likely to occur back into the same 
vacancy. Such jumps do not contribute to the diffusive flux and therefore 
Equation 2.27 should be replaced by Dl = f D A = f . a 2r /6 where f (known 
as a correlation factor) is kss than unity. However, the effect is small and fis 
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dose to unity. (See P.G. Shewmon Diffusion in Solids McGraw-Hill, New 
York, 1963, p. 100.) 

Consider the atomic jump shown in Fig. 2.2. An atom next to a vacancy 
can make a jump provided it has enough thermal energy to overcome the 
activatiqn energy barrier to migration, AGm • Therefore the prob ability that 
any attempt at jumping will be successful is given by exp (-AGm / RT) as in 
the case of interstitial migration. However, most of the time the adjacent site 
will not be vacant and the jump will not be possible. The probability that an 
adjacent site is vacant is given by zXv where z is the number of nearest 
neighbours and Xv is the probability that any one site is vacant, which is just 
the mole fraction of vacancies in the metal. Combining all these probabilities 
gives the probability of a successful jump as zXv exp (-AGm / RT). Since the 
atoms are vibrating with a temperature-independent frequency v the number 
of successful jumps any given atom will make in 1 s is given by 

-AG r = vz X exp __ m 
v RT (2.28) 

But, if the vacancies are in thermodynamic equilibrium, Xv = X~ as given 
by Equation 1.57, i.e. 

e -AGv 
Xv = eXPRr- (2.29) 

Combining these last three equations gives 

1 2 -(AGm + AGv) 
DA = '6 Cl zvexp RT (2.30) 

Substituting AG = AH - TAS gives 

_ 1 2 ASm + ASv _(AHm + AHvl 
DA - '6 Cl zvexp R exp RT / (2.31) 

For most met als v is _1013 • In fcc metals z = 12 and Cl = a/ J2 the jump 
distance. This equation can be written more concisely as 

-QSD 
DA = DoexPRr-

where 

1 2 ASm + ASv 
Do = '6 Cl zv exp R 

and 

(2.32) 

(2.33) 

(2.34) 

Equation 2.32 is the same as was obtained for interstitial diffusion except that 
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the activation energy for self-diffusion has an extra term (AHv)' This is 
beclmse self-diffusion requires the presence of vacancies whose concentration 
depends on AHv • 

Some of the experimental data on substitutional self-diffusion are summa­
rised in Table 2.2. It can be seen that for a given crystal structure and bond 
type Q/ RT m is roughly constant; that is, the activation enthalphy for self­
diffusion, Q, is roughly proportional to the equilibrium melting temperature, 
Tm. Also, within each dass, the diffusivity at the melting temperature, 
D(T m), and Do are approximately constants. For example, for most dose­
packed metals (fcc and hcp) Q/RTm - 18 and D(Tm ) 1 /-lm- 2 S-1 

(10- 12 m2 S-I). The Q/RTm and D(Tm ) data are also plotted in Fig. 2.13 
along with data for other materials for comparison. An immediate conse­
quence of these correlations is that the diffusion coefficients of all materials 
with a given crystal structure and bond type will be approximately the same 
at the same fraction of their melting temperature, i.e. D(T/Tm ) = constant. 
(T / Tm is known as the homologous temperature .) 

The above correlations have been evaluated for atmospheric pressure. 
There are, however, limited experimental data that suggest the same correla­
tions hold independently of pressure, provided of course the effect of pressure 
on Tm is taken into account. Since volume usually increases on melting, 
raising the pressure increases Tm and thereby lowers the diffusivity at a given 
temperature. 

That a rough correlation exists between Q and Tm is not surprising: increas­
ing the interatomic bond strength makes the process of melting more difficult; 
that is, Tm is raised. It also makes diffusion more difficult by increasing AHv 

and AHm. 
Consider the effect of temperature on self-diffusion in Cu as an example. 

At 800°C (1073 K) the data in Table 2.2 give D cu = 5 X 10-9 mm2 S-I. The 
jump distance a in Cu is 0.25 nm and Equation 2.3 therefore gives 
r Cu = 5 X 105 jumps S-I. After an hour at this temperature, ~(Dt) - 4 11m. 
Extrapolating the data to 20°C, however, gives D cu - 10-34 mm2 s-t, i.e. 
r - 10-20 jumps S-I. Alternatively, each atom would make one jump every 
1012 years! 

Experimentally the usual method for determining the self-diffusion coef­
ficient is to deposit a known quantity (M) of a radioactive isotope A * onto 
the ends oftwo bars of A which are then joined as shown in Fig. 2.14a. After 
annealing for a known time at a fixed temperature, A * will have diffused into 
A and the concentration profile can be determined by machining away thin 
layers of the bar and measuring the radioactivity as a function of position. 
Since A and A * are chemically identical the diffusion of A * into A will occur 
according to Equation 2.18. The solution of this equation for the present 
boundary conditions is 

M (x2
) 

C = 2J(7TDt) exp - 4Dt (2.35) 
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Table 2.2 Experimental Oata for Substitutional Self-Oift'usion in Pure Metals 
at Atmospheric Pressure 

Data seleeted mainly from A.M. Brown and M.F. Ashby, 'Correlations for 
Diffusion Constants', Acta Metallurgica, 28: 1085 (1980). 

Class Metal 
Tm Do Q Q D(Tm) 

K mm2 S-l kJ mol- 1 RTm jJ.m2 S-l 

bee E-PU 914 0.3 65.7 8.7 53 
(rare earths) &-Ce 1071 1.2 90.0 10.1 49 

-y-La 1193 1.3 102.6 10.4 42 
-y-Yb 1796 1.2 121.0 8.1 3600 

bee Rb 312 23 39.4 15.2 5.8 
(alkali K 337 31 40.8 14.6 15 
metals) Na 371 24.2 43.8 14.2 16 

Li 454 23 55.3 14.7 9.9 

bee ß-TI 577 40 94.6 19.7 0.11 
( transition Eu 1095 100 143.5 15.8 14 
metals) Er 1795 451 302.4 20.3 0.71 

a-Fe* 1811 200 239.7 15.9 26 
&-Fe* 1811 190 238.5 15.8 26 
ß-Ti 1933 109 251.2 15.6 18 
ß-Zr 2125 134 273.5 15.5 25 

Cr 2130 20 308.6 17.4 0.54 
V 2163 28.8 309.2 17.2 0.97 
Nb 2741 1240 439.6 19.3 5.2 
Mo 2890 180 460.6 19.2 0.84 
Ta 3269 124 413.3 15.2 31 
W 3683 4280 641.0 20.9 3.4 

hep* Cd 594 11 e 5 76.2 15.4 0.99 
1. e 10 79.9 16.2 0.94 

Zn 692 11 e 13 91.6 15.9 1.6 
1. e 18 96.2 16.7 0.98 

Mg 922 11 elOO 134.7 17.6 2.3 
1. c150 136.0 17.8 2.9 

fee Pb 601 137 109.1 21.8 0.045 
AI 933 170 142.0 18.3 1.9 
Ag 1234 40 184.6 18.0 0.61 
Au 1336 10.7 176.9 15.9 1.3 
Cu 1356 31 200.3 17.8 0.59 
Ni 1726 190 279.7 19.5 0.65 
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Table 2.2 (cont. ) 

Class Metal 
Tm Do Q Q D(Tm) 

K rilm2 S-l kJ mol- 1 RTm f.1m2 S-l 

ß-Co 1768 83 283.4 19.3 0.35 
'Y-Fet 1805 49 284.1 18.9 0.29 

Pd 1825 20.5 266.3 17.6 0.49 
Th 2023 120 319.7 19.0 6.6 
Pt 2046 22 278.4 16.4 0.17 

tet* ß-Sn 505 Ile 770 107.1 25.5 0.0064 
.1 e 1070 105.0 25.0 0.015 

diamond Ge 1211 440 324.5 32.3 4.4 x 10-5 

eubic Si 1683 0.9 x 106 496.0 35.5 3.6 x 10-4 

* Data seleeted from N.L. Peterson, Solid State Physics, Vol. 22, D. Turnbull 
and H. Ehrenreich (Eds.), Aeademic Press, New York, 1968. 

t Tm for 'Y-Fe is the temperature at whieh 'Y-Fe would melt if 8-Fe did not 
intervene. 

M has units [quantity m-2] and C [quantity m-3]. Figure 2.14b shows the 
form of this equation fitted to experimental points for self-diffusion in gold. 

2.3.2 Vacancy Diffusion 

The jumping of atoms into vaeant sites ean equally weIl be eonsidered as the 
jumping of vaeaneies onto atom sites. If exeess vaeancies are introdueed into 
the lattiee they will diffuse at a rate whieh depends on the jump frequeney. 
However, a vaeaney is always surrounded by sites to which it ean jump and it 
is thus analogous to an interstitial atom (see Seetion 2.2.2). Therefore a 
vaeaney ean be eonsidered to have its own diffusion eoefficient given by 

(2.36) 

By analogy with Equation 2.8 

1 2 aSm -aHm 
Dv = (; a ZlJ exp R exp ~ (2.37) 

In this ease aHm and aSm apply to the migration of a vaeaney, and are 
therefore the same as for the migration of a substitutional atom. Comparing 
Equations 2.37 and 2.31 it ean be seen that 

(2.38) 
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Th ' of Au· 10 ayer 
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Fig. 2.14 Illustration of the principle of tracer diffusion and of the planar source 
method for determining the self-diffusion coefficient of gold. (a) Initial diffusion 
couple with planar source of radioactive gold Au *. (b) Distribution of Au * after 
diffusion for 100 h at 920 oe. (After A.G. Guy, Introduction to Materials Science, 
McGraw-Hill, New York, 1971.) 

This shows in fact that Dv is many orders of magnitude greater than DA the 
diffusivity of substitution al atoms. 

2.3.3 Diffusion in Substitutional Alloys 

During self-diffusion all atoms are chemically identical. Thus the prob ability 
of finding a vacancy adjacent to any atom and the probability that the atom 
will make a jump into the vacancy is equal for all atoms. This leads to a simple 
relationship between jump frequency and diffusion coefficient. In binary 
substitutional alloys, however, the situation is more complex . In general, the 
rate at which solvent (A) and solute (B) atoms can move into a vacant si te is 
not equal and each atomic species must be given its own intrinsic diffusion 
coefficient DA or D B . 

The fact that the A and B atoms occupy the same sites has important 
consequences on the form that Fick's first and second laws assurne for substi­
tutional alloys. It will be seen later that when the A and B atoms jump at 
different rates the presence of concentration gradients induces a movement of 
the lattice through which the A and B atoms are diffusing. 
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DA and DB are defined such that Fick's first law applies to diffusion relative 
to the lattice, that is 

dCA 
JA = -DA-­

dX 
(2.39) 

(2.40) 

where JA and JB are the fluxes of A and B atoms across a given lattice plane. 
This point did not need emphasizing in the case of interstitial diffusion 
because the lattice planes of the parent atoms were unaffected by the diffu­
sion process.1t will be seen, however, that the situation is different in the case 
of substitutional diffusion. 

In order to derive Fick's second law let us consider the interdiffusion of A 
and B atoms in a diffusion couple that is made by welding together blocks of 
pure A and B as shown in Fig. 2.15a. If the couple is annealed at a high 
enough temperature, a concentration profile will develop as shown. 

If we make the simplifying assumption that the total number of atoms per 
unit volume is a constant, Co, independent of composition, then 

(2.41) 

and 

= --- (2.42) 
dX dX 

Hence at a given position the concentration gradients driving the diffusion of 
A and B atoms are equal but opposite, and the fluxes of A and B relative to 
the lattice can be written as 

dCA 
JA = -DA-­

dX 

dCA 
JB = D B--

dX 

(2.43) 

These fluxes are shown schematically in Fig. 2.15 for the case DA> DB , i.e. 

IJAI > IJBI· 
When atoms migrate by the vacancy process the jumping of an atom into a 

vacant site can equaHy weH be regarded as the jumping of the vacancy onto 
the atom, as illustrated in Fig. 2.16. In other words, if there is a net flux of 
atoms in one direction there is an equal flux of vacancies in the opposite 
direction. Thus in Fig. 2.15a there is a flux of vacancies - JA due to the 
migration of a A atoms plus a flux of vacancies - J B due to the diffusion of B 
atoms. As JA > JB there will be a net flux of vacancies 

(2.44) 
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Fig. 2.15 Interdiffusion and vacancy fiow. (a) Composition profile after interdiffu­
sion of A and B. (b) The corresponding fiuxes of atoms and vacancies as a function of 
position x. (c) The rate at which the vacancy concentration would increase or decrease 
if vacancies were not created or destroyed by dislocation climb. 
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Fig. 2.16 The jumping of atoms in one direction can be considered as the jumping of 
vacancies in the other direction. 

This is indicated in vector notation in Fig. 2.15a. In terms of DA and D B , 

therefore 

aCA 
Iv = (DA - DB)­ax (2.45) 

This leads to a variation in Iv across the diffusion couple as illustrated in 
Fig. 2.15b. 

In order to maintain the vacancy concentration everywhere near equilib­
rium vacancies must be created on the B-rich side and destroyed on the 
A-rich side. The rate at wh ich vacancies are created or destroyed at any 
point is given by ßCjßt = -ßIjßx (Equation 2.16) and this va ries across 
the diffusion couple as shown in Fig. 2.15c. 

It is the net flux of vacancies across the middle of the diffusion couple that 
gives rise to movement of the lattice. Jogged edge dislocations can provide a 
convenient source or sink for vacancies as shown in Fig. 2.17. Vacancies can 
be absorbed by the extra half-plane of the edge dislocation shrinking while 
growth of the plane can occur by the emission of vacancies. If this or a similar 
mechanism operates on each side of the diffusion couple then the required 
flux of vacancies can be genera ted as illustrated in Fig. 2.18. This means that 
extra atomic planes will be introduced on the B-rich side while whole planes 
of atoms will be 'eaten' away on the A-rich side. Consequently the lattice 
planes in the middle of the couple will be shifted to the left. 

The velocity at wh ich any given lattice plane moves, v, can be related to the 
flux of vacancies crossing it. If the plane has an area A, during a sm all time 
interval 'öt, the plane will sweep out a volume of A v . 'öt containing 
A v . 'öt . Co atoms. This number of atoms is removed by the total number of 
vacancies crossing the plane in the same time interval, i.e. IvA . 'öt, giving 
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(0 ) ( b) (e ) 
Fig. 2.17 (a) before, (b) after: a vaeaney is absorbed at a jog on an edge disloeation 
(positive climb). (b) before, (a) after: a vaeaney is ereated by negative climb of an 
edge disloeation. (e) Perspeetive drawing of a jogged edge disloeation. 

~ Vacancies 
Atoms ~ 

X 

t 
t 

x 
x=o x 
Fig. 2.18 A fiux of vaeancies eauses the atomic planes to move through the 
speeimen. 

(2.46) 

Thus the velocity of the lattice planes will vary across the couple in the same 
way as Iv, see Fig. 2.15b. Substituting Equation 2.45 gives 

iJXA 
v = (DA - DB)­

iJx 

where the mole fraction of A, X A = CA/CO 

(2.47) 

In practice, of course, internal movements of lattice planes are usually not 
directly of interest. More practical questions concern how long homogeniza­
tion of an alloy takes, or how rapidly the composition will change at a fixed 



Substitutional diffusion 87 

position relative to the ends of a specimen. To answer these questions we can 
derive Fick's second law for substitution al alloys. 

Consider a thin slice of material 8x thick at a fixed distance x trom one end 
ot the couple which is outside the diffusion zone as shown in Fig. 2.19. If the 
total ftux of A atoms entering this slice across plane 1 is JA and the total ftux 
leaving is JA + (dJA/ dx)8x the same arguments as were used to derive 
Equation 2.16 can be used to show that 

dCA dJA 
--=--

dt dX 
(2.48) 

The total ftux of A atoms across a stationary plane with respect to the 
specimen is the sum of two contributions: (i) a diffusive ftux 
JA = - DA dC A/ dX due to diffusion relative to the lattice, and (ii) a ftux 
v . CA due to the velocity of the lattice in which diffusion is occurring. 
Therefore: 

(2.49) 

By combining this equation with Equation 2.47 we obtain the equivalent of 
Fick's first law for the ftux relative to the specimen ends: 

dCA 
JA = -(XBD A + XADB)­

dX 
(2.50) 

where X A = CA/CO and X B = CB/CO are the mole fractions of A and B 
respectively. This can be simplified by defining an interdiffusion coefficient J5 
as 

J5 = XBDA + XADB 

so that Fick's first law becolI1es 

-dCA 
J' = -D--

A dX 

I I 

JA --- -raJ 
JA+--A.öx 

OX 

1 2 -----411__ __ 
x ÖX 

(2.51) 

(2.52) 

Fig. 2.19 Derivation of Fick's second law for interdiffusion. (See text for details.) 
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Likewise, 

-äCB -äCA JB :;::: -D-- :;::: D--
äx äx 

i.e. 

JB :;::: -JA 
Substitution of Equation 2.52 into Equation 2.48 gives 

aCA :;::: ~(D acA ) 

at ax ax (2.53) 

This equation is Fick's second law for diffusion in substitutional alloys. The 
only difference between this equation and Equation 2.18 (for interstitial 
diffusion) is that the interdiffusion coefficient D for substitutional alloys 
depends on DA and DB whereas in interstitial diffusion DB alone is needed. 
Equations 2.47 and 2.51 were first derived by Darken5 and are usually known 
as Darken's equations. 

By solving Equation 2.53 with appropriate boundary conditions it is pos­
sible to obtain CA(x, t) and CB(x, t), Le. the concentration of A and Bat any 
position (x) after any given annealing time (t). The solutions that were given 
in Section 2.2.5 will be applicable to substitutional alloys provided the range 
of compositions is small enough that any effect of composition on D can be 
ignored. For example, if D is known the characteristic relaxation time for an 
homogenization an ne al would be given by Equation 2.21 using D in place of 
D B , i.e. 

(2.54) 

If the initial composition differences are so great that changes in D become 
important then more complex solutions to Equation 2.53 must be used. These 
will not be dealt with here, however, as they only add mathematical complex­
ities without increasing our understanding of the basic principles6• 

Experimentally it is possible to measure D by determining the variation of 
X A or XB after annealing a diffusion couple for a given time such as that 
shown in Fig. 2.15a. In cases where D can be assumed constant a comparison 
of Equation 2.26 and the measured concentration profile would give D. 
When D is not constant there are graphical solutions to Fick's second law that 
enable D to be determined at any composition. In order to determine DA and 
DB separately it is also necessary to measure the velocity of the lattice at a 
given point in the couple. This can be achieved in practice by inserting 
insoluble wires at the interface before welding the two blocks together. These 
wires remain in effect 'fixed' to the lattice planes and their displacement after 
a given annealing time can be used to calculate v. When v and D are known, 
Equations 2.47 and 2.51 can be used to calculate DA and DB for the composi­
tion at the markers. 

The displacement of inert wires during diffusion was first observed by 
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Smigelskas and Kirkendall in 19477 and is usually known as the Kirkendall 
effect. In this experiment a block of a-brass (Cu-30wt% Zn) was wo und 
with molybdenum wire and encapsuled in a block of pure Cu, as shown in 
Fig. 2.20. After annealing at a high temperature it was found that the 
separation of the markers (w) had decreased. This is because Dzn > Dcu 
and the zinc atoms diffuse out of the central block faster than they are 
replaced by copper atoms diffusing in the opposite direction. Similar effects 
have since been demonstrated in many other alloy systems. In general it is 
found that in any given couple, atoms with the lower melting point possess a 
high er D. The exact value of D, however, varies with the composition of the 
alloy. Thus in Cu-Ni alloys Dcu , DNi and jj are all composition dependent, 
increasing as XCu increases, Fig. 2.21. 

Molybdenum wires 

t w a.Brass 

~ 
Copper 

Fig. 2.20 An experimental arrangement to show the Kirkendall effect. 

In Fig. 2.17 it was assumed that the extra half-planes of atoms that grew or 
shrank due to the addition or loss of atoms, were parallel to the original weid 
interface so that there were no constraints on the resultant local expansion or 
contraction of the lattice. In practice, however, these planes can be oriented 
in many directions and the lattice will also try to expand or contract parallel to 
the weid interface. Such volume changes are restricted by the surrounding 
material with the result that two-dimensional compressive stresses develop in 
regions where vacancies are created, while tensile stresses arise in regions 
where vacancies are destroyed. These stress fields can even induce plastic 
deformation resulting in microstructures characteristic of hot deformation. 

Vacancies are not necessarily all annihilated at dislocations, but can also 
be absorbed by internal boundaries and free surfaces. However, those not 
absorbed at dislocations mainly agglomerate to form holes or voids in the 
lattice. Void nucleation is difficult because it requires the creation of a new 
surface and it is generally believed that voids are heterogeneously nucleated 
at impurity particles. The tensile stresses that arise in conjunction with 
vacancy destruction can also play a role in the nucleation of voids. When 
voids are formed the equations derived above cannot be used without 
modification. 

In concentrated alloys the experimentally determined values of jj, DA and 
DB are also found to show the same form of temperature dependence as all 
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other diffusivities, so that 

- - -Q 
D = Do exp RT 

-QA 
DA = DAO exp RT 

-QB 
DB = DBO exp RT 
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(2.55) 

(2.56) 

(2.57) 

However the factors that determine Do and Q in these cases are uncertain and 
there is no simple atomistic model for concentrated solutions. 

The variation of J5 with composition can be estimated in cases where it has 
not been measured, by utilizing two experimental observations8 : 

1. For a given crystal structure, J5 at the melting point is roughly constant. 
Therefore if adding B to A decreases the melting point, J5 will increase, 
at a given temperature, and vice versa. 

2. For a given solvent and temperature, both interstitial and substitution al 
diffusion are more rapid in a bcc lattice than a close-packed lattice. For 
example, for the diffusion of carbon in Fe at 910 oe, D~/DJ ~ 100. At 
850 oe the self-diffusion coefficients for Fe are such that 
D'Fel D~e ~ 100. The reason for this difference lies in the fact that the 
bcc structure is more open and the diffusion processes require less lattice 
distortion. 

2.3.4 Diffusion in Dilute Substitutional Alloys 

Another special situation arises with diffusion in dilute alloys. When X B ~ 0 
and X A ~ 1, Equation 2.51 becomes 

J5 = DB (2.58) 

This is reasonable since it me ans that the rate of homogenization in dilute 
alloys is controlled by how fast the solute (B) atoms can diffuse. Indeed the 
only way homogenization can be achieved is by the migration of the B atoms 
into the solute-depleted regions. DB for a dilute solution of B in A is called 
the impurity diffusion coefficient. Such data is more readily available than 
interdiffusion data in concentrated alloys. One way in which impurity dif­
fusion coefficients can be measured is by using radioactive tracers. 

It is often found that DB in a dilute solution of B in A is greater than DA' 
The reason for this is that the solute atoms can attract vacancies so that there 
is more than a random prob ability of finding a vacancy next to a solute atom 
with the result that they can diffuse faster than the solvent. An attraction 
between a solute atom and a vacancy can arise if the solute atom is larger than 
the solvent atoms or if it has higher valency. If the bin ding energy is very large 
the vacancy will be unable to'escape' from the solute atom. In this case the 
solute-vacancy pair can diffuse through the lattice together. 
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2.4 Atomic Mobility 

Fick's first law is based on the assumption that diffusion eventually stops, that 
is equilibrium is reached, when the concentration is the same everywhere. 
Strictly speaking this situation is never true in practice because real materials 
always cantain lattice defects such as grain boundaries, phase boundaries and 
dislocations. Some atoms can lower their free energies if they migrate to such 
defects and at 'equilibrium' their concentrations will be higher in the vicinity of 
the defect than in the matrix. Diffusion in the vicinity of these defects is 
therefore affected by both the concentration gradient and the gradient of the 
interaction energy. Fick's law alone is insufficient to describe how the concen­
tration will vary with distance and time. 

As an example consider the case of a solute atom that is too big or too small 
in comparison to the space available in the solvent lattice. The potential 
energy of the atom will then be relatively high due to the strain in the 
surrounding matrix. However, this strain energy can be reduced if the atom is 
located in a position where it better matches the space available, e.g. near 
dislocations and inboundaries, where the matrix is already distorted. 

Segregation of atoms to grain boundaries, interfaces and dislocations is of 
great technological importance. For example the diffusion of carbon or ni­
trogen to dislocations in mild steel is responsible for strain ageing and blue 
brittleness. The segregation of impurities such as Sb, Sn, P and As to grain 
boundaries in low-alloy steels produces temper embrittlement. Segregation to 
grain boundaries affects the mobility of the boundary and has pronounced 
effects on recrystallization, texture and grain growth. Similarly the rate at 
which phase transformations occur is sensitive to segregation at dislocations 
and interfaces. 

The problem of atom migration can be solved by considering the thermo­
dynamic condition for equilibrium; namely that the chemical potential of an 
atom must be the same everywhere. Diffusion continues in fact until this 
condition is satisfied. Therefore it seems reasonable to suppose that in general 
the f1.ux of atoms at any point in the lattice is proportional to the chemical 
potential gradient. Fick's first law is merely a special case of this more general 
approach. 

An alternative way to describe a f1.ux of atoms is to consider a net drift 
velocity (v) superimposed on the random jumping motion of each diffusing 
atom. The drift velocity is simply related to the diffusive f1.ux via the equation 

(2.59) 

Since atoms always migrate so as to remove differences in chemical potential 
it is reasonable to suppose that the drift velocity is proportional to the local 
chemical potential gradient, Le. 

a .... B 
VB = -MB-­ax (2.60) 
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where MB is a constant of proportionality known as the atomic mobility. Since 
f.LB has units of energy the derivative of f.LB with respect to distance (df.LB/dX) 
is effectively the chemical 'force' causing the atom to migrate. 

Combining Equations 2.59 and 2.60 gives 

JB = -M C df.LB 
B B dX (2.61 ) 

Intuitively it seems that the mobility of an atom and its diffusion coefficient 
must be closely related. The relationship can be obtained by relating d f.L/ dX to 
aC/dX for a stress-free solid solution. Using Equation 1.70 and CB = XB/V m 

Equation 2.61 becomes 

i.e. 

X B RT{ d In 'YB}aXB JB =-MB-'-1+ -
V m X B d In X B dX 

JB = -MBRT{1 + d In 'YB}dCB 
d In X B dX 

Comparison with Fick's first law gives the required relationship: 

DB = MBRT {1 + ~::;:} 
Similarly 

DA = M A RT{1 + ~::;:} 

(2.62) 

(2.63) 

(2.64) 

(2.65) 

For ideal or dilute solutions (XB - OhB is a constant and the term in brackets 
is unity, i.e. 

(2.66) 

For non-ideal concentrated solutions the terms in brackets, the so-called 
thermodynamic factor, must be included. As shown by Equation 1.71 this 
factor is the same for both A and Band is simply related to the curvature of 
the molar free energy-composition curve. 

When diffusion occurs in the presence of astrain energy gradient, for 
example, the expression for the chemical potential can be modified to include 
the effect of an elastic strain energy term E which depends on the position (x) 
relative to a dislocation, say 

f.LB = GB + RT In 'YBXB + E 

Following the above procedure, this gives 

dCB DBCB dE 
JB=-DB ·-----·-

dX RT dX 

(2.67) 

(2.68) 
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It can thus be seen that in addition to the effect of the concentration gradient 
the diffusive Dux is also affected by the gradient of strain energy, aElax. 

Other examples of atoms diffusing towards regions of high concentration 
can be found when diffusion occurs in the presence of an electric field or a 
temperature gradient. These are known as electromigration and thermo­
migration respectively9. Cases encountered in phase transformations can be 
found where atoms migrate across phase boundaries, or, as mentioned in the 
introduction, when the free energy curve has a negative curvature. The latter 
is known as spinodal decomposition. 

2.5 Tracer Diffusion in Binary Alloys 

The use of radioactive tracers were described in connection with self-diffusion 
in pure metals. It is, however, possible to use radioactive tracers to determine 
the intrinsic diffusion coefficients of the components in an alloy. The method 
is similar to that shown in Fig '2.14 except that a small quantity of a suitable 
radioactive tracer, e.g. B *, is allowed to diffuse into a homogeneous bar of 
AlB solution. The value obtained for D from Equation 2.35 is the tracer 
diffusion coefficient D~. 

Such experiments have been carried out on a whole series of gold-nickel 
alloys at 900 °ClO• At this temperature gold and nickel are completely soluble 
in each other, Fig. 2.22a. The results are shown in Fig. 2.22c. Since radio ac­
tive isotopes are chemically identical it might appear at first sight that the 
tracer diffusivities (DAu and D;'i) should be identical to the intrinsic diffusivi­
ties (D Au and DNi) determined by marker movement in a diffusion couple. 
This would be convenient as the intrinsic diffusivities are of more practical 
value whereas it is much easier to determine tracer diffusities. However, it 
can be demonstrated that this is not the case. DAu gives the rate at which Au* 
(or Au) atoms diffuse in a chemically homogeneous alloy, whereas DAu gives 
the diffusion rate of Au when a concentration gradient is present. 

The Au-Ni phase diagram contains a miscibility gap at low temperatures 
implying that !l1lmix > 0 (the gold and nickel atoms 'dislike' each other). 
Therefore, whereas the jumps made by Au atoms in a chemically 
homogeneous alloy will be equally probable in all directions, in a concentra­
tion gradient they will be biased away from the Ni-rieh regions. The rate of 
homogenization will therefore be slower in the second case, Le. D Au < DAu 
and DNi < D;'i' On the other hand since the chemical potential gradient is 
the driving force for diffusion in both types of experiment it is reasonable to 
suppose that the atomic mobilities are not affected by the concentration 
gradient. If this is true the intrinsic chemical diffusivities and tracer diffusiv­
ities can be related as folIows. 

In the tracer diffusion experiment the tracer essentially forms a dilute 
solution in the alloy. Therefore from Equation 2.66 

D~ = M~RT = MBRT (2.69) 
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Fig.2.22 Interdiffusion in Au-Ni alloys at 900°C (a) Au-Ni phase diagram, (b) the 
thermodynamie faetor, F, at 900°C, (e) experimentally measured tracer diffusivities 
at 900 °C, (d) experimentally measured interdiffusion eoeffieients eompared with 
values ealculated from (b) and (e). (From J.E. Reynolds, B.L. Averbaeh and Morris 
Cohen, Acta Metallurgica, 5 (1957) 29.) 
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The second equality has been obtained by assuming MB in the tracer experi­
ment equals MB in the chemical diffusion case. Substitution into 
Equations 2.64 and 2.51 therefore leads to the following relationships 

DA = FD;" 

D B = FDB 
and Jj = F(XBD;" + XADB) 
where Fis the thermodynamic factor, i.e. 

F = {1 + d In 'VA} = {I + d In 'VB} = XAXB d2G 
d In X A d In X B RT dX2 

The last equality follows from Equation 1.71. 

(2.70) 

(2.71) 

(2.72) 

In the case of the Au-Ni system, diffusion couple experiments have also 
been carried out so that data are available for the interdiffusion coefficient 
tJ, the full line in Fig. 2.22d. In addition there is also enough thermo­
dynamic data on this system for the thermodynamic factor F to be evaluated, 
Fig. 2.22b. It is therefore possible to check the assumption leading to the 
second equality in Equation 2.69 by combining the data in Fig. 2.22b and c 
using Equation 2.71. This produces the solid line in Fig. 2.22d. The agree­
ment is within experimental error. 

Before leaving Fig. 2.22 it is interesting to note how the diffusion coef­
ficients are strongly composition dependent. There is a difference of about 
three orders of magnitude across the composition range. This can be ex­
plained by the lower liquidus temperature of the Au-rich compositions. Also 
in agreement with the rules of thumb given earlier, Au, with the lower melting 
temperature, diffuses faster than Ni at all compositions. 

2.6 Diffusion in Ternary Alloys 

The addition of a third diffusing species to a solid solution produces mathema­
tical complexities which will not be considered here. Instead let us consider an 
illustrative example of some of the additional effects that can arise. Fe-Si-C 
alloys are particularly instructive for two reasons. Firstly silicon raises the 
chemical potential (or activity) of carbon in solution, Le. carbon will not only 
diffuse from regions of high carbon concentration but also from regions rich in 
silicon. Secondly the mobilities of carbon and silicon are widely different. 
Carbon, being an interstitial solute, is able to diffuse far more rapidly than the 
substitutionally dissolved silicon. 

Consider two pie ces of steel, one containing 3.8% silicon and 
0.48% carbon and the other 0.44% carbon but no silicon. If the two pieces 
are welded together and austenitized at 1050 °C, the carbon concentration 
profile shown in Fig. 2.23b is produced. The initial concentrations of silicon 
and carbon in the couple are shown in Fig. 2.23a and the resultant chemical 
potentials of carbon by the dotted line in Fig. 2.23c. Therefore carbon atoms 
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Fig. 2.23 (a) Carbon and silicon distribution in iron at t = O. (b) Carbon distribution 
after high-temperature anneal. (c) Chemical potential of carbon v. distance. 

on the silicon-rich side will jump over to the silicon-free side until the 
difference in concentration at the interface is sufficient to equalize the activity, 
or chemical potential, of carbon on both sides. The carbon atoms at the 
interface are therefore in local equilibrium and the interfacial compositions 
remain constant as long as the silicon atoms do not migrate. Within each half 
of the couple the silicon concentration is initially uniform and the carbon 
atoms diffuse down the concentration gradients as shown in Fig. 2.23b. The 
resultant chemical potential varies smoothly across the whole specimen 
Fig. 2.23c. If the total length of the diffusion couple is sufficiently small the 
carbon concentration in each block will eventually equal the interfacial com­
positions and the chemical potential of carbon will be the same everywhere. 
The alloy is now in astate of partial equilibrium. It is only partial because the 
chemical potential of the silicon is not uniform. Given sufficient time the 
silicon atoms will also diffuse over significant distances and the carbon atoms 
will continually redistribute themselves to maintain a constant chemical 
potential. In the final equilibrium state the concentrations of carbon and 
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Si-
Fig. 2.24 Schematic diagram showing the change in composition of two points (A 
and B) on opposite sides of the diffusion couple in Fig. 2.23. Cis the final equilibrium 
composition of the wh oie bar. (After L.S. Darken, Trans. AlME, 180 (1949) 430, © 
American Society for Metals and the Metallurgical Society of AlME, 1949.) 

silicon are uniform everywhere. The change in composition of two points on 
opposite sides of the weId will be as illustrated on the ternary diagram of 
Fig. 2.24. 

The redistribution of carbon in the Fe-Si-C system is particularly interest­
ing since the mobilities of carbon and silicon are so different. Similar, though 
less striking effects can arise in ternary systems where all three components 
diffuse substitutionally if their diffusivities (or mobilities) are unequal. 

2.7 High-Ditrusivity Paths 

In Section 2.4 the diffusion of atoms towards or away from dislocations, 
interfaces, grain boundaries and free surfaces was considered. In this section 
diffusion along these defects will be discussed. All of these defects are 
associated with a more open structure and it has been shown experimentally 
that the jump frequency for atoms migrating along these defects is higher than 
that for diffusion in the lattice. It will become apparent that under certain 
circumstances diffusion along these defects can be the dominant diffusion 
path. 

2.7.1 Diffusion along Grain Boundaries and Free Surfaces 

It is found experimentally that diffusion along grain boundaries and free 
surfaces can be described by 

(2.73) 



or 

-Qs 
Ds = Dso exp RT 
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(2.74) 

where D b and D s are the grain boundary and surface diffusivities and D bO and 
D so are the frequency factors. Qb and Qs are the experimentally determined 
va lues of the activation energies for diffusion. In general, at any temperature 
the magnitudes of D b and D s relative to the diffusivity through defect-free 
lattice D 1 are such that 

(2.75) 

This mainly reflects the relative ease with which atoms can migrate along free 
surfaces, interior boundaries and through the lattice. Surface diffusion can 
play an important role in many metallurgical phenomena, but in an average 
metallic specimen the total grain boundary area is much greater than the 
surface area so that grain boundary diffusion is usually most important. 

The effect of grain boundary diffusion can be illustrated by considering a 
diffusion couple made by welding together two metals, A and B, as shown in 
Fig. 2.25. A atoms diffusing along the boundary will be able to penetrate 
much deeper than atoms wh ich only diffuse through the lattice. In addition, as 
the concentration of solute builds up in the boundaries atoms will also diffuse 

Metal A Metal 8 

Weid interface 
Fig. 2.25 The effect of grain boundary diffusion combined with volume diffusion. 
(After R.E. Reed-Hill, Physical Metallurgy Principles, 2nd edn., Van Nostrand, New 
York,1973.) 
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from the boundary into the lattice. The process can be compared to the 
conduction of heat through a plastic in which a continuous network of 
aluminium sheets is embedded. The temperature at any point in such a 
specimen would be analogous to the concentration of solute in the diffusion 
couple. Points in the lattice dose to grain boundaries can receive solute via 
the high' conductivity path much more rapidly than if the boundaries were 
absent. Rapid diffusion along the grain boundaries increases the mean con­
centration in a slice such as dx in Fig. 2.25 and thereby produces an increase 
in the apparent diffusivity in the material as a whole. Consider now under 
what conditions grain boundary diffusion is important. 

For simplicity let us take a case of steady-state diffusion through a sheet of 
material in which the grain boundaries are perpendicular to the sheet as 
shown in Fig. 2.26. Assuming that the concentration gradients in the lattice 
and along the boundary are identical, the fluxes of solute through the lattice 
J1 and along the boundary Jb will be given by 

dC dC 
J1 = -D1dx Jb = -Dbdx (2.76) 

However the contribution of grain boundary diffusion to the total flux 
through the sheet will depend on the relative cross-sectional areas through 
which the solute is conducted. 

If the grain boundary has an effective thickness '6 and the grain size is d the 
total flux will be given by 

J = (Jb'ö + J1d)jd = _(Db'6 + D1d)dC (2.77) 
d dx 

t 
d 

t 

:::=~=i::-;:5-~ J b 

--+-+J[ 

x 

X 
Fig. 2.26 Combined lattice and boundary tluxes during steady-state diffusion 
through a thin slab of material. 
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Thus the apparent diffusion eoeffieient in this ease, 

D app = D) + Db8/ d 

Dapp Db8 
=1 +-

D) D)d 
or 
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(2.78) 

(2.79) 

It ean be seen that the relative importanee of lattiee and grain boundary 
diffusion depends on the ratio Db8/ D)d. When Db8 ~ D)d diffusion through 
the lattiee ean be ignored in eomparison to grain boundary diffusion . Thus 
grain boundary diffusion makes a signifieant eontribution to the total flux 
when 

(2.80) 

The effeetive width of a grain boundary is ~0.5 nm. Grain sizes on the other 
hand ean vary from ~ 1 to 1000 f..Lm and the effeetiveness of the grain bounda­
ries will vary aeeordingly. The relative magnitudes of Db8 and D)d are most 
sensitive to temperature . This is illustrated in Fig. 2.27 wh ich shows the effect 
of temperature on both D) and Db . Note that although Db > D) at all 
temperatures the difference inereases as temperature deereases. This is be­
cause the activation energy for diffusion along grain boundaries (Qb) is lower 
than that for lattice diffusion (Q!). For example, in fee metals it is gene rally 
found that Qb ~ 0.5 Q! . This me ans that when the grain boundary diffusivity 
is scaled by the factor 8/ d (Equation 2.78) the grain boundary eontribution to 
the total, or apparent, diffusion eoefficient is negligible in comparison to the 
lattice diffusivity at high temperatures, but dominates at low temperatures . In 

- decreasing temperalure-

log D 

1/ T 
Fig. 2.27 Diffusion in a polycrystalline meta\. 
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general it is found that grain boundary diffusion becomes important below 
about O. 75-0.8 Tm, where Tm is the equilibrium melting temperature in 
degrees Kelvin. 

The rate at which atoms diffuse along different boundaries is not the same, 
but depends on the atomic structure of the individual boundary. This in turn 
depends on the orientation of the adjoining crystals and the plane of the 
boundary. Also the diffusion coefficient can vary with direction within a given 
boundary plane. The reasons for these differences will become apparent in 
Chapter 3. 

2.7.2 Diffusion along Dislocations 

If grain boundary diffusion is compared to the conduction of he at through a 
material made of sheets of aluminium in a plastic matrix, the analogy for 
diffusion along dislocations would be aluminium wires in a plastic matrix. The 
dislocations effectively act as pipes along which atoms can diffuse with a 
diffusion coefficient Dp • The contribution of dislocations to the total diffusive 
flux through a metal will of course depend on the relative cross-sectional areas 
of pipe and matrix. Using the simple model illustrated in Fig. 2.28 it can 
easily be shown that the apparent diffusivity through a single crystal contain­
ing dislocations, Dapp , is related to the lattice diffusion coefficient by 

(2.81) 

where g is the cross-sectional area of 'pipe' per unit area of matrix. In a 
well-annealed material there are f.Oughly 105 dislocations mm-2 . Assuming 
that the cross-section of a single pipe accommodates about 10 atoms while the 
matrix contains about 1013 atoms mm-2 , makes g = 10-7 . 

At high temperatures diffusion through the lattice is rapid and gDp / D1 is 
very small so that the dislocation contribution to the total flux of atoms is 
negligible. However, since the activation energy for pipe diffusion is less than 

dislocation 

Total area of 
pipe = 9 per unit area 
of latt ice 

c;:;:======t:H---O p 

O[ 

unit area 
Fig. 2.28 Dislocations act as a high conductivity path through the lattice. 
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for lattice diffusion, D1 decreases much more rapidly than Dp with decreasing 
temperature, and at low temperatures gDpl DI can become so large that the 
apparent diffusivity is entirely due to diffusion along dislocations. 

2.8 Diffusion in Multiphase Binary Systems 

So far only diffusion in single-phase systems has been considered. In most 
practical cases, however, diffusion occurs in the presence of more than one 
phase. For example diffusion is involved in solidification transformations and 
diffusion al transformations in solids (Chapters 4 and 5). Another example of 
multiphase diffusion arises when diffusion couples are made by welding 
together two metals that are not completely miscible in each other. This 
situation arises in practice with galvanized iron and hot-dipped tin plate for 
example. In order to understand what happens in these cases consider the 
hypothetical phase diagram in Fig. 2.29a. A diffusion couple made by welding 
together pure A and pure B will result in a layered structure containing n, ß 
and 'Y. Annealing at temperature TI will produce a phase distribution and 
composition profile as shown in Fig. 2.29b. Usually X B varies as shown from 0 
to a in the n phase, from b to c in the ß phase, and from d to 1 in the 'Y phase, 
where a, b, c and d are the solubility limits of the phases at TI' The composi­
tions a and b are seen to be the equilibrium compositions of the n and ß 
phases in the n + ß field of the phase diagram. The n and ß phases are 
therefore in loeal equilibrium across the niß interface. Similarly ß and 'Y are 
in local equilibrium across the ßh interface. A sketch of the free energy­
composition diagram for this system at TI will show that the chemical poten­
tials (or activities) of A and B will vary continuously across the diffusion 
couple. Figure 2.29c shows how the activity of B varies across the couple (see 
problem 2.8). Clearly the equilibrium condition aB = a~ is satisfied at the 
niß interface (point p in Fig. 2.29c). Similar considerations apply for A and 
for the ßh interface. 

The a/ß and ß/y interfaces are not stationary but move as diffusion 
progresses. For example if the overall composition of the diffusion couple 
lies between band c the final equilibrium state will be a single block of ß. 

A complete solution of the diffusion equations for this type of diffusion 
couple is complex. However an expression for the rate at which the bounda­
ries move can be obtained as follows. Consider the plan ar niß interface as 
shown in Fig. 2.30. If unit area of the interface moves a distance dx a volume 
(dx . 1) will be converted from n containing C~ B-atoms m-3 to ß containing 
C~ B-atoms m-3 . This means that a total of 

(C~ - C~)dx 

B atoms must accumulate at the niß interface (the shaded area in Fig. 2.30). 
There is a ftux of B towards the interface from the ß phase equal to 
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Fig. 2.29 (a) A hypothetical phase diagram. (b) A possible diffusion layer structure 
for pure A and B welded together and annealed at Tl' (c) A possible variation of the 
activity of B (aB) across the diffusion couple. 
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X 

Fig. 2.30 Concentration profile across the a/ß interface and its associated movement 
assuming diffusion control. 

- D(ß)aC~/ ax and a similar ftux away from the interface into the a phase 
equal to -D(a)aCä/ax. In a time dt, therefore, there will be an accumulation 
of B atoms given by 

{( - ac~) ( - acs)} -D(ß)~ - -D(a)~ dt 

Equating the above expressions gives the instantaneous velocity of the a/ß 
interface v as 

dx 1 {_ acä - ac~} 
v = -d = (Cb ca) D(a)- - D(ß)-t B - B ax ax (2.82) 

In the above treatment it has been assumed that the a/ß interface moves as 
fast as allowed by the diffusive ftuxes in the two adjacent phases. This is quite 
correct when the two phases are in local equilibrium, and is usually true in 
diffusion-couple experiments. However, it is not true for all moving inter­
phase interfaces. By assuming local equilibrium at the interface it has also 
been assumed that atoms can be transferred across the interface as easily as 
they can diffuse through the matrix . Under these circumstances ILB and aB are 
continuous across the interface. However, in general this need not be true. If, 
for some reason, the interface has a low mobility the concentration difference 
across the boundary (C~ - Cä) will increase , thereby creating a discontinuity 
of chemical potential across the boundary. The problem of evaluating the 
boundary velocity in this case is more complex. Not only must the ftux of 
atoms to the interface balance the rate of accumulation due to the boundary 
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migration and the rate of diffusion away into the other phase, but it must also 
balance with the rate of transfer across the interface. In extreme cases the 
interface reaction, as it is sometimes called, can be so slow that there are 
virtually no concentration gradients in the two phases. Under these circum­
stances the interface migration is said to be interface controlled. The subject 
of interface migration is treated further in Section 3.5. 
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Exercises 

2.1 A thin sheet of iron is in contact with a carburizing gas on one side and a 
decarburizing gas on the other at temperature of 1000 °C. 
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(a) Sketch the resultant carbon concentration profile when a steady 
state has been reached assuming the surface concentrations are 
maintained at 0.15 and 1.4 wt% C. 

(b) If D c increases from 2.5 x 10- 11 m2 S-1 at 0.15% C to 
7.7 X 10-11 m2 S-1 at 1.4% C what will be the quantitative rela­
tionship between the concentration gradients at the surfaces? 

(c) Estimate an approximate value for the ftux of carbon through the 
sheet if the thickness is 2 mm (0.8 wt% C = 60 kg m-3 at 1000 0C). 

2.2 It was stated in Section 2.2.1 that D = ru2j6 applies to any diffusing 
species in any cubic lattice. Show that this is true for vacancy diffusion in 
a pure fcc metal. (Hint: consider two adjacent {111} planes and deter­
mine wh at fraction of all possible jumps result in the transfer of a 
vacancy between the two planes. Is the same result obtained by con­
sidering adjacent {100} planes?) 

2.3 A small quantity of radioactive gold was deposited on the end of a gold 
cylinder. After holding for 24 h at a high temperature the specimen was 
sectioned and the radioactivity of each slice was as folIows: 

Distance from end of bar 
to centre of slicej IJ.m: 10 20 30 40 50 
Activity: 83.8 66.4 42.0 23.6 8.74 

Use the data to determine D. 
2.4 Prove by differentiation that Equation 2.20 is a solution of Fick's second 

law. 
2.5 Fourier analysis is a powerful tool for the solution of diffusion problems 

when the initial concentration profile is not sinusoidal. Consider for 
example the diffusion of hydrogen from an initially uniform sheet of 
iron. If the concentration outside the sheet is maintained at zero the 
resultant concentration profile is initially a top-hat function. Fourier 
analysis of this function shows that it can be considered as an infinite 
se ries of sine terms: 

C(x) = 4Co ~ 1 . (2i + l)7rx 
,.c.. 2l· + 1 sm [ 7r i=O 

where [ is the thickness of the sheet and Co is the initial concentration. 
(a) Plot the first two terms of this series. If during diffusion the surface 

concentration is maintained dose to zero each Fourier component 
can be considered to decrease exponentially with time with a time 
constant Ti = [2 j (2i + 1 )27r2 D. The solution to the diffusion equa­
tion therefore becomes 

4Co 00 1 {(2i + l)7rX} (t) C(x, t) = - L -2. 1 sin [ exp --. 
7r ,=0 l + T, 
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(b) Derive an equation for the time at which the amplitude of the 
second term is less than 5% of the first term. 

(c) Approximately how long will it take to remove 95% of all the 
hydrogen from an initially uniform plate of a-iron at 20°C if 
(i) the plate is 10 mm thick and if (ii) it is 100 mm thick, assuming 
the surface concentration is maintained constant at zero? 
(Use data in Table 2.1.) 

2.6 Figure 2.31 shows the molar free energy-composition diagram for the 
A-B system at temperature Tl' Imagine that a block of a with composi­
tion (1) is welded to a block of ß phase with composition (2). By 
considering the chemical potentials of the A and B atoms in both the a 
and ß phases predict which way the atoms will move during a diffusion 
anneal at Tl' Show that this leads to a reduction of the molar free energy 
of the couple. Indicate the compositions of the two phases when equilib­
rium is reached. 

Molar 
free 
energy 

A 

\ 
\ 

Fig. 2.31 

® 
I 

8 

2.7 A diffusion couple including inert wires was made by plating pure 
copper on to a block of a-brass with a composition Cu-30 wt% Zn, 
Fig. 2.20. After 56 days at 785°C the marker velocity was determined as 
2.6 X 10-8 mm s -I. Microanalysis showed that the composition at the mar­
kers was X Zn = 0.22, XCu = 0.78, and that iJXZn/iJx was 0.089 mm- l . 
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From an analysis of the complete penetration curve DU at the markers 
was calculated as 4.5 x 10-13 m2 S-l. Use this data to calculate D zn and 
Dcu in brass at 22 atomic % Zn. How would you expect D zn , D cu and 
DU to vary as a function of composition? 

2.8 Draw possible free energy-composition curves for the system in 
Fig. 2.29 at Tl' Derive from this a flB-XB and an aB-XB diagram 
(similar to Fig. 1.28). Mark the points corresponding to p and q in 
Fig. 2.29c. Sketch diagrams similar to Fig. 2.29c to show aA, flA and flB 
across the diffusion couple. Wh at will be the final composition profile 
when the couple reaches equilibrium if the overall composition lies 
(i) between a and b, (ij) below a? 

2.9 Figure 2.32 is a hypothetical phase diagram for the A-B system. At a 
temperature Tl B is practically insoluble in A, whereas B can dissolve 10 
atomic % A. A diffusion couple made by welding together pure A and 
pure B is annealed at Tl' Show by aseries of sketches how the concen­
tration profiles and cx/ß interface position will vary with time. If the 
overall composition of the coup\e is 50 atomic % B what will be the 
maximum displacement of the cx/ß interface? (Assurne cx and ß have 
equal molar volumes.) 

a. -u-----""'----~ 

A 
Fig. 2.32 



3 
Crystal Interfaces and Microstructure 

Basically three different types of interface are important in metallic systems: 

1. The free surfaces of a crystal (solid/vapour interface) 
2. Grain boundaries (a/a interfaces) 
3. Interphase interfaces (a/ß interfaces). 

All crystals possess the first type of interface. The second type separates 
crystals with essentially the same composition and crystal structure, but a 
different orientation in space. The third interface separates two different 
phases that can have different crystal structures and/or compositions and 
therefore also includes solid/liquid interfaces. 

The great majority of phase transformations in metals occur by the growth 
of a new phase (ß) from a few nucleation sites within the parent phase (a)-a 
nucleation and growth process. The a/ß interface therefore plays an impor­
tant role in determining the kinetics of phase transformations and is the most 
important class of interface listed. It is, however, also the most complex and 
least understood, and this chapter thus begins by first considering the simpler 
interfaces, (1) and (2). 

The solid/vapour interface is of course itself important in vaporization and 
condensation transformations, while grain boundaries are important in re­
crystallization, i.e. the transformation of a highly deformed grain structure 
into new undeformed grains. Although no new phase is involved in recrystal­
lization it does have many features in common with phase transformations. 

The importance of interfaces is not restricted to what can be called the 
primary transformation. Since interfaces are an alm ost essential feature of the 
transformed microstructure, a second (slower) stage of most transformations 
is the microstructural coarsening that occurs with time l . This is precisely 
analogous to the grain coarsening or grain growth that follows a recrystalliza­
tion transformation. 

3.1 Interfacial Free Energy 

It is common practice to talk of interfacial energy. In reality, however, wh at is 
usually meant and measured by experiment is the interfacial free energy, "(. 
The free energy of a system containing an interface of area A and free energy 



"{ per unit area is given by 

G = Go + A"{ 

lnterfacial free energy 111 

(3.1) 

where Go is the free energy of the system assuming that all material in the 
system has the properties of the bulk-"{ is therefore the excess free energy 
arising from the fact that so me material lies in or dose to the interface. It is 
also the work that must be done at constant T and P to create unit area of 
interface. 

Consider for simplicity a wire frame suspending a liquid film, Fig. 3.1. If 
one bar of the frame is movable it is found that a force F per unit length must 
be applied to maintain the bar in position. If this force moves a sm all distance 
so that the total area of the film is increased by dA the work done by the force 
is FdA. This work is used to increase the free energy of the system by dG. 
From Equation 3.1 

dG = "{dA + Ad"{ 

Equating this with FdA gives 

d"{ 
F="{+AdA (3.2) 

In the case of a liquid film the surface energy is independent of the area of the 
interface and d,,{/dA = O. This leads to the well-known result 

F = "{ (3.3) 

i.e. a surface with a free energy "{ J m- 2 exerts a surface tension of"{ N m- 1. 

In the case of interfaces involving solids, however, it is not immediately 
obvious that "{ is independent of area. Since a liquid is unable to support shear 
stresses, the atoms within the liquid can rearrange during the stretching 
process and thereby maintain a constant surface structure. Solids, however, 
are much more viscous and the transfer of atoms from the bulk to the surface, 
which is necessary to maintain an unchanged surface structure and energy, 
will take much longer . If this time is long in comparison to the time of the 
experiment then d"{ / dA 1- 0 and surface free energy and surface tension will 
not be identical. Nevertheless, at temperatures ne ar the melting point the 
atomic mobility is usually high enough for Equation 3.3 to be applicable. 

Fig. 3.1 A liquid film on a wire frame. 
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3.2 Solid/Vapour Interfaces 

To a first approximation the structure of solid surfaces can be discussed in 
terms of a hard sphere model. If the surface is parallel to a low-index crystal 
plane the atomic arrangement will be the same as in the bulk, apart from 
perhaps· a sm all change in lattice parameter. (This assurnes that the surface is 
uncontaminated: in real systems surfaces will reduce their free energies by the 
adsorption of impurities.) Figure 3.2 for example shows the {111} {200} {220} 
atom planes in the fee metals. Note how the density of atoms in these planes 
decreases as (h2 + fi2 + F) increases. (The notation {200} and {220} has been 
used instead of {lOO} and {110} because the spacing of equivalent atom planes 
is then given by alj(h2 + k2 + 12) where a is the lattice parameter.) 

111 200 
Fig. 3.2 Atomie configurations on the three closest-paeked planes in fee erystals: 
(111), (200) and (220). 

The origin of the surface free energy is that atoms in the layers nearest the 
surface are without so me of their neighbours. Considering only nearest neigh­
bours it can be seen that the atoms on a {111} surface, for example, are 
deprived of three of their twelve neighbours. If the bond strength of the metal 
is E each bond can be considered as lowering the internal energy of each atom 
by E/2. Therefore every surface atom with three 'broken bonds' has an excess 
internal energy of 3E/2 over that of the atoms in the bulk. For a pure metal E 

can be estimated from the heat of sublimation Ls • (The latent heat of 
sublimation is equal to the sum of the latent he at of melting (or fusion) and 
the latent heat of vaporization.) If 1 mol of solid is vaporized 12 Na broken 
bonds are formed. Therefore L s = 12 Na E/2. Consequently the energy of a 
(l11J'surface should be given by 

E sv = 0.25 Lsl Na J/surface atom (3.4) 

This result will only be approximate since second nearest neighbours have 
been ignored and it has also been assumed that the strengths of the remaining 
bonds in the surface are unchanged from the bulk values. 

From the definition of Gibbs free energy the surface free energy will be 
given by 

'Y = E + PV - TS (3.5) 

Thus even if the 'PV' term is ignored surface entropy effects must be taken 
into account. It might be expected that the surface atoms will have more 
freedom of movement and therefore a higher thermal entropy compared to 
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atoms in the bulk. Extra configurational entropy can also be introduced into 
the surface by the formation of surface vacancies for example. The surface of 
a crystal should therefore be associated with a positive excess entropy which 
will partly compensate for the high internal energy of Equation 3.4. 

Experimental determination of 'Ysv is difficult2 but the measured values for 
pure met als indicate that near the melting temperature the surface free 
energy averaged over many surface planes is given by 

'Ysv = 0.15 LjNa J/surfaceatom (3.6) 

As a result of entropy effects 'Ysv is slightly dependent on temperature. 
From Equation 1.10 

( a'Y) = -S (3.7) 
aT p 

Measured values of S are positive and vary between 0 and 3 mJ m-2 K- 1• 

Some selected values of 'Ysv at the melting point are listed in Table 3.1. Note 
that met als with high melting temperatures have high values for Ls and high 
surface energies. 

Table 3.1 Average Surface Free Energies of Selected Metals 

Values selected from H. Jones 'The surface energy of solid metals' , Metal 
Science Journal, 5: 15 (1971). Experimental errors are generally about 10%. 
The values have been extrapolated to the melting temperature, Tm. 

Crystal Tm;oC 'Ysv/mJ m-2 

Sn 232 680 
Al 660 1080 
Ag 961 1120 
Au 1063 1390 
Cu 1084 1720 

8-Fe 1536 2080 
Pt 1769 2280 
W 3407 2650 

It can be seen from the above simple model that different crystal surfaces 
should have different values for Esv depending on the number of broken 
bonds (see exercise 3.1). A little consideration will show that for the surfaces 
shown in Fig. 3.2 the number of broken bonds at the surface will increase 
through the series {111} {200} {220}. Therefore ignoring possible differences 
in the entropy terms 'Ysv should also increase along the same series. 

When the macroscopic surface plane has a high or irrational {hkl} index the 
surface will appear as a stepped layer structure where each layer is a close­
packed plane. This is illustrated for a simple cubic crystal in Fig. 3.3. 
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Fig. 3.3 The 'broken-bond' model for surface energy. 
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A crystal plane at an angle 0 to the close-packed plane will contain broken 
bonds in excess of the close-packed plane due to the atoms at the steps. For 
unit length of interface in the plane of the diagram and unit length out of the 
paper (parallel to the steps) there will be (cos O/a)(l/a) broken bonds out of 
the close-packed plane and (sin 101/a)(1/a) additional broken bonds from the 
atoms on the steps. Again attributing E/2 energy to each broken bond, then 

Esv = (cos 0 + sin 101)E/2a2 (3.8) 

This is plotted as a function of 0 in Fig. 3.4. Note that the close-packed 
orientation (0 = 0) lies at a cusped minimum in the energy plot. Similar 
arguments can be applied to any crystal structure for rotations about any axis 
from any reasonably close-packed plane. Alllow-index planes should there­
fore be located at low-energy cusps. 

If "y is plotted v. 0 similar cusps are found, but as a result of entropy effects 

E 

o + e 
Fig. 3.4 Variation of surface energy as a function of a in Fig. 3.3. 
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they are less prominent than in the E-8 plot, and for the higher index planes 
they can even disappear. 

A convenient method for plotting the variation of "Y with surface orienta­
tion in three dimensions is to construct a surface ab out an origin such that the 
free energy of any plane is equal to the distance between the sUrface and the 
origin when measured along the normal to the plane in question. A section 
through such a surface is shown in Fig. 3.5a. This type of polar representation 
of "Y is known as a "y-plot and has the useful property of being able to predict 
the equilibrium shape of an isolated single crystal. 

For an isolated crystal bounded by several planes Al' A2, etc. with ener­
gi es "Yl, "Y2, etc. the total surface energy will be given by the sum 
Al"Yl + A2"Y2 + ... The equilibrium shape has the property that ~Ai"Yi is a 
minimum and the shape that satisfies this condition is given by the fOllowing, 
so-called Wulff construction3 . For every point on the "Y surface, such as A in 
Fig. 3.5a, a plane is drawn through the point and normal to the radius vector 

A Wulff plane // 
/ 

(0) 

( b) 

(110) 

Fig. 3.5 (a) A possible (lio) section through the "(-plot of an fee crystal. The length 
OA represents the free energy of a surface plane whose normal lies in the direction 
OA. Thus OB = "(001), oe = "(111). etc. Wulff planes are those such as that which 
lies normal to the vector OA. In this case the Wulff planes at the cusps (B, e, etc.) give 
the inner envelope of all Wulff planes and thus the equilibrium shape. (b) The 
equilibrium shape in three dimensions showing {lOO} (square faces) and {111} (hex­
agonal faces). 
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OA. The equilibrium shape is then simply the inner envelope of all such 
planes. Therefore when the ')'-plot contains sharp cusps the equilibrium shape 
is a polyhedron with the largest facets having the lowest interfacial free 
energy. 

Equilibrium shapes can be determined experimentally by annealing small 
single crystals at high temperatures in an inert atmosphere, or by annealing 
small voids inside a crystal4 . Fcc crystals for example usually assurne a form 
ShOW~r.6 {WO} and {111} facets as shown in Fig. 3.5b. Of course when ')' is 
isotropie, as for liquid droplets, both the ')'-plot and equilibrium shapes are 
spheres. 

When the equilibrium shape is known it is possible to use the Wulff 
theorem in reverse to give the relative interfacial free energies of the 
observed facet planes. In Fig. 3.5 for example the widths of the crystal in the 
(111) and (100) directions will be in the ratio of ')'(111): ')'(100). {110} facets are 
usually missing from the equilibrium shape of fcc metals, but do however 
appear for bcc metals5 . 

The aim of this section has been to show, using the simplest type of 
interface, the origin of interfacial free energy, and to show some of the 
methods available for estimating this energy. Let us now consider the second 
type of interface, grain boundaries. 

3.3 Boundaries in Single-Phase Solids 

The grains in a single-phase polycrystalline specimen are generally in many 
different orientations and many different types of grain boundary are there­
fore possible. The nature of any given boundary depends on the misorienta­
tion of the two adjoining grains and the orientation of the boundary plane 
relative to them. The lattiees of any two grains can be made to coincide by 
rotating one of them through a suitable angle about a single axis. In general 
the axis of rotation will not be simply oriented with respect to either grain or 
the grain-boundary plane, but there are two special types of boundary that 
are relatively simple. These are pure tilt boundaries and pure twist bound­
aries, as illustrated in Fig. 3.6. A tilt boundary occurs when the axis of 
rotation is parallel to the plane of the boundary, Fig. 3.6a, whereas a twist 
boundary is formed when the rotation axis is perpendieular to the boundary, 
Fig.3.6b. 

3.3.1 Low-Angle and High-Angle Boundaries 

It is simplest to first consider what happens when the misorientation between 
two grains is smalI. This type of boundary can be simply considered as an 
array of dislocations. Two idealized bOundaries are illustrated in Fig. 3.7. 
These are symmetrical low-angle tilt and low-angle twist boundaries. The 
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Fig. 3.6 The relative orientations of the crystals and the boundary forming (a) a tilt 
boundary (b) a twist boundary. 

low-angle tilt boundary is an array of parallel edge dislocations, whereas the 
twist boundary is a cross-grid of two sets of screw dislocations. In each case 
the atoms in the regions between the dislocations fit almost perfectly into both 
adjoining crystals whereas the dislocation cores are regions of poor fit in 
which the crystal structure is highly distorted. 

The tilt boundary need not be symmetrical with respect to the two adjoin­
ing crystals. However, if the boundary is unsymmetrical dislocations with 
different Burgers vectors are required to accommodate the misfit, as illus­
trated in Fig. 3.8. In general boundaries can be a mixture of the tilt and twist 
type in wh ich case they must contain several sets of different edge and screw 
dislocations. 

The energy of a low-angle grain boundary is simply the total energy of the 
dislocations within unit area of boundary. (For brevity the distinction be­
tween internal energy and free energy will usually not be made from now on 
except where essential to understanding.) This depends on the spacing of the 
dislocations which, for the simple arrays in Fig. 3.7, is given by 

b b 
D=-=-

sin e e (3.9) 

where b is the Burgers vector of the dislocations and e is the angular mis­
orientation across the boundary. At very small values of e the dislocation 
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spacing is very large and the grain boundary energy "{ is approximately 
proportional to the density of dislocations in the boundary (liD), i.e. 

"{oce (3.10) 

However as eincreases the strain fields of the dislocations progressively 
cancel out so that "{ increases at a decreasing rate as shown in Fig. 3.9. In 
general when e exceeds 10-15° the dislocation spacing is so small that the 
dislocation cores overlap and it is then impossible to physically identify the 
individual dislocations (see Fig. 3.10). At this stage the grain-boundary en­
ergy is almost independent of misorientation, Fig. 3.9. 

When e > 10-15° the boundary is known as a random high-angle grain 
boundary. The difference in structure between low-angle and high-angle grain 
boundaries is lucidly illustrated by the bubble-raft model in Fig. 3.11. High­
angle boundaries contain large areas of poor fit and have a relatively open 
structure. The bonds between the atoms are broken or highly distorted and 
consequently the boundary is associated with a relatively high energy. In 

-
~ 

(a) 
~ 

.1. 

\ 
\.1 

.1. 

1 
l' 

Fig. 3.7 (a) Low-angle tilt boundary, (b) low-angle twist boundary: 0 atoms in crys­
tal below boundary, • atoms in crystal above boundary. (After W.T. Read Jr., 
Dislocations in Crystals, McGraw-Hill, New York, 1953.) 
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low-angle boundaries, however, most of the atoms fit very weH into both 
lattices so that there is very little free volume and the interatomic bonds are 
only slightly distorted. The regions of poor fit are restricted to the dislocation 
cores which are associated with a higher energy similar to that of the random 
high-angle boundary. 

Ir 
,... -<D- -<ll-

0--0--<0-

Fig.3.7 (b) 
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Fig. 3.8 An unsymmetric tilt boundary. Dislocations with two different Burgers 
vectors are present. (After W.T. Read Jr., Dislocations in Crystals, McGraw-Hill, 
New York, 1953.) 
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Fig. 3.9 Variation of grain boundary energy with misorientation (schematic). 
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{ 

Disordered grain boundary structure (schematic). 

Fig. 3.11 Rafts of soap bubbles showing several grains of varying misorientation. 
Note that the boundary with the smallest misorientation is made up of a row of 
dislocations , whereas the high-angle boundaries have a disordered structure in which 
individual dislocations cannot be identified. (After P.G. Shewmon, Transformations 
in Metals , McGraw-Hill , New York, 1969, from C.S. Smith.) 
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Measured high-angle grain boundary energies 'Yb are often found to be 
roughly given by 

1 
'Yb = "3'Ysv (3.11) 

Some selected values for 'Yb and 'Ybhsv are listed in Table 3.2. As for 
surface energies 'Yb is temperature dependent decreasing somewhat with 
increasing temperature. 

Table 3.2 Measured Grain Boundary Free Energies 

Values selected from compilation given in Interfacial Phenomena in Metals 
and Alloys, by L.E. Murr, Addison-Wesley, London, 1975. 

Crystal 'Yb/mJ m-2 T;oC 'Ybhsv 

Sn 164 223 0.24 
Al 324 450 0.30 
Ag 375 950 0.33 
Au 378 1000 0.27 
Cu 625 925 0.36 

'Y-Fe 756 1350 0.40 
8-Fe 468 1450 0.23 

Pt 660 1300 0.29 
W 1080 2000 0.41 

3.3.2 Special High-Angle Grain Boundaries 

Not all high-angle boundaries have an open disordered structure. There are 
some special high-angle boundaries which have significantly lower energies 
than the random boundaries. These boundaries only occur at particular 
misorientations and boundary planes which allow the two adjoining lattices to 
fit together with relatively little distortion of the interatomic bonds. 

The simplest special high-angle grain boundary is the boundary between 
two twins. If the twin boundary is parallel to the twinning plane the atoms in 
the boundary fit perfectly into both grains. The result is a coherent twin 
boundary as illustrated in Fig. 3.12a. In fcc metals this is a {111} c1ose-packed 
plane. Because the atoms in the boundary are essentially in undistorted 
positions the energy of a coherent twin boundary is extremely low in compari­
son to the energy of a random high-angle boundary. 

If the twin boundary does not lie exactly parallel to the twinning plane, 
Fig. 3.12b, the atoms do not fit perfectly into each grain and the boundary 
energy is much higher. This is known as an incoherent twin boundary. The 
energy of a twin boundary is therefore very sensitive to the orientation of the 
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Fig. 3.12 (a) A eoherent twin boundary. (b) An ineoherent twin boundary. 
(e) Twin-boundary energy as a funetion of the grain boundary orientation. 

boundary plane. If 'Y is plotted as a funetion of the boundary orientation a 
sharp eusped minimum is obtained at the eoherent boundary position as 
shown in Fig. 3.12e. Table 3.3 lists some experimentally measured values of 
eoherent and ineoherent twins along with high-angle grain boundary energies 
for eomparison. 

Table 3.3 Measured Boundary Free Energies for Crystals in Twin Rela­
tionships (Units mJ m -2) 

Values seleeted from eompilation given in Interfacial Phenamena in Metals 
and Altays, by L.E. Murr, Addison-Wesley, London, 1975. 

Crystal 

Cu 
Ag 
Fe-Cr-Ni 

(stainless 
steel type 304) 

Coherent twin Ineoherent twin Grain 
boundary energy boundary energy boundary energy 

21 
8 

19 

498 
126 
209 

623 
377 
835 
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Twin orientations in fee met als eorrespond to a misorientation of 70.5° 
about a (110) axis. Therefore a twin boundary is a special high-angle grain 
boundary, and a eoherent twin boundary is a symmetrical tilt boundary 
between the two twin-related erystals. Figure 3.13 shows measured grain­
boundary energies for various symmetrie tilt boundaries in aluminium. When 
the two grains are related by a rotation about a (100) axis, Fig. 3.13a, it ean be 
seen that most high-angle boundaries have about the same energy and should 
therefore have a relatively disordered strueture eharaeteristic of random 
boundaries. However, when the two grains are related by a rotation about a 
(110) axis there are several large-angle orient at ions whieh have signifieantly 
lower energies than the random boundaries (Fig. 3.13b). e = 70S eorres­
ponds to the eoherent twin boundary diseussed above, but low-energy bound­
aries are also found for several other values of e. The reasons for these other 
special grain boundaries are not weIl understood. However, it seems reason­
able to suppose that the atomie strueture of these boundaries is sueh that they 
eontain extensive areas of good fit. A two-dimensional example is shown in 
Fig. 3.14. This is a symmetrieal tilt boundary between grains with a miso­
rientation of 38.2°. The boundary atoms fit rather weIl into both grains 
leaving relatively little free volume. Moreover, a sm all group of atoms 
(shaded) are repeated at regular intervals along the boundary. 

3.3.3 Equilibrium in Polycrystalline Materials 

Let us now examine how the possibility of different grain-boundary energies 
affeets the microstrueture of a polyerystalline material. Figure 3.15 shows the 
mierostrueture of an annealed austenitic stainless steel (fee). The material 
eontains high- and low-angle grain boundaries as weIl as eoherent and 
ineoherent twin boundaries. This mierostrueture is determined by how the 
different grain boundaries join together in spaee. When looking at two-
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Fig. 3.13 Measured grain boundary energies for symmetrie tilt boundaries in Al 
(a) when the rotation axis is parallel to (100), (b) when the rotation axis is parallel to 
(110). (After G. Hasson and C. Goux, Scripta Metallurgica, 5 (1971) 889.) 
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Fig. 3.14 Special grain boundary. (After H. Gleiter, Physica Status Solidi (b) 45 
(1971) 9.) 

dimensional microstructures like this it is important to remember that in 
reality the grains fill three dimensions, and only one section of the three­
dimensional network of internal boundaries is apparent. Note that two grains 
meet in a plane (a grain boundary) three grains meet in a line (a grain edge) 
and four grains meet at a point (a grain corner). Let us now consider the 
factors that control the grain shapes in a recrystallized polycrystal. 

The first problem to be solved is why grain boundaries exist at all in 
annealed materials. The boundaries are all high-energy regions that increase 
the free energy of a polycrystal relative to a single crystal. Thelefore a 
polycrystalline material is never a true equilibrium structure. However the 
grain boundaries in a polycrystal can adjust themselves during annealing to 
produce a metastable equilibrium at the grain boundary intersections. 

The conditions for equilibrium at a grain-boundary junction can be 
obtained either by considering the total grain boundary energy associated 
with a particular configuration or, more simply, by considering the forces that 
each boundary exerts on the junction. Let us first consider a grain-boundary 
segment of unit width and length OP as shown in Fig. 3.16. If the boundary is 
mobile then forces Fx and Fy must act at 0 and P to maintain the boundary in 
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Fig. 3.15 Microstructure of an annealed crystal of austenitic stainless steel. (After 
P.G. Shewrnon, Transformations in Metals, McGraw-Hill, New York, 1969.) 

equilibrium. From Equation 3.3, Fx = "{. Fy can be calculated as folIows: if P 
is moved a small distance 8y while 0 remains stationary, the work done will be 
Fßy. This must balance the increase in boundary energy caused by the 
change in orientation Ba, i.e. 

d"{ 
Fy 8y = I da oe 

Since 8y = 18a 

d"{ 
Fy = da (3 .12) 

This means that if the grain-boundary energy is dependent on the orientation 
of the boundary (Fig. 3.16b) a force d"{ / da must be applied to the ends of the 
boundary to prevent it rotating into a lower energy orientation. d"{ /d8 is 
therefore known as a torque term. Since the segment OP must be supported 
by forces Fx and Fy the boundary exerts equal but opposite forces - Fx and 
- Fy on the ends of the segment which can be junctions with other grain 
boundaries. 
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Fig. 3.16 (a) Equilibrium forces Fx and Fy supporting a length I of boundary OP. 
(b) The origin of Fy • 

If the boundary happens to be at the orientation of a cusp in the free 
energy, e.g. as shown in Fig. 3.12c, there will be no torque acting on the 
boundary since the energy is a minimum in that orientation. However, the 
boundary will be able to resist a pulling force Fy of up to (d'Y/d6)cusp without 
rotating. 

If the boundary energy is independent of orientation the torque term is 
zero and the grain boundary behaves like a soap film. Under these conditions 
the requirement for metastable equilibrium at a junction between three 
grains, Fig. 3.17, is that the boundary tensions 'Yl' 'Y2 and 'Y3 must balance. In 

grain 3 

y 23 ------!--< grain 1 

grain 2 
Y12 

Fig. 3.17 The balance of grain boundary tensions for a grain boundary intersection 
in metastable equilibrium. 
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mathematical terms 

"123 "113 "112 --=--=-- (3.13) sin 61 sin 62 sin 63 

Equation 3.13 applies to any three boundaries so that grain 1 for example 
could be a different phase to grains 2 and 3. Alternatively grain 1 could be a 
vapour phase inwhich case "113 and "112 would be the surface energies of the 
solid. This relationship is therefore useful for determining relative boundary 
energies. 

One method of measuring grain-boundary energy is to anneal a specimen at 
a high temperature and then measure the angle at the intersection of the 
surface with the boundary, see Fig. 3.18. If the solid-vapour energy ("{sv) is 
the same for both grains, balancing the interfacial tensions gives 

(3.14) 

Therefore if 'Ysv is known 'Yb can be calculated. 
When using Equation 3.14 it must be remembered that the presence of any 

torque terms has been neglected and such an approximation may introduce 
large errors. To illustrate the importance of such effects let us consider the 
junction between coherent and incoherent twin boundary segments, 
Fig. 3.19. As a result of the orientation dependence of twin boundary energy, 
Fig. 3.12c, it is energetically favourable for twin boundaries to align themselves 
parallel to the twinning plane. If, however, the boundary is constrained to follow 
a macroscopic plane that is near but not exactly parallel to the twinning plane the 
boundary will usually develop a stepped appearance with large coherent 
low-energy facets and small incoherent high-energy risers as shown in Fig. 3.19. 
Although this configuration does not minimize the total twin boundary area it 
does minimize the total free energy. 

It is clear that at the coherent/incoherent twin junction the incoherent twin 
boundary tension 'Yi must be balanced by a torque term. Since the maximum 
value of the resisting force is d'Ycld6, the condition that the configuration 
shown in Fig. 3.19 is stable is 

Ysv 
Y sv 

Solid 

Vapour 

Sol id 

(3.15) 

Fig. 3.18 The balance of surface and grain boundary tensions at the intersection of a 
grain boundary with a free surface. 
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Fig. 3.19 (a) A twin boundary in a thin foil speeimen as imaged in the transmission 
eleetron microseope. (After M.N. Thompson and C.W. Chen, Philips Electron Optics 
Bulletin, EM 112-1979/1 Eindhoven, 1979.) (b) and (e), the eoherent and ineoherent 
segments of the twin boundary. 

Likewise the 'incoherent' facet must also be a special boundary showing 
rather good fit in order to provide a force resisting 'Yc. That is 

d'Y· :<: _1 

'Yc ~ da (3.16) 

However, since 'Yc is usually very small the incoherent interface need only lie 
in a rather shallow energy cusp. 
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The above can be obtained in another way from energy considerations. If 
(metastable) equilibrium exists at P in Fig. 3.19c, then a small displacement 
such as that shown should either produce no change, or an increase in the 
total free energy of the system, i.e. 

dG ;;. 0 

Considering unit depth a small displacement 8y at P will increase the total free 
energy by an amount 

dG = Zd'Yc M - 'V·8y ;;. 0 
dO'l 

Since IM = 8y this leads to the same result as given by Equation 3.15 

3.3.4 Thermally Activated Migration of Grain Boundaries 

In the previous section it was shown that metastable equilibrium at the grain 
boundary junctions requires certain conditions to be satisfied for the angles at 
which three boundaries intersect. For simplicity, if all grain boundaries in a 
polycrystal are assumed to have the same grain-boundary energy independent 
of boundary orientation, Equation 3.13 predicts that 01 = O2 = 03 = 120°. It 
can be similarly shown that the grain-boundary edges meeting at a corner 
formed by four grains will make an angle of 109° 28'. If these, or similar, 
angular conditions are satisfied then metastable equilibrium can be estab­
lished at all grain boundary junctions. However, for a grain structure to be in 
complete metastable equilibrium the surface tensions must also balance over 
all the boundary faces between the junctions. If a boundary is curved in the 
shape of a cylinder, Fig. 3.20a, it is acted on by a force of magnitude 'Ylr 
towards its cent re of curvature. Therefore the only way the boundary tension 
forces can balance im three dimensions is if the boundary is plan ar (r = 00) or 
if it is curved with equal radii in opposite directions, Fig. 3.20b and c. It is 

t 
~ 

y y/r y 

(a) (b) (c) 
Fig. 3.20 (a) A cylindrical boundary with a radius of curvature r is acted on by a 
force "flr. (b) A planar boundary with no net force. (c) A doubly curved boundary 
with no net force. 
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theoretically possible to construct a three-dimensional polycrystal in which 
the boundary tension forces balance at all faces and junctions, but in a 
random polycrystalline aggregate, typical of real metallurgical specimens, 
there are always boundaries with a net curvature in one direction. Conse­
quently a random grain structure is inherently unstable and, on annealing at 
high temperatures, the unbalanced forces will cause the boundaries to mi­
grate towards their centres of curvature. 

The effect of different boundary curvatures in two dimensions is shown in 
Fig. 3.21. Again for simplicity it has been assumed that equilibrium at each 
boundary junction results in angles of 120°. Therefore if a grain has six 
boundaries they will be planar and the structure metastable. However, if the 
total number of boundaries around a grain is less than six each boundary must 
be concave inwards, Fig. 3.21. These grains will therefore shrink and even­
tually disappear during annealing. Larger grains, on the other hand, will have 

Fig. 3.21 Two-dimensional grain boundary configurations. The arrows indicate the 
directions boundaries will migrate during grain growth. 

more than six boundaries and will grow. The overall result of such boundary 
migration is to reduce the number of grains, thereby increasing the mean 
grain size and reducing the total grain boundary energy. This phenomenon is 
known as grain growth or grain coarsening. It occurs in met als at tempera­
tures above about 0.5 Tm where the boundaries have significant mobility. A 
soap froth serves as a convenient analogue to demonstrate grain growth as 
shown in Fig. 3.22. 

In the case of the cells in a soap froth the higher pressure on the concave 
side of the films induces the air molecules in the sm aller cells to diffuse 
through the film into the larger cells, so that the small cells eventually 
disappear. A similar effect occurs in metal grains. In this case the atoms in the 
shrinking grain detach themselves from the lattice on the high pressure side of 
the boundary and relocate themselves on a lattice site of the growing grain. 
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Fig. 3.22 Two-dimensional cells of a soap solution illustrating the process of grain 
growth. Numbers are time in minutes . (After C.S. Smith, Metal Interfaces, American 
Society for Metals, 1952, p. 81.) 

For example in Fig. 3.23a if atom C jumps from grain 1 to grain 2 the 
boundary locally advances a small distance. 

The effect of the pressure difference caused by a curved boundary is to 
create a difference infree energy (~G) or chernical potential (~1-1) that drives 
the atoms across the boundary, see Fig. 3.24. In a pure metal6.G and 6.1-1 are 
identical and are given by Equation 1.58 as 

2-yVm 
~G = -- = ~1-1 

r 
(3.17) 

This free energy difference can be thought of as a force pulling the grain 
boundary towards the grain with the higher free energy. As shown in 
Fig. 3.25, if unit area of grain boundary advances a distance Bx the number of 
moles of material that enter grain B is Bx . 1/ V m and the free energy released 
is given by 

~G' Bx/Vm 

This can be equated to the work done by the pulling force FBx. Thus the 
pulling force per unit area of boundary is given by 

~G 
F=­

Vm 
(3.18) 

In other words the force on the boundary is simply the free energy difference 
per unit volurne of material. 

In the case of grain growth ~G arises from the boundary curvature, but 
Equation 3.18 applies equally to any boundary whose migration causes a 
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(a) Grain 1 Grain 2 ( b) 

-5--
Fig. 3.23 (a) The atomic mechanism of boundary migration. The boundary migrates 
to the left if the jump rate from grain 1 ~ 2 is greater than 2 ~ 1. Note that the free 
volume within the boundary has been exaggerated for clarity. (b) Step-like structure 
where close-packed planes protrude into the boundary. 

decrease in free energy. During recrystallization, for example , the boundaries 
between the new strain-free grains and the original deformed grains are acted 
on by a force LiG / V m where, in this case, LiG is due to the difference in 
dislocation strain energy between the two grains . Figure 3.26 shows a disloca­
tion-free recrystallized grain expanding into the heavily deformed surround­
ings. In this case the total grain-boundary area is increasing, therefore the 

o Grain Grain 2 
Distance 

Fig. 3.24 The free energy of an atom during the process of jumping from one grain 
to the other. 
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Unit 
area 
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Low-energy grain 

dx Grain boundary 
Fig. 3.25 A boundary separating grains with different free energies is subjected to a 
pulling force F. 

Fig. 3.26 Grain boundary migration in nickel pulled 10% and annealed 10 min at 
425 oe. The region behind the advancing boundary is dislocation-free. (After 
J. Bailey and P. Hirsch, Proceedings of (he Royal Society, London, A267 (1962) 11.) 
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driving force for recrystallization must be greater than the opposing boundary 
tension forces. Such forces are greatest when the new grain is smallest, and 
the effect is therefore important in the early stages of recrystallization. 

Let us now consider the effect of the driving force on the kinetics of 
boundary migration. In order for an atom to be able to break away from grain 
1 it must acquire, by thermal activation, an activation energy !::..G a , Fig 3.24. If 
the atoms vibrate with a frequency 'Ul the number of times per second that an 
atom has this energy is 'Ul exp (-!::..Ga / RT). If there are on average nl atoms 
per unit area in a favourable position to make a jump there will be 
nl'Ul exp (-!::..Ga/RT) jumps m-2 S-l away from grain 1. It is possible that 
not all these atoms will find a suitable site and 'stick' to grain 2. If the 
probability of being accommodated in grain 2 is A 2 the effective flux of atoms 
from grain 1 to 2 will be 

A 2n l'U1 exp (-!::..Ga/RT) m-2 S-l 

There will also be a similar flux in the reverse direction, but if the atoms in 
grain 2 have a lower free energy than the atoms in grain 1 by !::..G (mol-I) the 
flux from 2 to 1 will be 

A l n 2'U2 exp - (!::..Ga + !::..G)/ RT m-2 S-l 

When !::..G = 0 the two grains are in equilibrium and there should therefore 
be no net boundary movement, i.e. the rates at which atoms cross the 
boundary in opposite directions must be equal. Equating the above expres­
sions then gives 

Aln2'U2 = A 2n l'U1 

For a high-angle grain boundary it seems reasonable to expect that there will 
not be great problems with accommodation so that Al = A 2 = 1. Assuming 
the above equality also holds for small non-zero driving forces, with !::..G > 0 
there will be a net flux from grain 1 to 2 given by 

Jnet = A2nl'U1 exp ( - ~~) {1 - exp ( - ~~) } (3.19) 

If the boundary is moving with a velocity v the above flux must also be equal 
to v/(Vrn/Na) , where (Vrn/Na) is the atomic volume. Therefore expanding 
exp (-!::..G / RT) for the usual ca se of !::..G ~ RT gives 

_ A 2n l'U1 V~ x (_ !::..Ga) !::..G 
v - N RT e p RT V 

a rn 

(3.20) 

In other words v should be proportional to the driving force 
!::..G/Vrn (N m-2). Equation 3.20 can be written more simply as 

v = M· !::..G/Vrn (3.21) 

where M is the mobility of the boundary, i.e. the velo city under unit driving 
force. Substituting for !::..Ga gives 
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{ Azn1Vl V~ (LlS a)} (-LlH a
) M= exp - exp--

NaRT R RT 
(3.22) 

Note how this simple model predicts an exponential increase in mobility with 
temperature. This result should of course be intuitively obvious since the 
boundary migration is a thermally activated process like diffusion. Indeed 
boundary migration and boundary diffusion are closely related processes. 
The only difference is that diffusion involves transport along the boundary 
whereas migration requires atomic movement across the boundary. 

The model used to derive Equations 3.20 and 3.22 is particularly simple 
and gross assumptions are involved. In real grain boundaries it is likely that 
not all atoms in the boundary are equivalent and some will jump more easily 
than others. For example atoms may jump preferably to and from atomic 
steps or ledges, like atoms A, Band C in Fig. 3.23a. In fcc met als such ledges 
should exist where the close-packed {111} planes protrude into the boundary. 
Boundary migration could then be effected by the growth of the ledges in one 
grain combined with the shrinking of corresponding ledges in the other grain 
as shown in Fig. 3.23b. 

From our discussion of grain-boundary structure it might be argued that the 
relatively open structure of a random high-angle boundary should lead to a 
high mobility whereas the denser packing of the special boundaries should be 
associated with a low mobility. Indeed, the coherent twin boundary, in wh ich 
the atoms fit perfectly into both grains, has been found to be almost entirely 
immobile6. However, experiments have shown that the other special bound­
aries are usually more mobile than random high-angle boundaries. The 
reason for this is associated with the presence of impurity or alloying elements 
in the meta!. Figure 3.27 shows data for the migration of various boundaries 
in zone-refined lead alloyed with different concentrations of tin. For a given 
driving force the velocity of the random boundaries decreases rapidly with 
increasing alloy content. Note that only very low concentrations of impurity 
are required to change the boundary mobility by orders of magnitude. The 
special grain boundaries on the other hand are less sensitive to impurities. It is 
possible that if the metal were 'perfectly' pure the random boundaries would 
have the higher mobility. The reason for this type of behaviour arises from 
differences in the interactions of alloy elements or impurities with different 
boundaries. 

Generally the grain boundary energy of a pure metal changes on alloying. 
Often (though not always) it is reduced. Under these circumstances the 
concentration of alloying element in the boundary is higher than that in the 
matrix. In grain boundary segregation theory, grain boundary solute con­
centrations (Xb) are expressed as fractions of a monolayer. One monolayer 
(Xb = 1) me ans that the solute atoms in the boundary could be arranged to 
form a single close-packed layer of atoms. Approximately, for low mole 
fractions of solute in the matrix (Xo), the boundary solute concentration X b 

is given by 
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Fig. 3.27 Migration rates of special and random boundaries at 300 oe in zone-refined 
lead alloyed with tin under equal driving forces. (After K. Aust and J.W. Rutter, 
Transactions of the Metallurgical Society of AlME, 215 (1959) 119.) 

LlGb 
X b = Xoexp RT (3.23) 

LlGb is the free energy released per mole when a so lu te atom is moved 
from the matrix to the boundary. LlGb is usually positive and roughly 
increases as the size misfit between the solute and matrix increases and as 
the solute-solute bond strength decreases. 

Equation 3.23 shows how grain boundary segregation decreases as tem­
perature increases, i.e. the solute 'evaporates' into the matrix. For suf­
ficiently low temperatures or high values of LlGb , X b increases towards unity 
and Equation 3.23 breaks down as X b approaches a maximum saturation 
value. 

The variation of boundary mobility with alloy concentration varies 
markedly from one element to another. It is a general rule that LlGb , wh ich 
measures the tendency for segregation, increases as the matrix solubility 
decreases. This is ilIustrated by the experimental data in Fig. 3.28. 
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Fig. 3.28 Increasing grain boundary enrichment with decreasing solid solubility in a 
range of systems. (After E.D. Hondras and M.P. Seah, International Metallurgical 
Reviews, December 1977, Review 222.) 

When the boundary moves the solute atoms migrate along with the 
boundary and exert a drag that reduces the boundary velocity. The mag­
nitude of the drag will depend on the bin ding energy and the concentration 
in the boundary. The higher mobility of special boundaries can, therefore, 
possibly be attributed to a low solute drag on account of the relatively more 
c1ose-packed structure of the special boundaries. 

The variation of boundary mobility with alloy concentration varies mark­
edly from one element to another. It is a general rule that QB, which 
measures the tendency for segregation, increases as the matrix solubility 
decreases. This is illustrated by the experimental data in Fig. 3.28. 

It is possible that the higher mobility of special grain boundaries plays a 
role in the development of recrystallization textures. If a polycrystalline metal 
is heavily deformed, by say rolling to a 90% reduction, a deformation texture 
develops such that the rolled material resembles a deformed single crystal. 
On heating to a sufficiently high temperature new grains nuc1eate and begin to 
grow. However, not all grains will grow at the same rate: those grains which 
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are specially oriented with respect to the matrix should have higher mobility 
boundaries and should overgrow the boundaries of the randomly oriented 
grains. Consequently the recrystallized structure should have a special 
orientation with respect to the original 'single crystal'. Thus a new texture 
results which is called the recrystallization texture. Recrystallization is, 
however, incompletely understood and the above explanation of recrystalliza­
tion texture may be an oversimplification. It is possible for example that the 
nuclei for recrystallization are themselves specially oriented with respect to 
the deformed matrix. 

A recrystallization texture is sometimes an advantage. For example the 
proper texture in Fe-3wt% Si alloys makes them much better soft magnets 
for use in transformers. Another application is in the production of textured 
sheet for the deep drawing of such materials as low-carbon steel. The only 
way to avoid a recrystallization texture is to give an intermediate anneal 
before adeformation texture has been produced. 

3.3.5 The Kinetics of Grain Growth 

It was shown in the previous section that at sufficiently high temperatures the 
grain boundaries in a recrystallized specimen will migrate so as to reduce the 
total number of grains and thereby increase the mean grain diameter. In a 
single-phase metal the rate at which the mean grain diameter jj increases with 
time will depend on the grain boundary mobility and the driving force for 
boundary migration. 

If we assume that the me an radius of curvature of all the grain boundaries is 
proportional to the mean grain diameter jj the mean driving force for grain 
growth will be proportional to 2-y / jj (Equation 3.17). Therefore 

2-y djj 
v = aM --=- =-

D dt 
(3.24) 

where a is a proportionality constant of the order of unity. 
Note that this equation implies that the rate of grain growth is inversely 

proportional to jj and increases rapidly with increasing temperature due to 
increased boundary mobility, M. Integration of Equation 3.24 taking tJ = Do 
when t = 0 gives 

jj2 = D6 + Kt (3.25) 

where K = 4aM-y. 

Experimentally it is found that grain growth in single-phase metals follows a 
relationship of the form 

(3.26) 
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Fig. 3.29 OpticaI micrograph (x 130) showing abnonnal grain growth in a fine-grained 
steeI containing 0.4 wt% carbon. The matrix grains are prevented from growing by a fine 
dispersion of unresolved carbide particIes. (After D.T. Gawne and G.T. Higgins, Joumal 
of the Iron and Steel Institute, 209 (1971), 562.) 

where K' is a proportionality constant which increases with temperature . This 
is equivalent to Equation 3.25 with n = 0.5 if D ;::.: Da. However, the ex­
perimentally determined values of n are usually much less than 0.5 and only 
approach 0.5 in very pure metals or at very high temperatures. The reasons 
for this are not fully understood, but the most likely explanation is that the 
velocity of grain boundary migration, v, is not a linear function of the driving 
force, tJ.G, i.e the mobility in Equation 3.21 is not a constant but varies with 
tJ.G and therefore also with D. It has been suggested that such a variation of 
M could arise from solute drag effects 7 . 

The above type of grain growth is referred to as normal. Occasionally 
so-called abnormal grain growth can occur . This situation is characterized by 
the growth of just a few grains to very large diameters. These grains then 
expand consuming the surrounding grains, until the fine grains are entirely 
replaced by a coarse-grained array. This effect is illustrated in Fig. 3.29 and is 
also known as discontinuous grain growth, coarsening, or secondary recrystal­
lization. It can occur when normal grain growth ceases due to the presence of 
a fine precipitate array. 

The nature of normal grain growth in the presence of a se co nd phase 
deserves special consideration. The moving boundaries will be attached to 
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Fig. 3.30 The effect of spherical particles on grain boundary migration. 

the particles as shown in Fig. 3.30a, so that the particles exert a puBing force 
on the boundary restricting its motion. The boundary shown in Fig. 3.30b 
will be attached to the particle along a length 2"ITr cos e. Therefore if the 
boundary intersects the particle surface at 90° the particle will feel a puB of 
(2"ITr ' cos e . 'Y) sin e. This will be counterbalanced by an equal and opposite 
force acting on the boundary. As the boundary moves over the particle 
surface e changes and the drag reaches a maximum value when sin e . cos e is 
a maximum, i.e. at e = 45°. The maximum force exerted by a single particle is 
therefore given by "ITT"{. 

If there is a volume fraction [ of particles all with a radius r the mean 
number of particles intersecting unit area of a random plane is 3[ /2"ITr 2 so that 
the restraining force per unit area of boundary is approximately 
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Fig. 3.31 Effect of second-phase particles on grain growth. 

3f 3f"'l 
P = -- . 'ITry = -

2'ITr2 2r 
(3.27) 

This force will oppose the driving force for grain growth, namely -2"'1/ jj as 
shown in Fig. 3.30a. When jj is sm all P will be relatively insignificant, but as 
jj increases the driving force 2"'1/ jj decreases and when 

2"'1 3f"'l 
jj 2r 

the driving force will be insufficient to overcome the drag of the particles and 
grain growth stagnates. A maximum grain size will be given by 

- 4r 
D max = 3f (3.28) 

The effect of a particie dispersion on grain growth is illustrated in Fig. 3.31. It 
can be seen that the stabilization of a fine grain size du ring heating at high 
temperatures requires a large volume fraction of very small particies. Unfor­
tunately, if the temperature is too high, the particles tend to coarsen or 
dissolve. When this occurs some boundaries can break away before the others 
and abnormal grain growth occurs, transforming the fine-grain array into a 
very coarse-grain structure. For example aluminium-killed steels contain 
aluminium nitride precipitates which stabilize the austenite grain size during 
heating. However, their effectiveness disappears above about 1000 oe when 
the aluminium nitride precipitates start to dissolve. 

3.4 Interphase Interfaces in Solids 

The previous section dealt in some detail with the structure and properties of 
boundaries between crystals of the same solid phase. In this section we will be 



A 

B 

Interphase interfaces in so lids 143 

(a). (b) 

Fig. 3.32 Strain-free coherent interfaces. (a) Each crystal has a different chemical 
composition but the same crystal structure. (b) The two phases have different lattices. 

dealing with boundaries between different solid phases, i.e. where the two 
adjoining crystals can have different crystal structures and/or compositions. 
Interphase boundaries in solids can be divided on the basis of their atomic 
structure into three classes: coherent, semicoherent and incoherent. 

3.4.1 Interface Coherence 

Fully Coherent Interfaces 
A coherent interface arises when the two crystals match perfectly at the 
interface plane so that the two lattices are continuous across the interface, 

Plane (111) f.c.c. 
(0001) h.c.p. 

Directions <!]O) fee. 
<1120> hep. 

Fig. 3.33 The c1ose-packed plane and directions in fcc and hcp structures. 
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Fig. 3.32. This can only be achieved if, disregarding chemical species, thc 
interfacial plane has the same atomic conjiguration in both phases, and this 
requires the two crystals to be oriented relative to each other in a special way. 
For example such an interface is formed between the hcp silicon-rich K phase 
and the fcc copper-rich a-matrix in Cu-Si alloys. The lattice parameters of 
these two phases are such that the (l11)fee plane is identical to the (OOOlhep 
plane. Both planes are hexagonally close-packed (Fig. 3.33) and in this par­
ticular case the interatomic distances are also identical. Therefore when the 
two crystals are joined along their close-packed planes with the close-packed 
directions parallel the resultant interface is completely coherent. The require­
ment that the close-packed planes and directions are parallel pro duces an 
orientation relationship between the two phases such that 

(111)aj j(OOOl)K 

[ilO]aj j[1120]K 

Note that the relative orientation of two crystals can always be specified by 
giving two parallel planes (hkl) and two parallel directions [uvw] that He in 
those planes. 

Within the bulk of each phase every atom has an optimum arrangement of 
nearest neighbours that produces a low energy. At the interface, however, 
there is usually a change in composition so that each atom is partly bonded to 
wrong neighbours across the interface. This increases the energy of the 
interfacial atoms and leads to a chemical contribution to the interfacial energy 
beh)' For a coherent interface this is the only contribution, i.e. 

"'f(coherent) = "'feh (3.29) 

In the case of the a-K interface in Cu-Si alloys the interfacial energy has been 
estimated to be as low as 1 mJ m-2 • In general coherent interfacial energies 
range up to about 200 mJ m-2 • 

ß 

Fig. 3.34 A coherent interface with slight mismatch leads to coherency strains in the 
adjoining lattices. 
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In the case of a hcpjfcc interface there is only one plane that can form a 
coherent interface: no other plane is identical in both crystal lattices. If, 
however, the two adjoining phases have the same crystal structure and lattice 
parameter then, apart from differences in composition, alllattice planes are 
identical. 

When the distance between the atoms in the interface is not identical it is 
still possible to maintain coherency by straining one or both of the two lattices 
as illustrated in Fig. 3.34. The resultant lattice distortions are known as 
coherency strains. 

Semicoherent Interfaces 
The strains associated with a coherent interface raise the total energy of the 
system, and for sufficiently large atomic misfit, or interfacial area, it becomes 
energetically more favourable to replace the coherent interface with a semi­
coherent interface in wh ich the disregistry is periodically taken up by misfit 
dislocations, Fig. 3.35. 

If da and dp are the unstressed interplanar spacings of matching planes in 
the a and ß phases respectively, the disregistry, or misfit between the two 
lattices (ö) is defined by 

Ö = dp - da (3.30) 
da 

It can be shown that in one dimension the lattice misfit can be completely 
accommodated without any long-range strain fields by a set of edge disloca­
tions with a spacing D given by 

I ..... • --- 0 ----..I-I 

a. 

ß 

Fig. 3.35 A semicoherent interface. The misfit parallel to the interface is accommo­
dated by aseries of edge dislocations. 
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or approximately, for sm all 8 

b 
D =-

8 

(3.31) 

(3.32) 

where b = (da + dß)/2 is the Burgers vector of the dislocations. The match­
ing in the interface is now alm ost perfect except around the dislocation 
cores where the structure is highly distorted and the lattice planes are 
discontinuous. 

In practice misfit usually exists in two dimensions and in this case the 
coherency strain fields can be completely relieved if the interface contains two 
non-parallel sets of dislocations with spacings D1 = bd81 and D2 = b2/82 , as 
shown in Fig. 3.36. If, for some reason, the dislocation spacing is greater than 
given by Equation 3.32, the coherency strains will have been only partially 
relieved by the misfit dislocations and residuallong-range strain fields will still 
be present. 

The interfacial energy of a semicoherent interface can be approximately 
considered as the sum of two parts: (a) a chemical contribution, 'Ych' as for a 
fully coherent interface, and (b) a structural term 'Yst, which is the extra 
energy due to the structural distortions caused by the misfit dislocations, i.e. 

'Y (semicoherent) = 'Ych + 'Yst (3.33) 

Equation 3.32 shows that as the misfit 8 increases the dislocation spacing 
diminishes. For small values of 8 the structural contribution to the interfacial 
energy is approximately proportional to the density of dislocations in the 
interface, Le. 

'Yst oe 8 (for sma1l8) (3.34) 

However 'Yst increases less rapidly as 8 be comes larger and it levels out when 
8 = 0.25 in a similar way to the variation of grain-boundary energy with e 

_'+-_-+ 10,= b,/ö, 
Ö1 t ~f't 
~ 

Ö2 

Fig. 3.36 Misfit in two directions (81 and 82) can be accommodated by a cross-grid of 
edge dislocations with spacings D1 = bIl81 and D2 = b2/82 . 
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shown in Fig. 3.9. The reason for such behaviour is that as the misfit disloca­
tion spacing decreases the associated strain fields increasingly overlap and 
annul each other. The energies of semicoherent interfaces are generally in the 
range 200-500 mJ m-2 . 

When B > 0.25, i.e. one dislocation every four interplanar spacings, the 
regions of poor fit around the dislocation co res overlap and the interface 
cannot be considered as coherent, i.e . it is incoherent. 

Incoherent Interfaces 
When the interfacial plane has a very different atomic configuration in the two 
adjoining phases there is no possibility of good matching across the interface. 
The pattern of atoms may either be very different in the two phases or, if it is 
similar, the mteratomic distances may differ by more than 25%. In both cases 
the interface is said to be incoherent. In general, incoherent interfaces result 
when two randomly oriented crystals are joined across any interfacial plane as 
shown in Fig. 3.37. They may, however, also ex ist between crystals with an 
orientation relationship if the interface has a different structure in the two 
crystals. 

Very little is known about the detailed atomic structure of incoherent 
interfaces, but they have many features in common with high-angle grain 
boundaries. For example they are characterized by a high energy (-500-
1000 mJ m-2) wh ich is relatively in sensitive to the orientation of the interfa-

Fig. 3.37 An incoherent interface. 
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cial plane. They probably have a disordered atomic structure in that the 
interface lacks the long-range periodicity of coherent and semicoherent inter­
faces; although, like high-angle grain boundaries, they may have a step-like 
structure caused by low-index planes protruding into the interface, as in 
Fig.3.23b. 

Camp lex Semicaherent Interfaces 
The semicoherent interfaces considered above have been observed at 
boundaries formed by low-index planes whose atom patterns and spacings are 
clearly almost the same. However, semicoherent interfaces, i.e. interfaces 
containing misfit dislocations, can also form between phases when good 
lattice matching is not initially obvious . For example, fcc and bcc crystals 
often appear with the closest-packed planes in each phase, (l11)fcc and 
(llO)bcc, almost parallel to each other. Two variants of this relationship are 
found: the so-called Nishiyama-Wasserman (N-W) relationship: 

(llO)bccl l(lll)fcc, [001 ]bccl 1[101 ]fcc 

and the so-called Kurdjumov-Sachs (K-S) relationship: 

(llO)bccl l(l11)fcc, [11 1 ]bccl I[Ol11rcc 

Fig. 3.38 Atomie matehing aeross a (1l1)fcc/(llO)bcc interface bearing the NW 
orientation relationship for lattiee parameters closely eorresponding to the case of fce 
and bce iron (M.G . Hall et al., Surface Science, 31 (1972) 257). 



Interphase interfaces in solids 149 

(The only difference between these two is a rotation in the closest-packed 
planes of 5.26°.) Figure 3.38 shows that the matching between a {1l1}fcc and 
{llOhcc plane bearing the N - W relationship is very poor. Good fit is 
restricted to small diamond-shaped areas that only contain -8% of the 
interfacial atoms. A similar situation can be shown to exist for the K-S 
orientation relationship. Thus it can be seen that a coherent or semicoherent 
interface between the two phases is impossible for large interfaces parallel 
to {1l1 }fcc and {llOhcc' Such interfaces would be incoherent. 

The degree of coherency can, however, be greatly increased if a macro­
scopically irrational interface is formed, (i.e. the indices of the interfacial 
plane in either crystal structure are not small integers). The detailed struc­
ture of such interfaces is, however, uncertain due to their complex nature8 ,9. 

3.4.2 Second-Phase Shape: Interfacial Energy Effects 

In a two-phase microstructure one of the phases is often dispersed within the 
other, for example ß-precipitates in an a-matrix. Consider for simplicity a 
system containing one ß-precipitate embedded in a single a crystal, and 
assurne for the moment that both the precipitate and matrix are strain free. 
Such a system will have a minimum free energy when the shape of the 
precipitate and its orientation relationship to the matrix are optimized to give 
the lowest total interfacial free energy (LA(Yi)' Let us see how this can be 
achieved for different types of precipitate. 

Fully Coherent Precipitates 
If the precipitate (ß) has the same crystal structure and a similar lattice 
parameter to the parent a phase the two phases can form low-energy co he re nt 
interfaces on all sides-provided the two lattices are in a parallel orientation 
relationship-as shown in Fig. 3.39a. This situation arises during the early 
stages of many precipitation hardening heat treatments, and the ß phase is 
then termed a fully coherent precipitate or a GP zone. (GP for Guinier and 
Preston who first discovered their existence. This discovery was made inde­
pendently by Preston in the USA and Guinier in France, both employing 
X-ray diffraction techniques. Their work was later confirmed by transmission 
electron microscopy.) Since the two crystal structures match more or less 
perfectly across all interfacial planes the zone can be any shape and remain 
fully coherent. Thus a )I-plot of the a/ß interfacial energy would be largely 
spherical and, ignoring coherency strains, the equilibrium shape of a zone 
should be a sphere. Figure 3.39b shows an example of GP zones, -10 nm in 
diameter, in an AI-4 atomic % Ag alloy. The zones are a silver-rich fcc 
region within the aluminium-rich fcc matrix. Since the atomic diameters of 
aluminium and silver differ by only 0.7% the coherency strains make a 
negligible contribution to the total free energy of the alloy. In other systems 
such as Al-Cu where the atomic size difference is much larger strain energy is 
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Fig. 3.39 (a) A zone with no misfit (0 Al, • Ag, for example). (b) Eleetron miero­
graph of Ag-rieh zones in an AI-4 atomie % Ag alloy (x 300000) . (After R .B. 
Nieholson, G. Thomas and J. Nutting , Journal of the Institute of Metals, 87 (1958-
1959) 431.) 
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found to be more important than interfacial energy in determining the 
equilibrium shape of the zone. This point will be discussed further in 
Section 3.4.3. 

Partially Coherent Precipitates 
From an interfacial energy standpoint it is favourable for a precipitate to be 
surrrounded by low-energy coherent interfaces. However, when the precipi­
tate and matrix have different crystal structures it is usually difficult to find a 
lattice plane that is common to both phases. Nevertheless, for certain phase 
combinations there may be one plane that is more or less identical in each 
crystal, and by choosing the correct orientation relationship it is then possible 
for a low-energy co he re nt or semicoherent interface to be formed. There 
are, however, usually no other planes of good matching and the precipitate 
must consequently also be bounded by high-energy incoherent interfaces. 

A 'V-plot of the interfacial energy in this case could look like that in 
Fig. 3.40, i.e. roughly a sphere with two deep cusps normal to the coherent 
interface. The Wulff theorem would then predict the equilibrium shape to be 
a disc with a thickness/diameter ratio of 'Vchi' where 'Vc and 'Vi are the 
energies of the (semi-) coherent and in co he re nt interfaces. Triangular, 
square, or hexagonal plate shapes would be predicted if the 'V plot also 
contained smaller cusps at symmetrically disposed positions in the plane of 
the plate. 

The precipitate shapes observed in practice may deviate from this shape for 
two main reasons. Firstly the above construction only predicts the equilibrium 
shape if misfit strain energy effects can be ignored. Secondly the precipitate 
may not be able to achieve an equilibrium shape due to constraints on how it 
can grow. For example disc-shaped precipitates may be much wider than the 
equilibrium shape if the incoherent edges grow faster than the broad faces. 

Plate-like precipitates occur in many systems. For example the hcp 'V'­
phase in aged AI-4 atomic % Ag alloys forms as plates with semicoherent 

Equilibrium 
shape 

Fig. 3.40 A section through a -y-plot for a precipitate showing one coherent or 
semicoherent interface, together with the equilibrium shape (a disc). 
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broad faees parallel to the {111}a matrix planes and with the usual hep/fce 
orientation relationship. The tetragonal 8' phase in aged AI-4 wt% Cu alloys 
are also plate-shaped, but in this case the broad faees of the plate (known as 
the habit plane) are parallel to {lOO}a matrix planes. Figure 3.41 shows that 
the {100},, planes are almost identical to the (001)8' plane so that the orienta­
tion relationship between the 8' and the aluminium-rich matrix (a) is 

(001)8-1/(001)" 
[100]8'/ /[100]" 

Examples of the precipitate shapes that are formed in these two systems are 
shown in Figs. 3.42 and 3.43. Note that as a result of the cubic symmetry of 
the aluminium-rieh matrix there are many possible orientations for the pre­
eipitate plates within any given grain. This leads to a very charaeteristic 
crystallographie microstructure known after its discoverer as a Widmanstätten 
morphology. 

Besides plate-like habits preeipitates have also been observed to be lath­
shaped (a plate elongated in one direction) and needle-like. For example the 
S phase in AI-Cu-Mg alloys forms as laths and the ß' phase in AI-Mg-Si 
alloys as needles lO• In both cases the precipitates are also crystallographically 
related to the matrix and produce a Widmanstätten structure. 

Incoherent Precipitates 
When the two phases have completely different crystal structures, or when 
the two lattices are in a random orientation, it is unlikely that any coherent or 
semicoherent interfaces form and the precipitate is said to be ineoherent. 
Since the interfaeial energy should be high for all interfacial planes, the "V-plot 
and the equilibrium inclusion shape will be roughly spherical. It is possible 

X 
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Fig. 3.41 (a) The unit cell of the 6' precipitate in AI-Cu alloys. (b) The unit cell of 
the matrix. (After J.M. Silcock, T.J. Heal and H.K. Hardy, Journal ofthe Institute of 
Metals, 82 (1953-1954) 239.) 
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Fig. 3.42 Electron micrograph showing the Widmanstätten morphology of "V' pre­
cipitates in an AI-4 atomic % Ag alloy. GP zones can be seen between the "V', e.g. at H 
(x 7000). (R.B. Nicholson and J. Nutting, Acta Metallurgica, 9 (1961) 332.) 

that certain crystallographic planes of the inclusion He at cusps in the ,,-plot so 
that polyhedral shapes are also possible. Such faceting, however, need not 
imply the existence of coherent or semicoherent interfaces. 

The ß(CuAI2) precipitate in Al-Cu alloys is an example of an incoherent 
precipitate, Fig. 3.44. It is found that there is an orientation relationship 
between the ß and aluminium matrix but this is probably because ß forms 
from the ß' phase and does not imply that e is semicoherent with the matrix. 

Precipitates on Grain Boundaries 
Rather special situations arise when a second-phase particle is located on a 
grain boundary as it is necessary to consider the formation of interfaces with 
two differently oriented grains. Three possibilities now arise (Fig. 3.45): the 
precipitate can have (i) incoherent interfaces with both grains, (ii) a co he re nt 
or semicoherent interface with one grain and an incoherent interface with the 
other, or (iii) it ean have a coherent or semicoherent interface with both 
grains. The first two cases are commonly eneountered but the third possibility 
is unHkely since the very restrictive erystallographic conditions imposed by 
coherency with one grain are unlikely to yield a favourable orientation 
relationship towards the other grain. 
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Fig. 3.43 Electron micrograph of a single coherent 8' plate in an AI-3.9 wt% Cu 
alloy aged 24 h at 200°C. (x 80 000) (R. Sankaran and C. Laird, Acta Metallurgica 22 
(1974) 957.) 

The minimization of interfacial energy in these cases also leads to planar 
semicoherent (or coherent) interfaces and smoothly curved incoherent inter­
faces as before, but now the interfacial tensions and torques must also balance 
at the intersection between the precipitate and the boundary. (The shape that 
produces the minimum free energy can in fact be obtained by superimposing 
the -V plots for both grains in a certain wayl1.) An example of a grain­
boundary precipitate is shown in Fig. 3.46. 

3.4.3 Second-Phase Shape: Misfit Strain Effects 

Fully Coherent Precipitates 
It was pointed out in the previous section that the equilibrium shape of a 
coherent precipitate or zone can only be predicted from the -V-plot when the 
misfit between the precipitate and matrix is small. When misfit is present the 
formation of coherent interfaces raises the free energy of the system on 
account of the elastic strain fields that arise. If this elastic strain energy is 
denoted by !:J.Gs the condition for equilibrium becomes 

(3.35) 
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Fig. 3.44 Electron micrograph showmg incoherent particles of e in an Al-Cu alloy. 
(After G.A. Chadwick, Metallography of Phase Transformations, Butterworths, Lon­
don, 1972, from C. Laird.) 

The origin of thecoherency strains for amisfitting precipitate is demon­
strated in Fig. 3.47. If the volume of matrix encircled in Fig. 3.47a is cut out 
and the atoms are replaced by smaller atoms the cut-out volume will undergo 
a uniform negative dilatation al strain to an incIusion with a smaller lattice 
parameter, Fig. 3.47b. In order to produce a fully coherent precipitate the 
matrix and inclusion must be strained by equal and opposite forces as shown 
in Fig. 3.47c12. 

If the lattice parameters of the unstrained precipitate and matrix are aß and 
acx respectively the unconstrained misfit ö is defined by 

(0) 

Semicoherent 

Ineoherent 
(b) (e) 

Fig. 3.45 Possible morphologies for grain boundary precipitates. Incoherent inter­
faces smoothly curved. Coherent or semicoherent interfaces planar. 
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Fig. 3.46 An (X precipitate at a grain boundary tripie point in an (X - ß Cu-In alloy. 
Interfaces A and Bare incoherent while C is semicoherent (x 310) . (After G.A. 
Chadwick, Metallography of Phase Transformations, Butterworths, London, 1972.) 

ö = _a!:..ß _-_a.=", (3 .36) 

However, the stresses maintaining coherency at the interfaces distort the 
precipitate lattice, and in the case of a spherical inclusion the distortion is 
purely hydrostatic, i.e . it is uniform in all directions, giving a new lattice 
parameter aß. The in situ or constrained misfit e is defined by 

aß - a", 
e= 

a", 
(3.37) 

I L Il .-r..... 
( \ - ~ ~ -I \ 

1 J \ J 
..- -r--~ ..... f-"" 

(a) (b) (c) 

Fig. 3.47 The origin of coherency strains. The number of lattice points in the hole is 
conserved. 
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If the elastic moduli of the matrix and inclusion are equal and Poisson's 
ratio is 1/3, E and 8 are simply related by 

2 
E =-8 

3 
(3.38) 

In praetice the inclusion has different elastie eonstants to the matrix, neverthe­
less E still usually lies in the range 0.5 8 < E < 8. 

When the precipitate is a thin dise the in situ misfit is no longer equal in all 
direetions, but instead it is large perpendieular to the dise and almost zero in 
the plane of the broad faees, as shown in Fig. 3.48. 

In general the total elastie energy depends on the shape and elastic prop­
erties of both matrix and inclusion. However, if the matrix is elastieally 
isotropie and both preeipitate and matrix have equal elastic moduli, the total 
elastic strain energy !:J..Gs is independent of the shape of the precipitate, and 
assuming Poissons ratio (v) = 1/3 it is given by 

!:J..Gs = 4JJ.82 • V (3.39) 

where JJ. is the shear modulus of the matrix and V is the volume of the 
uneonstrained hole in the matrix. Therefore eohereney strains produee an 
elastie strain energy whieh is proportional to the volume of the preeipitate and 
inereases as the square of the lattiee misfit (82 ). If the preeipitate and inclu­
sion have different elastie moduli the elastic strain energy is no longer shape­
independent but is a minimum for a sphere if the inclusion is hard and a dise if 
the inclusion is soft. 

The ahove eomments applied to isotropie matriees. In general, however, 
most metals are elastieally anisotropie. For example, most eubie metals 

t 
E Large 

~ 

--
Fig. 3.48 For a coherent thin disc there is little misfit parallel to the plane of the disco 
Maximum misfit is perpendicular to the disco 
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(except molybdenum) are soft in (100) directions and hard in (111). 
The shape with a minimum strain energy under these conditions is a disc 
parallel to {100} since most of the misfit is then accommodated in the soft 
directions perpendicular to the disco 

The influence of strain energy on the equilibrium shape of coherent precipi­
tates can be illustrated by reference to zones in various aluminium-rich 
precipitation hardening alloys: Al-Ag, Al-Zn and Al-Cu. In each case zones 
containing 50-100% solute can be produced. Assuming the zone is pure 
solute the misfit can be calculated directly from the atomic radii as shown 
below. 

Atom radius (A) 
Zone misfit (3) 
Zone shape 

Al: 1.43 Ag: 1.44 
+0.7% 
sphere 

Zn: 1.38 
-3.5% 
sphere 

Cu: 1.28 
-10.5% 
disc 

When 3 < 5% strain energy effects are less important than interfacial energy 
effects and spherical zones minimize the total free energy. For 3 ;;:: 5%, as in 
the case of zones in Al-Cu, the sm all increase in interfacial energy caused by 
choosing a disc shape is more than compensated by the reduction in co he ren­
cy strain energy. 

Incoherent Inclusions 
When the inc1usion is incoherent with the matrix, there is no attempt at 
matching the two lattices and lattice sites are not conserved across the 
interface. Under these circumstances there are no coherency strains. Misfit 
strains can, however, still arise if the inclusion is the wrong size for the hole it 
is located in, Fig. 3.49. In this case the lattice misfit 3 has no significance and 
it is better to consider the volume misfit d as defined by 

dV 
d = V (3.40) 

where V is the volume of the unconstrained hole in the matrix and (V - d V) 
the volume of the unconstrained inc1usion. (For a coherent spherical inc1usion 

I I I 
l 1 j 

r-H ~ I-f--

I T I 
I I I 

(0) ( b) 
Fig. 3.49 The origin of misfit strain for an incoherent inclusion (no lattice matching). 
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the volume misfit and the linear lattiee misfit are related by A = 38. But for a 
non-coherent sphere the number of lattiee' sites within the hole is not pre­
served (see Fig. 3.49) and in this case A =f 38.) When the matrix hole and 
inclusion are constrained to occupy the same volume the elastie strain fields 
again result as shown in Fig. 3.49b. The elasticity problem in this case has 
been solved for spheroidal inclusions whieh are described by the equation 

x2 y2 Z2 
- + - + - = 1 (3.41) 
a2 a2 c2 

Nabarro13 gives the elastic strain energy for a homogeneous incompressible 
inclusion in an isotropie matrix as 

2 2 
AGs = 3ILA . V . f(c/a) (3.42) 

where ~ is the shear modulus of the matrix. Thus the elastie strain energy is 
proportional to the square of the volume misfit ,~,2. The function f(cla) is a 
factor that takes into account the shape effects and is shown in Fig. 3.50. 
Notiee that, for a given volume, a sphere (cla = 1) has the highest strain 
energy while a thin, oblate spheroid (cla ~ 0) has a very low strain energy, 
and a needle shape (cl a = (0) lies between the two. If elastic anisotropy is 
included14 it is found that the same general form for f(cla) is preserved 
and only small changes in the exact values are required. Therefore the 
equilibrium shape of an incoherent inc1usion will be an oblate spheroid with 
cla value that balances the opposing effects of interfacial energy and strain 

t 
f (e/a) 
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o~ ______ ~ ________ ~ ______ ~ 
o c/a .2 

Fig. 3.50 The variation of misfit strain energy with ellipsoid shape, f(c/a). (After 
F.R.N. Nabarro, Proceedings of the Royal Society A, 175 (1940) 519.) 
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energy. When ß is sm all interfacial energy effects should dominate and the 
inclusion should be roughly sphercial. 

Plate-Like Precipitates 
Consider a plate-like precipitate with coherent broad faces and incoherent or 
semicoherent edges, Fig. 3.51. (The criterion for whether these interfaces are 
coherent or semicoherent is discussed in the following section.) Misfit across 
the broad faces then results in large coherency strains parallel to the plate, but 
no coherency strains will exist across the edges. The in situ misfit across the 
broad faces increases with increasing plate thickness which leads to greater 
strains in the matrix and higher shear stresses at the corners of the plates15 • 

Eventually it becomes energetically favourable for the broad faces to become 
semicoherent. Thereafter the precipitate behaves as an incoherent inclusion 
with comparatively little misfit strain energy. An example of a precipitate that 
can be either coherent or semicoherent in this way is 9' in Al-Cu alloys (see 
Section 5.5.1). 

3.4.4 Coherency Loss 

Precipitates with coherent interfaces have a low interfacial energy, but in the 
presence of misfit, they are associated with a coherency strain energy. On the 
other hand, if the same precipitate has non-coherent interfaces it will have a 
higher interfacial energy but the coherency strain energy will be absent. Let 
us now consider which state pro duces the lowest total energy for a spherical 
precipitate with amisfit 8 and a radius r. 

The free energy of a crystal containing a fully coherent spherical precipi­
tate has contributions from (i) the coherency strain energy given by 
Equation 3.39, and (ii) the chemical interfacial energy "ich. The sum of these 
two terms is given by 

(3.43) 

If the same precipitate has incoherent or semicoherent interfaces that com­
pletely relieve the unconstrained misfit there will be no misfit energy, but 
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Fig. 3.51 Coherency strains caused by the coherent broad faces of e' precipitates. 
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there will be an extra structural contribution to the interfacial energy "Ist. The 
total energy in this case is given by 

IlG(non-coherent) = 0 + 41Tr 2C'Yeh + "Ist) (3.44) 

For a given B, IlG (coherent) and IlG (non-coherent) vary with r as shown 
in Fig. 3.52. When smalI, therefore, the coherent state gives the lowest total 
energy, while it is more favourable for large precipitates to be semicoherent 
or incoherent (depending on the magnitude of B). At the critical radius (rerit) 
IlG(coherent) = IlG(non-coherent) giving 

3"1st 
rerit = 4f1B2 (3.45) 

If we assume that B is smalI, a semicoherent interface will be formed with a 
structural energy "Ist cx B. In which case 

(3.46) 

If a coherent precipitate grows, during ageing for example, it should lose 
coherency when it exceeds rerit. However, as shown in Fig. 3.53 loss of 
coherency requires the introduction of dislocation loops around the precipi­
tate and in practice this can be rather difficult to achieve. Consequently 
coherent precipitates are often found with sizes much larger than rerit. 

There are several ways in which coherency may be lost and some of them 
are illustrated in Fig. 3.54. The most straightforward way is far a dislocation 
loop to be punched out at the interface as shown in Fig. 3.54a. This requires 
the stresses at the interface to exceed the theoretical strength of the matrix. 
However, it can be shown that the punching stress Ps is independent of the 
precipitate size and depends only on the constrained misfit E. If the shear 
modulus of the matrix is f1 

Ps = 3f1E (3.47) 

Non-coherent 

r 

rcrit 
Fig. 3.52 The total energy of matrix + precipitate v. precipitate radius for spherical 
coherent and non-coherent (semicoherent or incoherent) precipitates. 
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Fig. 3.53 Coherency loss for a spherical precipitate. (a) Coherent. (b) Coherency 
strains replaced by dislocation loop. (c) In perspective. 
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Fig. 3.54 Mechanisms for coherency loss. (a) Dislocation punching from interface. 
(b) Capture of matrix dislocation. (c) Nucleation at edge of plate repeated as plate 
lengthens. (d) Loop expansion by vacancy condensation in the precipitate. 
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It has been estimated that the critical value of E that can cause the theoretical 
strength of the matrix to be exceeded is approximately given by 

Ecrit = 0.05 (3.48) 

Consequently precipitates with a sm aller value of E cannot lose coherency by 
this mechanism, no matter how large. 

There are several alternative mechanisms but all require the precipitate to 
reach a larger size than rcri/6. For example, the precipitate can attract a matrix 
dislocation with a suitable Burgers vector, and cause it to wrap itself around 
the precipitate, Fig. 3.54b. This mechanism is difficult in annealed specimens 
but is assisted by mechanical deformation. 

In the case of plate-like precipitates the situation is different and it is now 
possible for the high stresses at the edges of the plates to nucleate dislocations 
by exceeding the theoretical strength of the matrix. The process can be 
repeated as the plate lengthens so as to maintain a roughly constant interdis­
location spacing, Fig. 3.54c. Another mechanism that has been observed for 
plate-like precipitates is the nucleation of dislocation loops within the 
precipitate17. Vacancies can be attracted to coherent interfaces18 and 'con­
dense' to form a prismatic dislocation loop which can expand across the 
precipitate, as shown in Fig. 3.54d. 

3.4.5 Glissile Interfaces 

In the treatment of semicoherent interfaces that has been presented in the 
previous sections it has been assumed that the misfit dislocations have Bur­
gers vectors parallel to the interfacial plane. This type of interface is referred 
to as epitaxial. Glide of the interfacial dislocations cannot cause the interface 
to advance and the interface is therefore non-glissile. It is however possible, 
under certain circumstances, to have glissile semicoherent interfaces which 
can advance by the coordinated glide of the interfacial dislocations. This is 
possible if the dislocations have a Burgers vector that can glide on matching 
planes in the adjacent lattices as illustrated in Fig. 3.55. The slip planes must 
be continuous across the interface, but not necessarily parallel. Any gliding 
dislocation shears the lattice above the slip plane relative to that below by the 
Burgers vector of the dislocation. In the same way the gliding of the disloca­
tions in a glissile interface causes the receding lattice, Cl say, to be sheared into 
the ß-structure. 

As an aid to understanding the nature of glissile boundaries consider two 
simple cases. The first is the low-angle symmetric tilt boundary, shown in 
Figs. 3.7a and 3.11. In this case the Burgers vectors are all pure edge in 
nature and as they glide one grain is rotated into the other grain. Strictly 
speaking this is not an interphase interface as there is no change in crystal 
structure, just a rotation of the lattice. A slightly more complex example of a 
glissile interface between two different lattices is that which can arise between 
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Interfacial d islocations 

~~-

Macroscopic 
plane of 
interface 

Corresponding 
~-- slip planes 

Fig. 3.55 The nature of a glissile interface. 

the cubic and hexagonal c1ose-packed lattices. To understand the structure of 
this interface requires a slight digression to consider the nature of Shockley 
partial dislocations. 

Both fee and hcp lattices can be formed by stacking c1ose-packed layers of 
atoms one above the other. If the centres of the atoms in the first layer are 
denoted as A-positions, the second layer of atoms can be formed either by 
filling the B-positions, or C-positions as shown in Fig. 3.56. Either position 
produces the same atomic configuration at this stage. Let us assume therefore 
that the atoms in the second layer occupy B-sites. There are now two non­
equivalent ways of stacking the third layer. If the third layer is placed directly 
above the first layer the resulting stacking sequence is ABA and the addition 
of further layers in the same sequence ABABABABAB . . . has hexagonal 
symmetry and is known as a hexagonal c1ose-packed arrangement. The unit 
cell and stacking sequence of this structure are shown in Fig. 3.57. The 
c1ose-packed plane can therefore be indexed as (0001) and the c1ose-packed 
directions are of the type (1120). 

If the atoms in the third layer are placed on the C-sites to form ABC and 
the same sequence is then repeated, the stacking sequence becomes 
ABCABCAB . . . which produces a cubic c1ose-packed arrangement with a 
face-centred cubic unit cell as shown in Fig. 3.58. The c1ose-packed atomic 
planes in this case become the {111} type and the c1ose-packed directions the 
(110) type. 

In terms of the fee unit cell the distance between the B- and C-sites 
measured parallel to the c1ose-packed planes corresponds to vectors of the 
type g (112). Therefore if a dislocation with a Burgers vector g [112] glides 
between two (111) layers of an fee lattice, say layers 4 and 5 in Fig. 3.59, all 
layers above the glide plane (5, 6, 7 ... ) will be shifted relative to those 
below the glide plane by a vector g [112]. Therefore all atoms above the glide 
plane in B-sites are moved to C-sites, atoms in C-sites move to A-sites, and 
atoms in A-sites move to B-sites, as shown in Fig. 3.59. This type of disloca­
tion with b = g(112) is known as Shockley partial dislocation. They are called 
partial dislocations because vectors of the type g(112) do not connect lattice 
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Fig. 3.56 The location of A, Band C sites in a close-packed layer of atoms. See also 
Figs. 3.57 and 3.58. (After J.W. Martin and R.D. Doherty, Stability o[ Microstructure 
in Metallic Systems, Cambridge University Press, Cambridge, 1976.) 

z 

~ ....... A A 

1--_8 

A 

X 

Fig. 3.57 A hexagonal close-packed unit cell and stacking sequence. 
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c 
Fig. 3.58 A eubie c1ose-paeked strueture showing fee unit eell and staeking sequenee. 

-
7 A B 

6 C A 

5 B C 

slip plane 4 A A 
hcp 

( 111) 3 C C 

2 B B 

A A 

(0) ( b) 

Fig. 3.59 (a) An edge disloeation with a Burgers veetor b = f[112] on (111). (Shoek­
ley partial disloeation.) (b) The same disloeation loeally ehanges the staeking sequenee 
from fee to hep. 

points in the fee strueture. The gliding of Shoekley partial disloeations there­
fore disrupts the erystal lattiee and eauses a staeking fault over the area of 
glide plane swept by the disloeation. Figure 3.59 shows that the nature of this 
fault is such that four layers of material are eonverted into a hexagonal 
close-paeked sequenee CACA. Therefore in thermodynamically stable fee 
lattiees the staeking fault is a region of high free energy. On the other hand if 
the fee lattiee is only metastable with respeet to the hep strueture the staeking 
fault energy will be effeetively negative and the gliding of Shoekley partial 
disloeations will deerease the free energy of the system. 

Consider now the effeet of passing another ~[112] disloeation between 
layers 6 and 7 as shown in Fig. 3.60. It ean be seen that the region of hep 
staeking is now extended by a further two layers. Therefore a sequenee of 
Shoekley partial disloeations between every other (111) plane will ereate a 
glissile interface separating fee and hep erystals, Fig. 3.61. 

The glide planes of the interfaeial disloeations are eontinuous from the fee 
to the hep lattice and the Burgers veetors of the disloeations, whieh neees­
sarily lie in the glide plane, are at an angle to the macroscopic interfaeial 
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Fig. 3.60 Two Shockley partial dislocations on alternate (111) planes create six 
layers of hcp stacking. 

Mac roscopic 

C int"f~C:~ 
B!cc I - - -- - C 

---7"-----;...:;..:-.---------por-----------..L... - - - - -A I ___________ -.A 
c .L ____________ ~ 
B I _________________ -A 
A r--- .L------------------~ C I __________________ h~ _____ -.ß. 

~ -- ------ - -- - --- - --- ----~ 
Fig. 3.61 An array of Shockley partial dislocations forming a glissile interface be­
tween fcc and hcp crystals. 

plane. If the dislocation network glides into the fcc crystal it results in a 
transformation of fcc ~ hcp, whereas a hep ~ fec transformation can be 
brought about by the reverse motion. Macroseopically the interfacial plane 
lies at an angle to the (111) or (0001) planes and need not be parallel to any 
low-index plane, i.e. it can be irrational. Mieroscopically, however, the inter­
face is stepped into planar eoherent faeets parallel to (111)fcc and (OOOlhcp 
with a step height the thickness of two closed-paeked layers. 

An important characteristic of glissile dislocation interfaces is that they can 
produce a maeroscopic shape change in the crystal. This is illustrated for the 
fcc ~ hcp transformation in Fig. 3.62a. If a single fee erystal is transformed 
into an hcp crystal by the passage of the same Shockley partial over every 
(111) plane then there is a macroseopie shape change, in this ease a simple 
shear, as shown. There are, however, two other Shockley partials which ean 
also be used to transform fce ~ hep staeking, and if the transformation is 
aehieved using all three partials in equal numbers there will be no overall 
shape change, Fig. 3.62b. 
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(a) fee hcp 

(b) 
Fig. 3.62 Schematic representation of the different ways of shearing cubic close­
packed planes into hexagonal close-packed (a) using only one Shockley partial, 
(b) using equal numbers of all three Shockley partials. 

The formation of martensite in steel and other alloy systems occurs by the 
motion of glissile-dislocation interfaces. These transformations are character­
ized by a macroscopic shape change and no change in composition. Usually, 
however, the interface must be more complex than the fcc/hcp case discussed 
above, although the same principles will still apply. Martensitic transforma­
tions are dealt with further in Chapter 6. 

3.4.6 Solid/Liquid Interfaces19 

Many of the ideas that were discussed with regard to solid/vapour interfaces 
can be carried over to solid/liquid interfaces, only now the low density vapour 
phase is replaced by a high density liquid, and this has important conse­
quences for the structure and energy of the interface. 

There are basically two types of atomic structure for solid/liquid interfaces. 
One is essentially the same as the solid/vapour interfaces described in 
Section 3.1, i.e. an atomically flat close-packed interface, Fig. 3.63a. In this 
case the transition from liquid to solid occurs over a rather narrow transition 
zone approximately one atom layer thick. Such interfaces can also be de­
scribed as smooth, faceted, or sharp. The other type is an atomically diffuse 
interface, Fig. 3.63b, in which the transition from liquid to solid occurs over 
several atom layers. Thus there is a gradual weakening of the interatomic 
bonds and an increasing dis order across the interface into the bulk liquid 
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Fig. 3.63 Solid/liquid interfaces: (a) atomically smooth, (b) and (c) atomically 
rough, or diffuse interfaces. (After M.C. Flemings, Solidification Processing, 
McGraw-Hill, New York, 1974.) 

phase; or in thermodynamic terms, enthalpy and entropy gradually change 
from bulk solid to bulk liquid values across the interface as shown in 
Fig. 3.64. When the solid and liquid are in equilibrium (at Tm) the high 
enthalpy of the liquid is balanced by a high entropy so that both phases have 
the same free energy. In the interface, however, the balance is disturbed 
thereby giving rise to an excess free energy, 'YSL' 

Diffuse interfaces are also known as rough or non-faceted. The dotted line 

Ol-------------f 
y 

Distonce ocross interface 
Fig. 3.64 The variation of H, -TmS and G across the solid/liquid interface at the 
equilibrium melting temperature Tm, showing the origin of the solid/liquid interfacial 
energy"(. 
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in Fig. 3.63b is an attempt to show the rough nature of the interface by 
dividing the atoms into the 'solid' and 'liquid'. If this is done the schematic 
representation of Fig. 3.63c can be used. 

The type of structure chosen by a particular system will be that which 
minimizes the interfacial free energy. According to a simple theory developed 
by Jackson20 the optimum atomic arrangement depends mainly on the latent 
heat of fusion (L f ) relative to the melting temperature (Tm)' This theory 
predicts that there is a critical value of Lt/T m = 4 R above which the inter­
face should be ftat and below which it should be diffuse. Most metals have 
Lt/T m = Rand are therefore predicted to have rough interfaces. On the 
other hand some intermetallic compounds and elements such as Si, Ge, Sb as 
weIl as most non-metals have high values of Lt/ Tm and generally have ftat 
close-packed interfaces. If the model is applied to solid/vapour interfaces L s 

(the heat of sublimation) should be used instead of L f and then ftat surfaces 
are predicted even for metals, in agreement with observations. 

If the broken-bond model is applied to the calculation of the energy of a 
solid/liquid interface it can be argued that the atoms in the interface are 
roughly half bonded to the solid and half to the liquid so that the interfacial 
enthalpy should be ~0.5 Lt/Na per atom. This appears to compare rather 
favourably with experimentally measured values of 'YSL which are ~0.45 
Lt/Na per atom for most metals. However the agreement is probably 
only fortuitous since entropy effects should also be taken into account, 
Fig.3.64. 

Some experimentally determined values of 'YSL are listed in Table 3.4. 

Table 3.4 Experimentally Determined Solid/Liquid Interfacial Free 
Energies 

Values selected from D. TurnbuIl, JfJUrnal of Applied Physics, 
1022(1950). 

Material Tm/K 'YsdmJ m-2 

Sn 505.7 54.5 
Pb 600.7 33.3 
Al 931.7 93 
Ag 1233.7 126 
Au 1336 132 
Cu 1356 177 
Mn 1493 206 
Ni 1725 255 
Co 1763 234 
Fe 1803 204 
Pd )828 209 
Pt 2043 240 

Vol. 21: 
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These values were determined by indirect means from homogeneous nuclea­
tion experiments (see Chapter 4) and may contain systematic errors. Com­
parison of Tables 3.2 and 3.3 indicates 'YSL = 0.30'Yb (for a grain boundary). 
More direct experiments21 imply that 'YSL = 0.45 'Yb (= 0.15 'Ysv). Another 
useful empirical relations hip is that 

'YSV > 'YSL + 'YLV 

which means that for asolid metal close to Tm it is energetically favourable for 
the surface to melt and replace the solid/vapour interface with solid/liquid 
and liquid/vapour interfaces. 

It is found experimentally that the free energies of diffuse interfaces do not 
vary with crystallographic orientation, i.e. "I-plots are spherical22 . Materials 
with atomically Bat interfaces, however, show strong crystallographic effects 
and solidify with low-index close-packed facets, Fig. 3.65. 

3.5 Interface Migration 

The great majority of phase transformations in met als and alloys occur by a 
process known as nucleation and growth, i.e. the new phase (ß) first appears 

Fig. 3.65 Examples of solid-liquid interface structure in metallic systems. (a) Non­
faceted dendrites of silver in a copper-silver eutectic matrix (x 330); (b) faceted 
cuboids of ß'-SnSb compound in a matrix of Sn-rich material (x 110). (After G.A. 
Chadwick, Metallography of Phase Transformations, Butterworths, London, 1972.) 
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at certain sites within the metastable parent (IX) phase (nucleation) and this is 
subsequently followed by the growth of these nuclei into the surrounding 
matrix. In other words, an interface is created during the nucleation stage 
and then migrates into the surrounding parent phase during the growth stage. 
This type of transformation is therefore essentially heterogeneous, i.e. at any 
time during the transformation the system can be divided into parent and 
product phases. The nucleation stage is very important and determines many 
features of the transformation. However, most of the transformation product 
is formed during the growth stage by the transfer of atoms across the moving 
parent/product interface. 

There are basically two different types of interface: glissile and non-glissile. 
Glissile interfaces migrate by dislocation glide that results in the shearing of 
the parent lattice into the product. The motion of glissile interfaces is rela­
tively insensitive to temperature and is therefore known as athermal migra­
tion. Most interfaces are non-glissile and migrate by the more or less random 
jumps of individual atoms across the interface in a similar way to the migra­
tion of a random high-angle grain boundary. The extra energy that the atom 
needs to break free of one phase and attach itself to the other is supplied by 
thermal activation. The migration of non-glissile interfaces is therefore ex­
tremely sensitive to temperature. 

A convenient way of classifying nucleation and growth transformations is to 
divide them according to the way in which the product grows. Therefore two 
major groupings can be made by dividing the transformations according the 
whether growth involves glissile or non-glissile interfaces. Transformations 
produced by the migration of a glissile interface are referred to as military 
transformations. This emphasizes the analogy between the coordinated mo­
tion of atoms crossing the interface and that of soldiers moving in ranks on the 
parade ground. In contrast the uncoordinated transfer of atoms across a 
non-glissile interface results in what is known as a civilian transformation. 

During a military transformation the nearest neighbours of any atom are 
essentially unchanged. Therefore the parent and product phases must have 
the same composition and no diffusion is involved in the transformation. 
Martensitic transformations belong to this group. Glissile interfaces are also 
involved in the formation of mechanical twins and twinning therefore has 
much in common with martensitic transformations. 

During civilian transformations the parent and product may or may not 
have the same composition. If there is no change in composition, e.g. the 
IX ~ 'Y transformation in pure iron, the new phase will be able to grow as fast 
as the atoms can cross the interface. Such transformations are said to be 
interface controlled. When the parent and product phases have different 
compositions, growth of the new phase will require long-range diffusion. For 
example, the growth of the B-rich ß phase into the A-rich IX phase shown in 
Fig. 3.66 can only occur if diffusion is able to transport A away from, and B 
towards the advancing interface. If the interfacial reaction is fast, i.e. the 
transfer of atoms across the interface is an easy process, the rate at which the 
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Fig. 3.66 Composition changes in a substitution al alloy caused by interface migra­
tion when the two adjoining phases have different compositions. 

ß phase can grow will be governed by the rate at which lattice diffusion can 
remove the excess atoms from ahead of the interface. This is therefore 
known as diffusion-controlled growth. However, if for some reason the 
interfacial reaction is slow, the growth rate will be governed by the interface 
kinetics. Under these circumstances growth is said to be interface controlled 
and a very small concentration gradient in the matrix is sufficient to provide 
the necessary flux of atoms to and from the interface. It is also possible that 
the interface re action and diffusion process occur at similar rates in which 
case the interface is said to mi grate under mixed control. 

The above discussion of interface migration and classification of nucleation 
and growth transformations (also known as heterogeneous transformations) 
is summarized in Table 3.5, together with some examples of each class. This 
classification is adapted from that first proposed by Christian23 ,24. Non-glissile 
interfaces can be considered to include solid/liquid and solid/vapour inter­
faces as weil as solid/solid (coherent, semicoherent and incoherent) inter­
faces. Therefore solidification and melting can be included in the classification 
of civilian transformations under diffusion control (although the concept of 
diffusion may sometimes need to be extended to include the diffusion of 
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heat). Condensation and evaporation at a free solid surface are also included 
although they will not be treated in any depth25 . 

While many transformations can be easily classified into the above system, 
there are other transformations where difficulties arise. For example, the 
bainite transformation takes place by thermally activated growth, but it also 
produces a shape change similar to that produc,ed by the motion of a glissile 
interface. At present the exact nature of such transformations is unresolved. 

There is a small class of transformations, known as homogeneous trans­
formations that are not covered by Table 3.5. This is because they do not 
occur by the creation and migration of an interface, i.e. no nucleation stage is 
involved. Instead the transformation occurs homogeneously throughout the 
parent phase. Spinodal decomposition and certain ordering transformations 
are examples of this category and they will be discussed in Chapter 5. 

3.5.1 DiJfusion-Controlled and Interface-Controlled Growth26 

Let us now look more closely at the migration of an interface separating two 
phases of different composition. Consider for simplicity a ß precipitate of 
almost pure B growing behind a planar interface into A-rich a with an initial 
composition Xo as illustrated in Fig. 3.67. As the precipitate grows, the a 
adjacent to the interface becomes depleted of B so that the concentration of 
B in the a phase adjacent to the interface Xi decreases below the bulk 
concentration, Fig. 3.67a. Since growth of the precipitate requires a net ftux 
of B atoms from the a to the ß phase there must be a positive driving force 
across the interface ,1l!k as shown in Fig. 3.67b. The origin of this chemical 
potential difference can be seen in Fig. 3.67c. Clearly for growth to occur 
the interface composition must be greater than the equilibrium concen­
tration Xe. By analogy with the migration of a high-angle grain boundary 
(Section 3.3.4) the net ftux of B across the interface will produce an inter­
face velo city v given by 

(3.49) 

where M is the interface mobility and V m is the molar volume of the ß phase. 
The corresponding ftux across the interface will be given by 

J~ = -M,1l!k/V;, moles of B m-2 S-1 (3.50) 

(The negative sign indicates that the ftux is in the negative direction along 
the x-axis.) As a result of the concentration gradient in the a phase there 
will also be a ftux of B atoms towards the interface JIr given by 

Js = - D (acB ) (3.51) 
ax interface 

If a steady state exists at the interface these two ftuxes must balance, Le. 

JB = J'B (3.52) 
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Fig. 3.67 Interface migration with long-range diffusion. (a) Composition profiles 
across the interface. (b) The origin of the driving force for boundary migration into 
the a phase. (c) A schematic molar free energy diagram showing the relationship 
between ~!1k , Xi and Xe. (Note that the solubility of A in the ß phase is so low that 
the true shape of the free energy curve cannot be drawn on this scale.) 
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If the interface mobility is very high, e.g. an incoherent interface, Af.L~ can 
be very small and Xi = Xe. Under these circumstances there is effectively 
local equilibrium at the interface. The interface will then move as fast as 
diffusion allows, and growth takes pi ace under diffusion control. The growth 
rate can then be evaluated as a function of time, say, by solving the diffusion 
equation with the boundary conditions Xi = Xe and XB(oo) = X o. Simple 
examples of this problem will be given in subsequent chapters in connection 
with solidification and diffusive transformations in solids. 

When the interface has a lower mobility a greater chemical potential 
difference (Af.L~) is required to drive the interface re action and there will be a 
departure from local equilibrium at the interface. The value of Xi that is 
chosen will be that which enables Equation 3.52 to be satisfied and the 
interface will then be migrating under mixed control. In the limit of a very low 
mobility it is possible that Xi = Xo and (ac/ aX)interface is almost zero. Under 
these conditions growth is said to be interface controlled and there is a 
maximum possible driving force Af.L~ across the interface. 

It can easily be shown that for a dilute or ideal solution, the driving force 
Af.L~ is given by 

(3.53) 

provided (Xi - Xe) « Xe (see exercise 3.20). Thus the rate at wh ich the 
interface moves under interface control should be proportional to the deviation 
of the interface_ concentration from equilibrium (Xi - Xe). 

Let us now consider the question of why interface control should occur at 
all when the two phases have a different composition. At first sight it may 
appear that interface control should be very unlikely in practice. After all, the 
necessary long-range diffusion involves a great many atom jumps while the 
interface re action essentially involves only one jump. Furthermore the activa­
tion energy for diffusion across the interface is not likely to be greater than for 
diffusion through the lattice-quite the contrary. On this basis, therefore, all 
interface reactions should be very rapid in comparison to lattice diffusion, i.e. 
all growth should be diffusion controlled. In many cases the above arguments 
are quite valid, but under certain conditions they are insufficient and may 
even be misleading. 

Consider again the expression that was derived for the mobility of a 
high-angle grain boundary, Equation 3.22. A similar expression can be de­
rived for the case of an interphase interface with Af.L~ replacing AG, (see 
exercise 3.19). It can be seen, therefore, that the above arguments neglect the 
effect of the accommodation factor (A), i.e. the prob ability that an atom 
crossing the boundary will be accommodated on arrival at the new phase. It is 
likely that incoherent interfaces and diffuse solid/liquid interfaces, as high­
angle grain boundaries, will have values of A dose to unity. These interfaces 
should therefore migrate under diffusion control. However, as will be demon­
strated later, it is possible for certain !ypes of coherent or semicoherent 
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interfaces, as weIl as smooth solid/liquid interfaces to have such low values of 
A that some degree of interface control is easily possible. 

If two phases with different compositions, but the same crystal structure are 
separated by a coherent interface as shown in Fig. 3.32a, the interface can 
advance by the replacement of the cx atoms in plane AA' with ß atoms by 
normal lattice diffusion involving vacancies. There is no need for aseparate 
interface re action and the migration of this type of interface is therefore 
diffusion controlled. This situation arises during the growth of GP zones for 
example. The same arguments will apply if the interface is semicoherent 
provided the misfit dislocations can climb by vacancy creation or annihilation. 

Quite a different situation arises when the two phases forming a co he re nt or 
semicoherent interface have different crystal structures. Consider for example 
the coherent close-packed interface between fcc and hcp crystals, Fig. 3.68a. 
If growth of the hcp phase is to occur by individual atomic jumps (i.e. 
so-called continuous growth) then an atom on a C site in the fcc phase must 
change into aB position as shown in Fig. 3.68b. It can be seen, however, that 
this results in a very high energy, unstable configuration with two atoms 
directly above each other on B sites. In addition a loop of Shockley partial 
dislocation is effectively created around the atom. An atom attempting such a 
jump will, therefore, be unstable and be forced back to its original position. 
The same situation will be encountered over the coherent regions of semi­
coherent interfaces separating phases with different crystal structures. 
Solid/vapour as weIl as smooth solid/liquid interfaces should behave in a 
similar manner, though perhaps to a lesser extent. If a single atom attaches 
itself to a Hat close-packed interface it will raise the interfacial free energy and 
will therefore te nd to detach itself again. It can thus be seen that continuous 
growth at the above type of interfaces will be very difficult, i.e. very low 
accommodation factors and low mobility are expected. 

A A A A A A 

f.c.c. B B B B B B 
C C C ~ 
A A A A A A 

h.c.p. B B B B B B 
A A A A A A 

(0 ) (b) 
Fig. 3.68 Problems associated with the continuous growth of coherent interfaces 
between phases with different crystal structures. (After J.W. Martin and R.D. Doher­
ty, Stability of Microstructure in Metallic Systems, Cambridge University Press, Cam­
bridge, 1976.) 
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A------.I~ 
C'------.,I ~ 

E"-----F 
Fig. 3.69 The ledge mechanism. 
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A way of avoiding the difficulties of continuous growth encountered in the 
above cases is provided by the 'ledge' mechanism shown in Fig. 3.69. If the 
interfaC't;! c~I!tains aseries of ledges BC, DE normal to the facets AB, CD, 
EF, atoms will be able to transfer more easily across the ledges than the 
immobile facets and interface migration is therefore effected by the transverse 
migration of the ledges as shown. 

Growth ledges have in fact been seen with the aid of the electron micro­
scope on the surfaces of growing precipitates. For example Fig. 3.70 shows 
an electron micrograph and a schematic drawing of the growth ledges on an 
MgzSi plate in an A1-Mg-Si allol7 . Note that growth ledges are usually 
hundreds of atom layers high. 

When existing ledges have grown across the interface there is a problem of 
generating new ones. In Fig. 3.70 the source of new ledges is thought to be 
heterogeneous nucleation at the point of contact with another precipitate. 
The same problem will not be encountered if the precipitate is dissolving, 
however, since the edges of the plate will provide a continual source of 
ledgesz8. It is thought that once nucleated, the rate at which ledges migrate 
across the planar facets should be diffusion controlled, i.e. controlled by how 
fast diffusion can occur to and from the ledges. However, the problem of 
nucleating new ledges may often lead to a degree of interface control on the 
overall rate at which the coherent or semicoherent interface can advance 
perpendicular to itself. 

Growth ledges are by no means restricted to solid/solid systems. The first 
evidence for the existence of growth ledges came from studies of solid/vapour 
interfaces. They are also found on faceted solid/liquid interfaces. 

The mechanism of interface migration can have important effects on the 
shape of second-phase inclusions. It was shown in Section 3.4.2 that in the 
absence of strain energy effects the equilibrium shape of a precipitate should 
be determined by the relative energies of the bounding interfaces. For exam­
pIe, a partially coherent precipitate should be disc or plate shaped with an 
aspect ratio of 'Vii 'Vc where 'Vi is the energy of the incoherent edges and 'Vc is 
the energy of the coherent or semicoherent broad faces. However, the pre­
cipitate shape observed in practice may be prevented from achieving this 
equilibrium shape by the relative rates at which the coherent and incoherent 
interfaces can migrate. For example if there are problems of ledge nucleation 
the easier growth of the incoherent plate edges may lead to a larger aspect 
ratio than the equilibrium. 
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Fig. 3.70 (a) Growth ledges at an Mg2Si plate in Al-loS wt% Mg2Si, solution treated 
and aged 2 h at 350°C. Dark field micrograph. (b) Schematic diagram of (a) showing 
ledges on Mg2Si plate. (After G.C. Weatherly, Acta Metallurgica, 19 (1971) 181.) 
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Exercises 

3.1 Use the method of Section 3.1 to estimate the surface energy of {111}, 
{200} and {220} surface planes in an fcc crystal. Express your answer in 
J/surface atom and in J/m2 . 

3.2 Differentiate Equation 3.8 to obtain the slope of the Esv - e curve at 
e = o. 

3.3 If a two-dimensional rectangular crystal is bounded by sides of lengths 11 

and 12 show by differentiation that the equilibrium shape is given by 

11 'V2 

12 'VI 

where 'VI and 'V2 are the energies of the sides 11 and 12 respectively. (The 
area of the crystal 11/2 is constant.) 

3.4 (a) Measure e for the low-angle tilt boundary in Fig. 3.1l. 
(b) Determine the Burgers vector of the interface dislocations by 

making a Burgers circuit around one of the dislocations. Does the 
mean spacing of the dislocations agree with that predicted by 
Equation 3.9? 

3.5 Explain why grain boundaries move towards their centre of curvature 
during grain growth but away from their centre of curvature during 
recrystallization. 

3.6 (a) Suppose a recrystallized, dislocation-free grain is growing into a 
deformed matrix containing a dislocation density of 1016 m-2 

(Le. 1016 m/m3). If the dislocations have an energy of IJ-b2/4 J rn-I 
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calculate the pulling force acting on the recrystallized grain bound­
ary. (Assurne a shear modulus f.L = 1010 N m-2 and a Burgers vec­
tor b = 0.28 nm.) 

(b) If the recrystallized grains grow from spherically shaped nuclei, 
what is the diameter of the smallest nucleus that can expand into 
the surrounding matrix? (Assurne a grain boundary energy of 
0.5 J m-2.) 

3.7 Look up the equilibrium phase diagrams for the Al-Fe and Al-Mg 
systems. On the basis of these diagrams would you expect the grain 
boundary enrichment of Fe in dilute Al-Fe alloys to be greater or less 
than for Mg in dilute Al-Mg alloys at the same temperatures? 

3.8 Derive Equation 3.31. 
3.9 When a precipitate is surrounded by a spherical interface of radius r it is 

subjected to apressure above that of the matrix by 2'V/r. Consider a 
faceted precipitate with an equilibrium shape that of a square plate with 
a thickness of 2xl and width 2x2 • If the free energies of the broad faces 
and edges are respectively 'Vl and 'V2, show that the broad faces exert a 
pressure on the precipitate (~P) given by 

(Hint: consider the total force acting on the periphery of the broad 
faces.) Show that the same result can be obtained by considering the 
pressure exerted by one of the edge faces of the plate. 

3.10 Explain the structure and energies of coherent, semicoherent and in­
coherent interfaces, with particular reference to the role of orientation 
relationships and misfit. 

3.11 Fe-rich GP zones can form in dilute Al-Fe alloys. Given that the atomic 
radii are 1.43 A for Al and 1.26 A Fe, would you expect the zones to be 
spherical or disc shaped? 

3.12 Mg can dissolve in Al to form a substitution al solid solution. Mg atoms 
are, however, bigger than Al atoms and each Mg atom therefore 
distorts the surrounding Al lattice, i.e. a coherency strain field effec­
tively exists around each Mg atom. Using Equation 3.39 estimate the 
misfit strain energy. Express the answer in kJ mol-I and eV atom-I. 
(The shear modulus of Al = 25 GPa, the radius of an AI atom = 1.43 
Ä, the radius of a Mg atom = 1.60 Ä.) What assumptions are implicit 
in this calculation? 

3.13 Explain why fully coherent precipitates tend to lose coherency as they 
grow. 

3.14 Show that the passage of a Shockley partial dislocation over every one of 
a given set of close-packed planes in fcc crystals produces a twin of the 
original crystal. 

3.15 If the ledges on the plan ar semicoherent interface in Fig. 3.69 move with 
a transverse velocity u wh at will be the overall velocity of the interface 
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perpendicular to CD. Assume an infinite array of identical ledges of 
height (BC) = hand spacing (CD) = I. 

3.16 Using arguments similar to those used in connection with Fig. 3.68 show 
that a coherent twin bound"ry in an fcc metal will not migrate by the 
random jumping of atoms across the interface. Suggest an interfacial 
structure that would result in a highly mobile interface (see 
exercise 3.15). 

3.17 What are the most likely atomic processes involved in the migration of 
(i) solid/vapour interfaces, (ii) solid/liquid interfaces in non-metals, 
(iii) solid/liquid interfaces in metals. 

3.18 By using a similar approach to the derivation of Equation 3.20 for a 
high-angle grain boundary, show that the net flux of B atoms across the 
a/ß interface in Fig. 3.67 is given by 

i Aßn",v" (AI-L a) . 
JB = RT exp - RT AI-LB 

3.19 Derive Equation 3.53 for an ideal or dilute solution. 
3.20 If an alloy containing ß precipitates in an a matrix is given a solution 

treatment by heating to a temperature above the equilibrium ß solvus 
the precipitates will dissolve. (See for example the phase diagram in 
Fig. 1.36.) Show with diagrams how the composition will change in the 
vicinity of an a/ß interface during dissolution if the dissolution is 
(i) diffusion controlled, (ii) interface controlled, (iii).under mixed con­
trol. Indicate compositions by reference to a phase dia gram where 
appropriate. 
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Solidification 

Solidification and melting are transformations between crystallographic and 
non-crystallographic states of a metal or alloy. These transformations are of 
course basic to such technological applications as ingot casting, foundry 
casting, continuous casting, single-crystal grawth for semiconductors, 
directionally solidified composite alloys, and more recently rapidly solidified 
alloys and glasses. Another important and complex solidification and 
melting process, often neglected in textbooks on solidification, concerns 
the process of fusion welding. An understanding of the mechanism of 
solidification and how it is affected by such parameters as temperature 
distribution, cooling rate and alloying, is important in the contral of mech­
anical properties of cast met als and fusion welds. It is the objective of this 
chapter to develop some of the basic concepts of solidification, and apply 
these to some of the more important practical processes such as ingot 
casting, continuous casting and fusion welding. We then consider a few 
practical examples illustrating the casting or welding of engineering alloys in 
the light of the theoretical introduction. 

4.1 Nucleation in Pure Metals 

If a liquid is cooled below its equilibrium melting temperature (Tm) there is a 
driving force for solidification (GL - Gs) and it might be expected that the 
liquid phase would spontaneously solidify. However, this is not always the 
case. For example under suitable conditions liquid nickel can be undercooled 
(or supercooled) to 250 K below Tm (1453 0c) and held there indefinitely 
without any transformation occurring. The reason for this behaviour is that 
the transformation begins by the formation of very small solid particles or 
nuclei. Normally undercoolings as large as 250 K are not observed, since in 
practice the walls of the liquid container and solid impurity particles in the 
liquid catalyse the nucleation of solid at undercoolings of only ~ 1 K. This is 
known as heterogeneous nucleation. The large undercoolings mentioned 
above are only obtained when no heterogeneous nucleation sites are avail­
able, i.e. when solid nuclei must form homogeneously from the liquid. Ex­
perimentally this can be achieved by dividing the liquid into tiny droplets, 
many of which remain impurity-free and do not solidify until very large 
undercoolings are reached1. 
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Solidification 
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Homogeneous nucleation. 

4.1.1 Homogeneous Nucleation 

Consider a given volume of liquid at a temperature !1T below Tm with a free 
energy GI, Fig. 4.1a. If some of the atoms of the liquid cluster together to 
form a small sphere of solid, Fig. 4.1b, the free energy of the system will 
change to G2 given by: 

G2 = VsG~ + VLG; + A SL 'YSL 

where Vs is the volume of the solid sphere, VL the volume of liquid, A SL is the 
solid/liquid interfacial area, G~ and G; are the free energies per unit volume 
of solid and liquid respectively, and 'YSL the solid/liquid interfacial free 
energy. The free energy of the system without any solid present is given by 

GI = (Vs + VdG; 

The formation of solid therefore results in a free energy change 
!1G = G2 - GI where: 

!1G = - Vs!1Gv + A SL 'YSL (4.1) 

and 

!1Gv = G;- G~ 

For an undercooling !1T, !1Gv is given by Equation 1.17 as 

L v!1T 
!1Gv = -T-

m 

(4.2) 

(4.3) 

where Lv is the latent heat of fusion per unit volume. Below Tm, !1Gv is 
positive so that the free energy change associated with the formation of a 
small volume of solid has a negative contribution due to the lower free energy 
of a bulk solid, but there is also a positive contribution due to the creation of a 
solid/liquid interface. The excess free energy associated with the solid 
particle can be minimized by the correct choice of particle shape. If 'YSL is 
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isotropie this is a sphere of radius r. Equation 4.1 then beeomes 

(4.4) 

This is illustrated in Fig. 4.2. Sinee the interfaeial term inereases as r 
whereas the volume free energy released only inereases as r3 , the ereation of 
small particles of solid always leads to a free energy inerease. It is this inerease 
that is able to maintain the liquid phase in a metastable state almost 
indefinitely at temperatures below Tm. It ean be seen from Fig. 4.2 that for a 
given undereooling there is a eertain radius, r*, whieh is assoeiated with a 
maximum exeess free energy. If r < r* the system ean lower its free energy by 
dissolution of the solid, whereas when r > r* the free energy of the system 
deereases if the solid grows. Unstable solid partieles with r < r* are known as 
clusters or embryos while stable particles with r > r* are referred to as 
nuclei-r* is known as the eritieal nucleus size. Sinee dG = 0 when r = r* the 
eritieal nucleus is effeetively in (unstable) equilibrium with the surrounding 
liquid. 

b.G 

o 

interfacial 
energy a:.r 2 

r 

Volume 
free energyoc.r 3t::.T 

Fig. 4.2 The free energy change associated with homogeneous nucleation of a sphere 
of radius r . 
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It can easily be shown by differentiation of Equation 4.4 that 

* 2-YSL 
r = !::.G 

and 

v 

161T-Y~L 
!::.G* = 3(!::.Gy )2 

Substituting Equation 4.3 for !::.Gv gives 

* = (2-YSL Tm) _1 
r L!::.T 

y 

and 

( 161T-Y~LT;;') 1 
!::.G* = 3L~ (!::.T)2 

Note how r* and !::.G* decrease with increasing undercooling (!::.T). 

(4.5) 

(4.6) 

(4.7) 

(4.8) 

Equation 4.5 could also have been obtained from the Gibbs-Thomson 
equation. Since r* is the radius of the solid sphere that is in (unstable) 
equilibrium with the surrounding liquid, the solidified sphere and liquid must 
then have the same free energy. From Equation 1.58 asolid sphere of radius r 
will have a free energy greater than that of bulk solid by 2-y V m/ r per mole or 
2-y/r per unit volume. Therefore it can be seen from Fig. 4.3 that equality of 

Gv 

I 
I 
I 
I 
I 
I I 
1.-11 T -..I 
I 

- -- • 2y Ir 

T 
Fig. 4.3 Volume free energy as a function of temperature for solid and liquid phases, 
showing the origin of tlGv and r*. 
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t1Gv = 2'Ysdr* 
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which is identical to Equation 4.5. 
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(4.9) 

To understand how it is possible for a stable solid nucleus to form 
homogeneously from the liquid it is first necessary to ex amine the atomic 
structure of the liquid phase. From dilatometric measurements it is known 
that at the melting point the liquid phase has a volume 2-4% greater than the 
solid. Therefore there is a great deal more freedom of movement of atoms in 
the liquid and when averaged over aperiod of time the atom positions appear 
completely random. However, an instantaneous picture of the liquid would 
reveal the presence of many sm all close-packed clusters of atoms which are 
temporarily in the same crystalline array as in the solid, Fig. 4.4. On average 
the number of spherical clusters of radius r is given by 

( t1Gr) nr = no exp - kT (4.10) 

where no is the total number of atoms in the system, t1Gr is the excess free 
energy associated with the cluster, Equation 4.4, and k is Boltzmann's con­
stant. For a liquid above Tm this relationship applies for all values of r. Below 
Tm it only applies for r ::s; r* because clusters greater than the critical size are 
stable nuclei of solid and no longer part of the liquid. Since nr decreases 
exponentially with t1Gr (which itself increases rapidly with r) the prob ability 
of finding a given cluster decreases very rapidly as the cluster size increases. 
For example by combining Equations 4.4 and 4.10 it can be shown 
(exercise 4.2) that 1 mm3 of copper at its melting point (-l(fo atoms) should 
on average contain _1014 clusters of 0.3 nm radius (i.e. -10 atoms) but only 
-10 clusters with a radius of 0.6 nm (i.e. -60 atoms). These numbers are of 
course only approximate. Such sm all clusters of atoms cannot be considered 
to be spherical, and even more important the effective value of 'Y used in 
calculating t1Gr (equation 4.4) is very probably a function of the cluster size. 
However the above calculations do illustrate how sensitively cluster density 
depends on their size. Also, it can be seen that there is effectively a maximum 

Fig. 4.4 A two-dimensional representation of an instantaneous picture of the liquid 
structure. Many c1ose-packed crystal-Iike clusters (shaded) are present. 
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cluster size, ~ 100 atoms, which has a reasonable prob ability of occurring in the 
liquid. The same sort of calculations can be made at temperatures other than 
Tm. Below Tm there is an increasing contribution from !:J.Gv in Equation 4.4 
as the solid becomes progressively more stable and this has the effect of 
increasing the 'maximum' cluster size somewhat. Figure 4.5 shows schemati­
cally how rmax varies with !:J.T. Of course larger clusters than rmax are possible 
in large enough systems or given sufficient time, but the prob ability of finding 
clusters only. slightly larger than r max is extremely small. 

The critical nucleus size r* is also shown in Fig. 4.5. It can be seen that at 
small undercoolings, r* is so large that there will be virtually no chance of 
forming a stable nucleus. But as !:J.T increases r* and !:J.G* decrease, and for 
supercoolings of !:J. T N or greater there is a very good chance of some clusters 
reaching r* and growing into stable solid particles. In the sm all droplet 
experiment, therefore, homogeneous nucleation should occur when the liquid 
is undercooled by ~!:J. T N . 

The same conclusion can also be reached by an energy approach. The 
creation of a critical nucleus can be considered to be a thermally activated 
process, i.e. a solid-like cluster must be able to cross the nucleation barrier 
I1G * before it becomes a stable nucleus. Since the probability of achieving 
this energy is proportional to exp (-I1G * /kT) nucleation will only become 
possible when I1G * is reduced below some critical value which can be 
shown to be ~78 kT (see below). 

4.1.2 The Homogeneous Nucleation Rate 

Let us consider how fast solid nuclei will appear in the liquid at a given 
undercooling. If the liquid contains Co atoms per unit volume, the number of 

Fig. 4.5 The variation of r* and rmax with undercooling t::.T. 
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clusters that have reached the critical size (C*) can be obtained from 
Equation 4.10 as 

C* = Co exp ( - ä~;m) clusters m-3 (4.11) 

The addition of one more atom to each of these clusters will convert them into 
stable nuclei and, if this happens with a frequency fo, the homogeneous nuclea­
tion rate will be given by 

Nhom = foCo exp ( - ä~~m) nuclei m-3 S-l (4.12) 

where fo is a complex function that depends on the vibration frequency of 
the atoms, the activation energy for diffusion in the liquid, and the surface 
area of the critical nuclei. Its exact nature is not important he re and it is 
sufficient to consider it a constant equal to _1011 . * Since Co is typically 
_1029 atoms m-3 a reasonable nucleation rate (1 cm-3 S-l) is obtained 
when I1G * - 78 kT. 

Nhom' = foCo exp {- (ä~)2} 
where A is relatively insensitive to temperature and is given by 

161T'Y§LT~ A =---'-;:'--
3L~kT 

(4.13) 

N hom is plotted as a function of äT in Fig; 4.6. As a result of the (äT)2 term, 
inside the exponential Nhom changes by orders of magnitude from essentially 
zero to very high values over a very narrow temperature range, i.e. there is 
effectively a critical undercooling for nucleation ä T N' This is the same as ä T N 

in Fig. 4.5, but Fig. 4.6 demonstrates more vividly how virtually no nuclei are 
formed until äT N is reached after which there is an 'explosion' of nuclei. 

The small droplet experiments of Turnbull et al. 1 have shown that ä T N is 
-0.2 Tm for most metals (i.e. -200 K). The measured values of äT N have in 
fact been used along with Equation 4.13 to derive the values of interfacial 
free energy given in Table 3.4. 

In practice homogeneous nucleation is rarely encountered in solidification. 

* Since atomic jumps from the liquid on to the cluster are thermally activated, Jo will 
in fact diminish with decreasing temperature. In some metallic systems the .liquid can 
be rapidly cooled to temperatures below the so-called glass transition temperature 
without the formation of crystalline solid. Ja is very small at these temperatures and 
the supercooled liquid is a relatively stable metallic glass or amorphous meta!. The 
variation of Ja with temperature is very important with solid-state transformations, 
and it is covered in Chapter 5. For further details on alloys rapidly quenched from 
the melt see R.W. Cahn and P. Haasen (Eds), Physical Metallurgy, North-Holland, 
1983, Chapter 28. 
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o 6T 
Fig. 4.6 The homogeneous nucleation rate as a function of undercooling tlT. tlTN is 
the critical undercooling for homogeneous nucleation. 

Instead heterogeneous nucleation occurs at erevices in mould walls, or at 
inpurity particles suspended in the liquid. 

4.1.3 Heterogeneous Nucleation 

From the expression for tl.G* (Equation 4.8) it ean be seen that if nucleation 
is to be made easier at small undereoolings the interfaeial energy term must 
be redueed. A simple way of effeetively aehieving this is if the nucleus forms 
in eontaet with the mould wall. Consider a solid embryo forming in eontaet 
with a perfeetly flat mould wall as depicted in Fig. 4.7. Assuming 'YSL is 
isotropie it ean be shown that for a given volume of solid the total interfaeial 
energy of the system is minimized if the embryo has the shape of a spherical 

Liquid 

Fig. 4.7 Heterogeneous nucleation of spherical cap on a Hat mould wall. 
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cap with a 'wetting' angle 8 given by the condition that the interfacial tensions 
'YML, 'YSM and 'YSL balance in the plane of the mould wall. 

'YML = 'YSM + 'YSL COS 8 

or 

cos 8 = ('YML - 'YSM) / 'YSL (4.14) 

Note that the vertical component of 'YSL remains unbalanced. Given time 
this force would pull the mould surface upwards until the surface tension 
forces balance in all directions. Therefore Equation 4.14 only gives the 
optimum embryo shape on the condition that the mould walls remain planar. 

The formation of such an embryo will be associated with an excess free 
energy given by 

( 4.15) 

where Vs is the volume of the spherical cap, ASL and ASM are the areas of the 
solid/liquid and solid/mould interfaces, and 'YSL, 'YSM and'YML are the free 
energies of the solid/liquid, solid/mould and mould/liquid interfaces. Note 
that there are now three interfacial energy contributions. The first two are 
positive as they arise from interfaces created during the nucleation process. 
The third, however, is due to the destruction of the mould/liquid interface 
under the spherical cap and results in a negative energy contribution. 

It can be easily shown (see exercise 4.6) that the above equation can be 
written in terms of the wetting angle (8) and the cap radius (r) as 

_{ 4 3 2} .:lGhet - -37fr.:lG v + 47fr 'YSL S( 8) (4.16) 

where 

S(8) = (2 + cos 8)(1 - cos 8)2/4 (4.17) 

Note that except for factor S(8) this expression is the same as that obtained 
for homogeneous nucleation, Equation 4.4. S(8) has a numerical value :sI 
dependent only on 8, i.e. the shape of the nucleus. It is therefore referred to 
as a shape factor. .:lGhet is shown in Fig. 4.8 along with dGhom for compari­
son. By differentiation of Equation 4.16 it can be shown that 

(4.18) 

and 

167f",3 
.:lG* = ,SL . S(8) 

3.:lG~ 
(4.19) 

Therefore the activation energy barrier against heterogeneous nucleation 
(.:lGhet) is sm aller than dGhom by the shape factor S(8). In addition the critical 
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Fig. 4.8 The excess free energy of solid clusters for homogeneous and heterogeneous 
nucleation. Note r* is independent of the nucleation site. 

nucleus radius (r*) is unaffected by the mould wall and only depends on the 
undercooling. This result was to be expected since equilibrium across the 
curved interface is unaffected by the presence of the mould wall. 

Combining Equations 4.6 and 4.19 gives 

/lGbet = S(e)/lGiiorn ( 4.20) 

If for example 8 = 10°, S(8) - 10-4 , i.e. the energy barrier for hetero­
geneous nucleation can be very much sm aller than for homogeneous nu­
cleation. Significant reductions are also obtained for high er values of 8, e.g. 
when 8 = 30°, S = 0.02; even when 8 = 90°, S = 0.5. It should be noted 
that the above model breaks down for 8 = O. In this case the nucleus must 
be modelled in so me other way, e.g. as shown in Fig. 4.12. 

The effect of undercooling on I1G bet and I1G born is shown schematically 
in Fig. 4.9. If there are nt atoms in contact with the mould wall the number 
of nuclei should be given by 

( " I1G* )" 
n* = nl exp - k;ct . (4.21) 



Nucleatian in pure rneta/s 

, 
\ 
\ 
\ 
\ 
\ 
\ ... 
\ AGhet 

\ , 

* AG horn 

---~--

Critical value 
for detectable 
nucleation 

--'---" ---(0) 0 ' ------L ___ -_-_-----I_=-:=::...=..:='_=_ __ - -------
AT 

N 

(b) O~--------------~--------~ ... AT 

195 

Fig. 4.9 (a) Variation of /1G* with undercooling (/1T) for homogeneous and heter­
ogeneous nuc1eation. (b) The corresponding nuc1eation rates assuming the same 
critical value of /1G*. 

Therefore heterogeneous nucleation should become feasible when !1G6et 
becomes sufficiently small. The critical value for !1G6et should not be very 
different from the critical value for homogeneous nucleation. It will mainly 
depend on the magnitude of nl in the aboveequation . Assuming for the sake 
of simplicity that the critical value is again -78 kT it can be seen from 
Fig. 4.9 that heterogeneous nucleation will be possible at much lower under­
coolings than are necessary for homogeneous nucleation. 

To be more precise, the va/urne rate of heterogeneous nucleation ought to 
be given by an equation of the form 

( !1G6et) Nhet = 11 Cl exp -----;zr (4.22) 

where 11 is a frequency factor similar to 10 in Equation 4.12, Cl is the number 
of atoms in contact with heterogeneous nucleation sites per unit volume of 
liquid. 
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Fig. 4.10 Heterogeneous nucleation in mould-wall cracks. (a) The critical nuclei. 
(b) The upper nucleus cannot grow out of the crack while the lower one can. (After 
P.G. Shewmon, Transformations in Metals, © 1969 McGraw-Hill. Used with the 
permission of McGraw-Hill Book Company.) 

So far it has been assumed that the mould wall is microscopically flat. In 
practice however it is likely to contain many microscopic cracks or crevices. It 
is possible to write down equations for the formation of a nucleus on such a 
surface but the result can be obtained more easily as follows. In both of the 
nucleation types considered so far it can be shown that 

AG* = ~V*AG 2 v 
(4.23) 

where V* is the volume of the critical nucleus (sphere or cap). This equation, 
as well as Equation 4.7, are in fact quite gene rally true for any nucleation 
geometry. Thus, if a nucleus forms at the root of a crack the critical volume 
can be very small even if the wetting angle e is quite large. Figure 4.10 shows 
an example where e = 90°. Therefore nucleation from cracks or crevices 
should be able to occur at very small undercoolings even when the wetting 
angle e is relatively large. Note however that for the crack to be effective the 
crack opening must be large enough to allow the solid to grow out without the 
radius of the solid/liquid interface decreasing below ,*. 

In commercial practice heterogeneous nucleation is often enhanced by the 
addition of inoculants to the melt in order to refine the final grain size. The 
inoculating agent forms asolid compound with one of the components of the 
melt which then acts as a site for nucleation. According to the theory of 
heterogeneous nucleation outlined above the effectiveness of an inoculant 
should depend on the wetting angle and the surface roughness. Low values 
of e are favoured by a low-energy interface between the inoculant and solid 
nucleus, 'YSM, which should in turn be favoured by good lattice matching 
between the particle and solid. However lattice matching alone is unable to 
account for the effectiveness of nucleants. Other contributing factors include 
chemical effects, as well as surface segregation and roughness. It is thus 
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difficult at present to predict the effectiveness of a given nucleant. In practice 
the aim of inoculant additions is of course not to reduce undercooling but to 
achieve a fine grain size, and then other variables such as the concentration of 
nucleating particles also becomes important. 

4.1.4 Nucleation 0/ Melting 

Although nucleation during solidification usually requires some undercool­
ing, melting invariably occurs at the equilibrium melting temperature even 
at relatively high rates of heating. This is due to the relative free energies of 
the solid/vapour, solid/liquid and liquid/vapour interfaces. It is always found 
that 

'YSL + 'YLV < 'YSV (4.24) 

Therefore the wetting angle 6 = 0 and no superheating is required for nuclea­
tion of the liquid. In fact this interfacial"energy relationship implies that a thin 
liquid layer should even be able to form below Tm (see exercise 4.10). This 
phenomenon has not, however, been verified for metals as yet. 

It is interesting to note that although Tm is a well-defined parameter in 
metallurgy, the actual atomic mechanism of melting is still not properly 
understood (for a good discussion of this phenomenon s€?e, e.g. Cahn, 19782). 

The solid -+ melt transformation in metals corresponds to an equivalent 
increase in vacancy concentration of as much as 10%, which is difficult to 
explain in the usual terms of defect structures. The melt, on this basis, might 
simply be considered to consist of an array of voids (condensed vacancies) 
surrounded by loose regions of disordered crystal (Frenkel's theorr). The 
sudden change from long-range crystallographic order to this loose, dis­
ordered structure may be associated with the creation of avalanches of dis­
locations which effectively break up the close-packed structure as melting 
occurs, as proposed by Cotterill et al. (1975)4 on the basis of computer 
simulation experiments. There are, however, problems of quantifying this 
dislocation mechanism with dilatometric observations, and a more refined 
theory of melting is awaited. 

4.2 Growth of a Pure Solid 

It was shown in Section 3.4.6 that there are basically two different types of 
solid/liquid interface: an atomically rough or diffuse interface associated with 
metallic systems, and an atomically ftat or sharply defined interface often 
associated with non-metals. Because of the differences in atomic structure 
these two types of interface migrate in quite different ways. Rough interfaces 
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migrate by a continuous growth process while Bat interfaces migrate by a 
lateral growth process involving ledges. 

4.2.1 Continuous Growth 

The migration of a diffuse solid/liquid interface can be treated in a similar 
way to the migration of a random high-angle grain boundary. The free energy 
of an atom crossing the S/L interface will vary as shown in Fig. 3.24 except 
one solid grain is replaced by the liquid phase. The activation energy barrier 
il.Ga should be approximately the same as that for diffusion in the liquid 
phase, and the driving force for solidification (il.G) will then be given by 

L 
il.G = - . il.T 

Tm I 
(4.25) 

where L is the latent heat of melting and il.Tj is the undercooling of the 
interface below the equilibrium melting temperature Tm. By analogy with 
Equation 3.21 therefore, the net rate of solidification should be given by an 
equation of the form 

(4.26) 

where k1 has the properties of boundary mobility. A full theoretical treatment 
indicates that k 1 has such a high value that normal rates of solidification can 
be achieved with interfacial undercoolings (il.Tj ) of only a fraction of a degree 
Kelvin. For most purposes therefore il.Tj can be ignored and the solid/liquid 
interface is assumed to be at the equilibrium melting temperature. In other 
words the solidification of metals is usually a diffusion controlled process. For 
pure met als growth occurs at a rate controlled by heat conduction (diffusion) 
whereas alloy solidification is controlled by solute diffusion. 

The above treatment is applicable to diffuse interfaces where it can be 
assumed that atoms can be received at any site on the solid surface, i.e. the 
accommodation factor A in Equation 3.22 is approximately unity. For this 
reason it is known as continuous growth. Such a mode of growth is reasonable 
because the interface is disordered and atoms arriving at random positions 
on the solid will not significantly disrupt the equilibrium configuration of the 
interface. The situation is, however, more complex when the equilibrium 
interface structure is atomically smooth as in the case of many non-metals. 

4.2.2 Lateral Growth 

It will be recalled that materials with a high entropy of melting prefer to form 
atomically smooth, close-packed interfaces. For this type of interface the 
minimum free energy also corresponds to the minimum internal energy, i.e. a 
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Fig. 4.11 Atomically smooth solid/liquid interfaces with atoms represented by 
cubes. (a) Addition of a single atom onto a Hat interface increases the number of 
'broken bonds' by four. (b) Addition to a ledge (L) only increases the number of 
broken bonds by two, whereas at a jog in a ledge (J) there is no increase. 

minimum number of broken 'solid' bonds. If a single atom leaves the liquid 
and attaches itself to the flat solid surface, Fig. 4.lla, it can be seen that the 
number of broken bonds associated with the interface, i.e. the interfacial 
energy, will be increased. There is therefore little prob ability of the atom 
remaining attached to the solid and it is likely to jump back into the liquid. In 
other words, atomically smooth interfaces have inherently low accommoda­
tion factors. However, if the interface contains ledges, Fig. 4.llb, 'liquid' 
atoms will be able to join the ledges with a much lower resulting increase in 
interfacial energy. If the ledge contains a jog, J, atoms from the liquid can 
join the solid without any increase in the number of broken bonds and the 
interfacial energy remains unchanged. Consequently the prob ability of an 
atom remaining attached to the solid at these positions is much greater than 
for an atom joining a facet. Smooth solid/liquid interfaces can therefore be 
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Fig. 4.12 Ledge creation by surface nucleation. 

expected to advance by the lateral growth of ledges similar to that described 
for coherent solid/solid interfaces in Section 3.5.1. Since the ledges and jogs 
are a non-equilibrium feature of the interface, growth will be very dependent 
on how the ledges and jogs can be supplied. It is thought that there are 
basically three different ways in which this can be achieved. These are (i) by 
repeated surface nucleation, (ii) by spiral growth, and (iii) from twin 
boundaries. 

Surface Nucleation 
It was pointed out above that a single atom 'solidifying' on to a ftat solid 
surface will be unstable and te nd to rejoin the melt. However, if a sufficently 
large number of atoms can come tagether to form a disc-shaped layer as 
shown in Fig. 4.12 it is possible for the arrangement to become self-stabilized 
and continue to grow. The problem of disc creation is the two-dimensional 
analogue of cluster formation du ring homogeneaus nucleation. In this case 
the edges of the disc contribute a positive energy which must be counterbal­
anced by the volume free energy released in the process. There will therefore 
be a critical radius (r*) associated with the two-dimensional nucleus which 
will decrease with increasing interface undercooling. Once nucleated the disc 
will spread rapidly over the surface and the rate of growth normal to the 
interface will be governed by the surface nucleation rate. A full theoretical 
treatment shows that 

(4.27) 

where k2 is roughly constant. This is shown schematically in Fig. 4.14. Note 
that this mechanism is very ineffective at sm all undercoolings where r* is very 
large . 
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(0) 

( b) 
Fig. 4.13 Spiral growth. (a) A screw dislocation terminating in the solid/liquid 
interface showing the associated ledge. (After W.T. Read Jr., Dislocations in Crystals, 
© 1953 McGraw-Hill . Used with the permission of McGraw-Hill Book Company.) 
Addition of atoms at the ledge causes it to rotate with an angular velocity decreasing 
away from the dislocation core so that a growth spiral develops as shown in (b). (After 
J.W. Christian, The Theory of Phase Transformations in Metals and Alloys, Pergamon 
Press , Oxford, 1965.) 

Spiral Growth 
If the solid contains dislocations that intersect the SjL interface the problem 
of creating new interfacial steps can be circumvented. 

Consider for simplicity the introduction of a screw dislocation into a block 
of perfect crystal. The effect will be to create a step or ledge in the surface of 
the crystal as shown in Fig. 4.13a. The addition of atoms to the ledge will 
cause it to rotate about the point where the dislocation emerges, i.e. the ledge 
will never run out of the interface. If, on average, atoms add at an equal rate 
to all points along the step the angular velocity of the step will be initially 
greatest nearest to the dislocation core. Consequently as growth proceeds the 
ledge will develop into a growth spiral as shown in Fig. 4.13b. The spiral 
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Fig. 4.14 The inftuence of interface undercooling (~TJ on growth rate for atomically 
rough and smooth interfaces. 

tightens until it reaches a minimum radius of curvature r* at which it is in 
equilibrium with the surrounding liquid and can decrease no more. Further 
out the radius of curvature is less and the spiral can advance at a greater rate. 
Eventually a steady state is reached when the spiral appears to be rotating 
with a constant angular velocity. A complete theoretical treatment of this 
situation shows that for spiral growth the normal growth rate v and the 
undercooling of the interface !:J. Ti are related by an expression of the type 

v = k3(!:J.Ti )2 (4.28) 

where k3 is a materials constant. This variation is shown in Fig. 4.14 along 
with the variations for continuous growth and two-dimensional nucleation. 
Note that for a given solid growth rate the necessary undercooling at the 
interface is least for the continuous growth of rough interfaces. For a given 
undercooling, faceted interfaces are much less mobile and it is to be expected 
that the spiral growth mechanism will normally be more important than 
repeated nucleation. 

Growth trom Twin Interseetions 
Another permanent source of steps can arise where two crystals in different 
orientations are in contact. In solidification it is quite common for materials 
showing faceting to solidify as two crystals in twin orientations. Interfacial 
facets will therefore intersect at the twin boundary which can act as a perma­
nent source of new steps thereby providing an easy growth mechanism similar 
to the growth spiral mechanism. 
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Fig. 4.15 (a) Temperature distribution for solidification when he at is extracted 
through the solid. Isotherms (b) for a planar S/L interface, and (c) for a protrusion. 

4.2.3 Heat Flow and Interface Stability 

In pure met als solidification is controlled by the rate at wh ich the latent heat 
of solidification can be conducted away from the solid/liquid interface. Con­
duction can take place either through the solid or the liquid depending on the 
temperature gradients at the interface. Consider for example solid growing at 



204 

(0) 

( b) 

(c) 

Solidification 

TL 
x 

Solid Liquid 

-v 

yL 
Solid Liquid x 

I I 
I I 
I 1 

: Iheat 
I I. 
1 I 
1 I 
I I 
I I 

yL 
Solid Liquid 

I I 
I I 
I I 
I I 
~I 

~ I 
-.......1 1 

I ....... 1 
I 1 
I I 
1 1 

x 

Fig. 4.16 As Fig. 4.15, but for he at conduction into the liquid. 

a velocity v with a planar interface into a superheated liquid, Fig. 4.15a. The 
heat ftow away from the interface through the solid must balance that from 
the liquid plus the latent heat generated at the interface, i.e. 

(4.29) 

where K is the thermal conductivity, T' is the temperature gradient (d T / dx), 
the subscripts Sand L stand for solid and liquid, v is the rate of growth of the 



Growth 0/ a pure solid 205 

solid, and Lv is the latent heat of fusion per unit volume. This equation is 
quite general for a planar interface and even holds when heat is conducted 
into the liquid (TL< 0), Fig. 4.16a. 

When asolid grows into a superheated liquid, a plan ar solid/liquid inter­
face is stable. This can be shown as follows. Suppose that as a result of a local 
increase in v a small protrusion forms at the interface, Fig. 4.15c. If the radius 
of curvature of the protrusion is so large that the Gibbs-Thomson effect can 
be ignored the solid/liquid interface· remains isothermal at essentially Tm. 
Therefore the temperature gradient in the liquid ahead of the nodule will 

(0) o 

( b) 
(c) 

(dl 
Fig.4.17 The development of thermal dendrites: (a) a spherical nucJeus; (b) the 
interface becomes unstable; (c) primary arms develop in crystalJographic directions 
«(100) in cubic crystals); (d) secondary and tertiary arms develop (after R.E. 
Reed-Hill, Physical Metallurgy Principles, 2nd. edn., Van Nostrand, New York, 
1973.) 
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increase while that in the solid decreases. Consequently more heat will be 
conducted into the protruding solid and less away so that the growth rate will 
decrease below that of the planar regions and the protrusion will disappear. 

The situation is, however, different for asolid growing into supercooled 
liquid, Fig. 4.16. If a protrusion forms on the solid in this case the negative 
temperature gradient in the liquid becomes even more negative. Therefore 
heat is removed more effectively from the tip of the protrusion than from the 
surrounding regions allowing it to grow preferentially. A solid/liquid inter­
face advancing into supercooled liquid is thus inherently unstable. 

Heat conduction through the solid as depicted in Fig. 4.15, arises when 
solidification takes place from mould walls which are cooler than the melt. 
Heat ftow into the liquid, however, can only arise if the liquid is supercooled 
below Tm. Such a situation can arise at the beginning of solidification if 
nucleation occurs at impurity particles in the bulk of the liquid. Since a certain 
supercooling is required before nucleation can occur, the first solid particles 
will grow into supercooled liquid and the latent heat of solidification will be 
conducted away into the liquid. An originally spherical solid particle will 
therefore develop arms in many directions as shown in Fig. 4.17. As the 
primary arms elongate their surfaces will also become unstable and break up 
into secondary and even tertiary arms. This shape of solid is knowns as a 
dendrite. Dendrite comes from the Greek for tree. Dendrites in pure met als 
are usually called thermal dendrites to distinguish them from dendrites in 
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Fig. 4.18 Temperature distribution at the tip of a growing thermal dendrite. 
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alloys (see below). It is found experimentally that the dendrite arms are 
always in certain crystallographic directions: e.g. (100) in cubic metals, and 
(1100) in hcp metals5• 

Let us now take a eIoser look at the tip of a growing dendrite. The situation 
is different from that of a planar interface because heat can be conducted 
away from the tip in three dimensions. If we assume the solid is isothermal 
(Ts = 0) the growth rate of the tip v will be given by a similar equation to 
Equation 4.29 provided TL is measured in the direction of v. A solution to the 
heat-flow equations for a hemispherical tip shows that the (negative) tempera­
ture gradient TL is approximately given by aTc/r where aTc is the difference 
between the interface temperature (Ti) and the temperature of the super­
cooled liquid far from the dendrite (T",) as shown in Fig. 4.18. Equation 4.29 
therefore gives 

-KLTL KL aT 
v= =-.-

Lv Lv r 
(4.30) 

Thus for a given aT, rapid growth will be favoured by sm all values of r due to 
the increasing effectiveness of heat conduction as r diminishes. However aTis 
not independent of r. As a result of the Gibbs-Thomson effect equilibrium 
across a curved interface occurs at an undercooling aTr below Tm given by 

aT. = 2-yTm 
r Lvr 

The minimum possible radius of curvature of the tip is when aTr equals the 
total undercooling aTo = Tm - T 00' This is just the critical nueIeus radius r* 
given by (2-yT ml LvaTo). Therefore in general aTr is given by aTor* Ir. 
Finally since !l.To 0= !l.Tc + !l.Tr Equation 4.30 becomes 

v = KL • ~(1 _ r~) (4.31) 
Lv r r 

It can thus be seen that the tip velocity tends to zero as r -+ r* due to the 
Gibbs-Thomson effect and as r -+ 00 due to slower he at conduction. The 
maximum velocity is obtained when r = 2r*. 

4.3 Alloy Solidification 

The solidification of pure metals is rarely encountered in practice. Even 
commercially pure metals contain sufficient impurities to change the charac­
teristics of solidification from pure-metal to alloy behaviour. We now develop 
the theory a step further and examine the solidification of single-phase binary 
alloys. Following this we then consider the solidification of eutectic and 
peritectic alloys. 
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4.3.1 Solidification of Single-Phase Al/oys 

The alloys of interest in this section are those such as Xo in Fig. 4.19. This 
phase diagram has been idealized by assuming that the solidus and liquidus 
are straight lines. It is useful to define a partition coefficient k as 

k = X s 
XL 

(4.32) 

where X s and XL are the mole fractions of solute in the solid and liquid in 
equilibrium at a given temperature. For the simple case shown in Fig. 4.19, k 
is independent of temperature. 

The way in which such alloys solidify in practice depends in rather a 
complex way on temperature gradients, cooling rates and growth rates. 
Therefore let us simplify matters by considering the movement of a planar 
solid/liquid interface along a bar of alloy as shown in Fig. 4.20a. Such 
unidirectional solidification can be achieved in practice by passing the alloy in 
a crucible through a steep temperature gradient in a specially constructed 
furnace in which heat is confined to fiow along the axis of the bar. 

Let us examine three limiting cases: 

1. Infinitely slow (equilibrium) solidification 
2. Solidification with no diffusion in the solid but perfect mixing in the 

liquid 
3. Solidification with no diffusion in the solid and only diffusional mixing in 

the liquid 

Equilibrium Solidification 
Alloy Xo in Fig. 4.19 begins to solidify at Tl with the formation of a small 
amount of solid with composition kXo. As the temperature is lowered more 
solid forms and, provided cooling is slow enough to allow extensive solid­
state diffusion, the solid and liquid will always be homogeneous with com­
positions following the sol idus and liquidus lines, Fig. 4.20b. The relative 
amounts of solid and liquid at any temperature are simply given by the lever 
rule. Note that, since solidification is one-dimensional, conservation of 
solute requires the two shaded areas in Fig. 4.20b to be equal (ignoring the 
differences in molar volume between the two phases). At T3 the last drop of 
liquid will have a composition Xo/k and the bar of solid will have a com­
position Xo along its entire length. 

No Diffusion in Solid, Perfeet Mixing in Liquid 
Very often the rate of cooling will be too rapid to allow substantial diffusion in 
the solid phase. Therefore let us assume no diffusion takes place in the solid 
but that the liquid composition is kept homogeneous during solidification by 
efficient stirring. Again, assuming unidirectional solidification, the first solid 
will appear when the cooled end of the bar reaches Tl in Fig. 4.21a, at which 
stage solid containing kXo mol of solute forms. Since kXo < X o, this first 
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Fig. 4.19 A hypothetical phase diagram. k = X s/ XL is constant. 
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Fig. 4.20 Unidirectional solidification of alloy Xo in Fig. 4.19. (a) A planar S/L 
interface and axial he at f1ow. (b) Corresponding composition profile at T2 assuming 
complete equilibrium. CClOservation of solute requires the two shaded areas to be 
equal. 
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solid will be purer than the liquid from whieh it forms so that solute is rejected 
into the liquid and raises its concentration above Xo, Fig. 4.21b. The tem­
perature of the interface must therefore decrease below Tl before further 
solidification can occur, and the next layer of solid will be slightly richer in 
solute than the first. As this sequence of events continues the liquid becomes 
progressively rieher in solute and solidification takes place at progressively 
lower temperatures, Fig. 4.21c. At any stage during solidification local 
equilibrium can be assumed to exist at the solid/liquid interface, i.e. for a 
given interface temperature the compositions of the solid and liquid in contact 
with one another will be given by the equilibrium phase diagram. However, 
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Fig. 4.21 Planar front solidification of alloy Xo in Fig. 4.19 assuming no diffusion in 
the solid, but complete mixing in the liquid. (a) As Fig. 4.19, but inCluding the mean 
composition of the solid. (b) Composition profile just under Tl' (c) Composition 
profile at T2 (compare with the profile and fraction solidified in Fig. 4.20b. 
(d) Composition profile at the eutectic temperature and below. 
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since there is no diffusion in the solid, the separate layers of solid retain their 
original compositions. Thus the mean composition of the solid (Xs) is always 
lower than the composition at the solid/liquid interface, as shown by the 
dashed line in Fig. 4.21a. The relative amounts ofsolid and liquid for a given 
interface temperature are thus given by the lever rule using Xs and XL' It 
follows that the liquid can become much richer in solute than Xo/ k and it may 
even reach a eutectic composition, XE, for example. Solidification will thus 
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tend to terminate dose to TE with the formation of a eutectic structure of 
a + ß. The completely solidified bar will then have a solute distribution as 
shown in Fig. 4.21d with Xs = Xo. 

The variation of X s along the solidified bar can be obtained by equating the 
solute rejected into the liquid when a small amount of solid forms with the 
resultingsolute increase in the liquid. Ignoring the difference in molar volume 
between the solid and liquid this gives 

(XL - Xs)dfs = (1 - fs)dXL 

where fs is the volume fraction solidified. Integrating this equation using the 
boundary condition X s = kXo when fs = 0 gives 

X s = kXo(1 - fs)(k -1) 

and 

(4.33) 

These equations are known .as the non-equilibrium lever rule or the Scheil 
equations. 

Note that for k < 1 these equations predict that when there is no diffusion 
in the solid there will always be some eutectic in the last drop of liquid to 
solidify, no matter how little solute is present. Also the equation is quite 
generally applicable even for non-planar solid/liquid interfaces provided 
the liquid composition is uniform and that the Gibbs-Thomson effect is 
negligible. 

No Diffusion in Solid, Diffusional Mixing in Liquid 
If there is no stirring or convection in the liquid phase the solute rejected from 
the solid will only be transported away by diffusion. Hence there will be a 
rapid build up of solute ahead of the solid and a correspondingly rapid 
increase in the composition of the solid formed, Fig. 4.22a. This is known as 
the initial transient. If solidification is made to occur at a constant rate, v, it 
can be shown that a steady state is finally obtained when the interface 
temperature reaches T3 in Fig. 4.196 . The liquid adjacent to the solid then has 
a composition Xo/ k and the solid forms with the bulk composition Xo. 

During steady-state growth the concentration profile in the liquid must be 
such that the rate at which solute diffuses down the concentration gradient 
away from the interface is balanced by the rate at which solute is rejected 
from the solidifying liquid, i.e. 

-DC~ = v(CL - Cs) (4.34) 

where D is diffusivity in the liquid, CL stands for dCL/dx at the interface, CL 
and Cs are the solute concentrations of the liquid and solid in equilibrium at 
the interface (units: m-3). Note the similarity of this equation to that de­
scribing the rate at which solidification occurs in pure metals, Equation 4.29. 
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Fig. 4.22 Planar front solidification of alloy Xo in Fig. 4.19 assuming no diffusion in 
the solid and no stirring in the liquid. (a) Composition profile when S/L interface 
temperature is between T2 and T3 in Fig. 4.19. (b) Steady-state solidification at T3 • 

The composition solidifying equals the composition of the liquid far ahead of the solid 
(Xo). (c) Composition profile at TE and below, showing the final transient. 
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If the diffusion equation is solved for steady-state solidification it can be 
shown that the concentration profile in the liquid is given by 

(4.35) 

i.e. XL decreases exponentially from Xo/k at x = 0, the interface, to Xo at 
large distances from the interface. The concentration profile has a characteris­
tic width of D /v. 

When the solid/liquid interface is within -D/v of the end of the bar the 
bow-wave of solute is compressed into a very sm all volume and the interface 
composition rises rapidly leading to a final transient and eutectic formation, 
Fig.4.22c. 

Inpractice alloy solidification will usually possess features from all three of 
the cases discussed above. There will usually be some stirring either due to 
liquid turbulence caused by pouring, or because of convection currents, or 
gravity effects. However, stirring will not usually be sufficiently effective to 
prevent the formation of a boundary layer and some liquid diffusion will 
therefore be involved. Partial stirring does, however, have the effect of 
reducing the boundary layer thickness. The concentration profiles found in 
practice may thus exhibit features between those shown in Fig. 4.21d and 
4.22c. In many cases diffusion in the solid must also be taken into account, 
e.g. when interstitial atoms or bcc met als are involved. In this case solute can 
diffuse away from the solidifying interface back into the solid as weIl as into 
the liquid, with the result that after solidification the alloy is more 
homogeneous. 

Even when solidification is not unidirectional the above ideas can still often 
be applied at a microscopic level as will be discussed below. Unidirectional 
solidification has commercial importance in, for example, the production of 
creep resistant aligned microstructures for gas turbine blades. It is also used in 
the production of extremely pure met als (zone refining) 7 . 

Cellular and Dendritic Solidification 
So far we have considered solidification in which the growth front is planar. 
However, the diffusion of solute into the liquid during solidification of an 
alloy is analogous to the conduction of latent heat into the liquid during the 
solidification of a pure metal. At first sight therefore it would seem that the 
planar front should break up into dendrites. The problem is complicated, 
however, by the possibility of temperature gradients in the liquid. 

Consider steady-state solidification at a planar interface as shown in 
Fig. 4.23. As a result of the varying solute concentration ahead of the solidi­
fication front there is a corresponding variation of the equilibrium solidifica­
tion temperature, i.e. the liquidus temperature, as given by the line Te in 
Fig. 4.23b. However, apart from the temperature of the interface, which is 
fixed by local equilibrium requirements, the actual temperature of the liquid 
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Distonce x ___ 
Fig. 4.23 The origin of constitutional supercooling ahead of a planar solidification 
front. (a) Composition profile across the solid/liquid interface during steady-state 
solidification. The dashed line shows dXddx at the S/L interface. (b) The tempera­
ture of the liquid ahead of the solidification front follows line h. The equilibrium 
liquidus temperature for the liquid adjacent to the interface varies as Te. Constitu­
tional supercooling arises when TL lies under the critical gradient. 

can follow any line such as TL' At the interface h = Te = T3 (defined in 
Fig. 4.19). If the temperature gradient is less than the critical value shown in 
Fig. 4.23b the liquid in front of the solidification front exists below its equilib­
rium freezing temperature, i.e. it is supercooled. Since the supercooling arises 
from compositional, or constitutional effects it is known as constitutional 
supercooling. 
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A necessary condition for the formation of stable protrusions on a planar 
interface is that there must exist a region of constitutional supercooling in the 
liquid. Assuming the TL variation in Fig. 4.23b the temperature at the tip of 
any protrusion that forms will be higher than that of the surrounding inter­
face. (In contrast to pure metals the interface in alloys need not be isother­
mal. ) However, provided the tip remains below the local liquidus tempera­
ture (Te) solidification is still possible and the protrusion can develop. On the 
other hand if the temperature gradient ahead of the interface is steeper than 
the critical gradient in Fig. 4.23b the tip will be raised above the liquidus 
temperature and the protrusion will melt back. 

Under steady-state growth the critical gradient can be seen from Fig. 4.23 
to be given by (Tl - T3)/(D/v) where Tl and T3 are the liquidus and solidus 
temperatures for the bulk composition Xo , Fig. 4.19. The condition for a 
stable plan ar interface is therefore 

T' > (Tl - T3) 

L (D/v) 

where TL stands for (dTddx) at the interface. Or, regrouping the ex­
perimentally adjustable parameters T'L and v, the condition for no constitu­
tional supercooling is 

(4.36) 

(Tl - T3) is known as the equilibrium [reezing range of the alloy. Clearly 
plan ar front solidification is most difficult for alloys with a large soldification 
range and high rates of solidification. Except under well-controlled ex­
perimental conditions alloys rarely solidify with plan ar solid/liquid interfaces. 
Normally the temperature gradients and growth rates are not individually 
controllable but are determined by the rate at which heat is conducted away 
from the solidifying alloy. 

(0) (b) (c) (d) (e) 

I' -
- -

Heot flow 
Fig. 4.24 The breakdown of an initially plan ar solidification front into cells. 
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Fig. 4.25 Temperature and solute distributions associated with cellular solidification. 
Note that solute enrichment in the liquid between the cells, and coring in the cells with 
eutectic in the cell walls . 

If the temperature gradient ahead of an initially planar interface is gradu­
ally reduced below the critical value the first stage in the breakdown of the 
interface is the formation of a cellular structure, Fig. 4.24. The formation of 
the first protrusion causes solute to be rejected laterally and pile up at the root 
of the protrusion (b). This lowers the equilibrium soldification temperature 
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-
Q 

.. 

Fig. 4.26 Cellular microstructures. (a) A decanted interface of a cellularly solidified 
Pb-Sn alloy (x 120) (after J.W. Rutter in Liquid Metals and Solidification, American 
Society for Metals, 1958, p. 243) . (b) Longitudinal view of cells in carbon tetrabro­
mide (x 100) (after K.A. Jackson and J.D. Hunt, Acta Metallurgica 13 (1965) 1212). 
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Fig. 4.27 Cellular dendrites in carbon tetrabromide. (After L.R. Morris and W.c. 
Winegard, Journal 0/ Crystal Growth 6 (1969) 61.) 

eausing recesses to form (e), which in turn trigger the formation of other 
protrusions (d). Eventually the protrusions develop into long arms or cells 
growing parallel to the direction of heat flow (e). The solute rejeeted from the 
solidifying liquid concentrates into the cell walls which solidify at the lowest 
temperatures. The tips of the eells, however, grow into the hottest liquid and 
therefore contain the least solute. Even if Xo ~ X max (Fig. 4.19) the liquid 
between the cells may re ach the eutectic eomposition in whieh ease the cell 
walls will contain a s~cond phase. The interaction between temperature 
gradient, cell shape and solute segregation is shown in Fig. 4.25. Figure 4.26 
shows the appearance of the cellular structure. Note that each cell has 
virtually the same orientation as its neighbours and together they form a 
single grain. 

Cellular microstructures are only stable for a eertain range of temperature 
gradients. At sufficiently low temperature gradients the cells, or primary arms 
of solid, are observed to develop seeondary arms, and at stilliower tempera­
ture gradients tertiary arms develop, i.e. dendrites form. Concomitant with 
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IOOfL 

Fig. 4.28 Columnar dendrites in a transparent organic alloy. (After K.A. Jackson 
in Solidification, American Society for Metals, 1971, p. 121.) 

this change in morphology there is a change in the direction of the primary 
arms away from the direction of heat ftow into the crystallographically pre­
ferred directions such as (100) for cubic metals. The change in morphology 
from cells to dendrites can be seen in Figs. 4.26b, 4.27 and 4.28. These 
pictures have been taken during in situ solidification of special transparent 
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organic compounds using a transmission light microscope8 . The compounds 
used have low entropies of melting and solidify in the same way as metals. 
Alloys have been simulated by suitable combinations of such compounds. 

In general the tendency to form dendrites increases as the solidification 
range increases. Therefore the effectiveness of different solutes can vary 
widely. For solutes with a very sm all partition coefficient (k) cellular or 
dendritic growth can be caused by the addition of a very sm all fraction of a 
per cent solute. 

The reason for the change from cells to dendrites is not fully understood. 
However it is probably associated with the creation of constitutional super­
cooling in the liquid between the cells causing interface instabilities in the 
transverse direction. Note that for unidirectional solidification there is 
approximately no temperature gradient perpendicular to the growth direc­
tion. The cell or dendrite arm spacing developing is probably that wh ich 
reduces the constitutional supercooling in the intervening liquid to a very low 
level. This would be consistent with the observation that cell and dendrite 
arm spacings both decrease with increasing cooling rate: higher cooling rates 
allow less time for lateral diffusion of the rejected solute and therefore 
require smaller cell or dendrite arm spacings to avoid constitutional super­
cooling. 

Fig.4.29 AI-Cu Al2 lamellar eutectic normal to the growth direction (x 680). 
(Courtesy of J. Strid, University of Lulea, Sweden.) 
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Fig. 4.30 Rod-like eutectic. Al~e rods in Al matrix. Transverse section. Trans­
mission electron micrograph (x 70000). (Courtesy of J. Strid, University of Lulea, 
Sweden.) 

Finally it should be noted that although the discussion of alloy solidification 
has been limited to the case k < 1, similar arguments can be advanced for the 
case of k > 1. (See exercise 4.13.) 

4.3.2 Eutectic Solidification9 

In the solidification of a binary eutectic composition two solid phases form 
cooperatively from the liquid, i.e. L ~ a + ß. Various different types of 
eutectic solidification are possible and these are usually classified as normal 
and anomalous. In normal structures the two phases appear either as alter­
nate lamellae, Fig. 4.29, or as rods of the minor phase embedded in the other 
phase, Fig. 4.30. During solidification both phases grow simultaneously be­
hind an essentially plan ar solid/liquid interface. Normal structures occur 
when both phases have low entropies of fusion. Anomalous structures, on the 
other hand, occur in systems when one of the solid phases is capable of 
faceting, i.e. has a high entropy of melting. There are many variants of these 
structures the most important commercially being the ftake structure of 
Al-Si alloys. This section will only be concerned with normal structures, and 
deal mainly with lamellar morphologies. 
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Fig. 4.31 Interdiffusion in the liquid ahead of a eutectic front. 

llG(oo) 

A 8 
Fig. 4.32 Molar free energy diagram at a temperature tJ.To be\ow the eutectic 
temperature, for the ca se A = A·. 

Growth of Lamellar Eutectics 
Figure 4.31 shows how two phases can grow cooperatively behind an essen­
tially planar solidification front. As the A-rich a phase solidifies excess B 
diffuses a short distance laterally where it is incorporated in the B-rich ß 
phase . Similarly the A atoms rejected ahead of the ß diffuse to the tips of the 
adjacent a lamellae. The rate at which the eutectic grows will depend on how 
fast this diffusion can occur and this in turn will depend on the interlamellar 
spacing x.. Thus small interlamellar spacings should lead to rapid growth. 
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However there is a lower limit to ~ determined by the need to supply the a/ß 
interfacial energy, "faß' 

For an interlamellar spacing, ~, there is a total of (2/~) m2 of a/ß interface 
per m3 of eutectic. Thus the free energy change associated with the solidifica­
tion of 1 mol of liquid is given by 

2"" V ~G(~) = -~G(oo) + laß m (4.37) 
~ 

where V m is the molar volume of the eutectic and ~G(oo) is the free energy 
decrease for very large values of ~. Since solidification will not take place if 
~G(~) is positive, ~G(oo) must be large enough to compensate for the interfa­
cial energy term, Le. the eutectic/liquid interface must be undercooled below 
the equilibrium eutectic temperature TE, Fig. 4.32. If the total undercooling 
is ~To it can be shown that ~G(oo) is then given approximately by 

~G(oo) = ~H . ~To 
TE 

(4.38) 

where ~ is an enthalpy term. The mlmmum possible spacing (~*) is 
obtained by using the relation ~G(~ *) = 0, whence 

2yaßVm TE 
~ * = --'--'---

~·~To 
(4.39) 

When the eutectic has this spacing the free energy of the liquid and eutectic is 
the same, Le. all three phases are in equilibrium. This is because the a/ß 
interface raises the free energies of the a and ß from G"'(oo) and Gß(oo) to 
Ga(~ *) and Gß(~ *) as shown in Fig. 4.32. The cause of the increase is the 
curvature of the alL and ß/L interfaces arising from the need to balance the 
interfacial tensions at the a/ß/L tripie point, Fig. 4.31. In general, therefore, 
the increase will be different for the two phases, but for simple cases it can be 
shown to be 2"faß V m/~ for both, Fig. 4.32. 

Let us now turn to the mechanism of growth. If solidification is to occur at a 
finite rate there must be a flux of atoms between the tips of the a and ß 
lamellae and this requires a finite composition difference. For example the 
concentration of B must be higher ahead of the a phase than ahead of the ß 
phase so that B rejected from the a can diffuse to the tips of the growing ß. If 
~ = ~ * growth will be infinitely slow because the liquid in contact with both 
phases has the same composition, XE in Fig. 4.32. However if the chosen 
spacing is greater than ~ * less free energy is locked in the interfaces and Ga 
and Gß are correspondingly reduced, Fig. 4.33a. Under these circumstances 
the liquid in local equilibrium with the a has a composition xä/a which is 
richer in B than the composition in equilibrium with the ß phase X~/ß. 

If the alL and ß/L interfaces are highly mobile it is reasonable to assume 
that growth is diffusion controlled in which case the eutectic growth rate (v) 
should be proportional to the flux of salute through the liquid. This in turn 
will vary as D dC/dl where D is the liquid diffusivity and dC/dl is the 
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Fig. 4.33 (a) Molar free energy diagram at (TE - .:lTo) for the case A * < A < 00, 

showing the composition difference available to drive diffusion through the liquid 
(.:lX). (b) Model used to calculate the growth rate. 

concentration gradient driving the diffusion. (I is measured along the direc­
tion of diffusion as shown in Fig. 4.33b. In practice dCjdl will not have a 
single value but will vary from pi ace to place within the diffusion zone.) dCjdl 
should be roughly proportional to the maximum composition difference 
(x~/a - X~/ß) and inversely proportional to the effective diffusion distance, 
which, in turn, will be linearly related to the interlamellar spacing ("-). Thus 
we can write 

(4.40) 
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Fig. 4.34 Eutectic phase diagram showing the relationship between LlX and LlXo 
(exagl!erated for clarity). 

where k 1 is a proportionality constant and LlX = x~/a - X~/ß as given in 
Fig. 4.33. 
~X will itself depend on X. for when X. = X. *, LlX = 0, and as X. increases ~X 

will tend to a maximum value, LlXo, say. Therefore it is reasonable to write 

LlX = ßXo( 1 - Ax.*) (4.41) 

The magnitude of ~Xo can be obtained by extrapolating the equilibrium 
liquidus lines of the phase diagram (X. = (0) as shown in Fig. 4.34. For sm all 
undercoolings 

(4.42) 

The dashed lines in Fig. 4.34 are the liquidus lines for X. * < X. < 00. ~X is 
simply given by the extrapolation of these lines as shown. Combining the 
above equations gives 

(4.43) 
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Fig. 4.35 (a) Cellular eutectic solidification front in a transparent organic alloy. 
(After J.D. Hunt and K.A. Jackson, Transactions of the Metallurgical Society of 
AlME 236 (1966) 843. (b) Transverse section through the cellular structure of an 
AI-AI6Fe rod eutectic (x 3500). (Courtesy of J. Strid, University of Lulea, Sweden.) 
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where k2 is another proportionality constant. This equation shows that by 
varying the interface undercooling (äTo) it is possible to vary the growth rate 
(v) and spacing (A) independently. It is therefore impossible to predict the 
spacing that will be observed for a given growth rate. However, controlled 
growth experiments show that a specific value of A is always associated with a 
given growth rate. Examination of Equation 4.43 shows that when A = 2A *, 
the growth rate is a maximum for a given undercooling, or, alternatively, the 
required undercooling is a minimum for a given growth rate. If it is assumed 
that growth occurs under these optimum conditions the observed spacing 
Ao = 2A * and the observed growth rate is given by 

Vo = k2DäTo/2A * 

However, from Equation 4.39, it is seen that äTo oe l/A * so that the following 
relationships are predicted: 

VoAÖ = k3 (constant) (4.44) 

and 

Vo 
(äTo)2 = k4 (constant) (4.45) 

There is in fact no physical basis for choosing A = 2A * and similar expressions 
can also be obtained using other assumptions concerning the spacing. 
Equations 4.44 and 4.45 are often found to be obeyed experimentally. For 
example measurements on the lamellar eutectic in the Pb-Sn systemlO show 
that k3 - 33 f.Lm3 S-1 and k4 - 1 f.Lm S-1 K- 2 . Therefore for a solidification 
rate of 1 f.Lm S-1, Ao - 5 f.Lm and äTo - 1 K. 

The total undercooling at the eutectic front (äTo) has two contributions, 
i.e. 

Atomic 
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Fig. 4.36 Composition profiles across the cells in Fig. 4.35b. 
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ilTr is the undercooling required to overcome the interfacial curvature effects 
and il T D is the undercooling required to give a sufficient composition differ­
ence to drive the diffusion. (Strictly speaking a ilTj term should also be added 
since a driving force is required to move the atoms across the interfaces, but 
this is negligible for high mobility interfaces.) A better theoretical treatment 
of eutectic solidification should take into account the fact that the composi­
tion of the liquid in contact with the interface and therefore ilT D vary 
continuously from the middle of the a to the middle of the ß lamellae. Since 
the interface is essentially isothermal (il To constant) the variation of il T D 

must be compensated by a variation in ilTr , i.e. the interface curvature will 
change across the interfacell . 

A plan ar eutectic front is not always stable. If for example the binary 
eutectic alloy contains impurities, or if other alloying elements are present, 
the interface tends to break up to form a cellular morphology. The solidifica­
tion direction thus changes as the cell walls are approached and the lamellar 
or rod structure fans out and may even change to an irregular structure, 
Fig. 4.35. The impurity elements diffuse laterally and concentrate at the cell 
walls. In the case of the Al6Fe-Al rod-like eutectic shown in Fig. 4.35 the 
impurity causing the cellular structure is mainly copper. Figure 4.36 shows 
how the concentration of copper and iron in the aluminium matrix increases 
in the cell walls and boundary nodes. 

Cell formation in eutectic structures is analogous to that in single-phase 
solidification, and under controlled conditions it is possible to stabilize a 
planar interface by solidifying in a sufficiently high temperature gradient. 

4.3.3 Off-Eutectic Al/oys 

When the bulk alloy composition (Xo) deviates from the equilibrium eutectic 
composition (XE) as shown in Fig. 4.37 solidification usually begins dose to 
Tl with the formation of primary (a) dendrites. As the dendrites thicken 
solute is rejected into the remaining liquid until its composition reaches XE and 
the eutectic solidifies. Under steady-state unidirectional solidification condi­
tions in the presence of a shallow temperature gradient the solidification front 
could appear as in Fig. 4.37b. The tips of the dendrites are dose to Tl and the 
eutectic front, most probably cellular, dose to TE. Similar behaviour is found 
during the solidification of castings and ingots. In the absence of solid-state 
diffusion the centres of the dendrites, which solidified dose to Tl, will contain 
less solute than the outer layers that solidify at progressively lower tempera­
tures. This leads to what is known as co ring in the final microstructure, 
Fig. 4.38. The eutectic does not always solidify as a two-phase mixture. When 
the volume fraction of one of the phases in the microstructure is very small it 
can form a so-called divorced eutectic. The minor phase then often appears a$ 
iso la ted islands and the other phase forms by the thickening of the dendrites. 
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a. 

Fig. 4.38 Transverse section through a dendrite in Fig. 4.37. 

Under controlled solidification conditions, e.g. in unidirectional solidifica­
tion experiments, it is possible to solidify an off-eutectic alloy without permit­
ting the formation of the primary dendritic phase. If the temperature gradient 
in the liquid is raised above a criticallevel the dendrite tips are overgrown by 
the eutectic and the alloy solidifies as 100% 'eutectic' with an overall composi­
tion Xo instead of XE' A similar change can be brought about if the growth 
rate is raised above a criticallevel. In both cases the reason for the disappear­
ance of the primary dendrites is that for a given growth velo city the eutectic is 
able to grow at a higher temperature than the dendrite tipS12. This phe­
nomenon is of special interest in the production of in situ composite materials 
because the volume fraction of the two phases in the composite can be 
controlled by the choice of X o13 . 

4.3.4 Peritectic Solidificationl4 

A typical phase dia gram containing a peritectic reaction, i.e. L + a ~ ß, is 
shown in Fig. 4.39a. During equilibrium solidification solid a with composi­
tion 'a' and liquid with composition 'c' react at the peritectic temperature Tp 

to give solid ß of composition 'b'. However, the transformation rarely goes to 
completion in practice. 

Consider for example the solidification of an alloy X o at a finite velocity in a 
shallow temperature gradient, Fig. 4.39b and c. As the temperature de­
creases the first phase to appear is a with the composition -kXo at a tempera­
ture dose to Tl' a grows dendritically with successive layers solidifying at 
compositions determined by the local temperature and the a solidus. If 
diffusion in the dendrit es is slow the liquid will eventually reach point c in 
Fig. 4.39a and on further cooling it reacts with the a to produce a layer of ß. 
However, the a dendrites are then often effectively isolated from further 
reaction and are retained to lower temperatures. Meanwhile the ß phase 
continues to precipitate from the liquid at compositions which follow the line 
bd. Again if there is no diffusion in the solid the liquid will finally reach point 
e and solidify as a ß + 'Y eutectic. The final solidified microstructure will then 
consist of cored a dendrites surrounded by a layer of ß and islands of ß + 'Y 
eutectic, or divorced eutectic. 
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If alloy X o were directionally solidified at increasing values of (TL/v) the 
temperature of the dendrite tips would progressively fall from Tl towards 
Tz (Fig. 4.39a) while the temperature at which the last liquid solidifies would 
increase towards Tz. Finally, solidification would take place behind a planar 
front at a temperature Tz, as discussed earlier in Section 4.3.l. 

Planar-front solidification can also be obtained for alloys beyond 'a' in 
Fig. 4.39, provided a sufficiently high temperature-gradient/velocity ratio is 
used. Alloys between a and b then solidify with a 'eutectic-like' Cl + ß 
structure. (The structure is better described as composite to avoid confusion 
concerning the term eutectic). Between band d single-phase ß forms, and 
beyond d ß + 'Y eutectic-like structures can be formed. 

The Fe-C phase diagram also contains a peritectic, Fig. 4.53a. However 
due to the high diffusivity of carbon at these high temperatures the peritectic 
reaction is very rapid and is able to convert all of the primary (8) dendrites 
into the more stable austenite. 

4.4 Solidification of Ingots and Castings 

This section is concerned with technological applications of the theory of 
solidification, as developed earlier. Two of the most important applications 
are casting and weld solidification and we shall first consider these. In modern 
constructions there is a tendency towards the use of stronger, heavier sections 
welded with higher energy techniques and faster speeds. It is thus important 
for the physical metallurgist to consider the effect of the various solidification 
parameters on the microstructure and properties of fusion welds. This will 
then be followed by some selected case studies of as-solidified or as-welded 
engineering alloys and weId metals. 

Most engineering alloys begin by being poured or cast into a fireproof 
container or mould. If the as-cast pieces are permitted to retain their shape 
afterwards, or are reshaped by machining, they are called castings. If they are 
later to be worked, e.g. by rolling, extrusion or forging, the pieces are called 
ingots, or blanks if they are relatively small. In either case the principles of 
solidification, and the requirements for high density and strength are the 
same. The moulds used in casting are often made of a material that can be 
remoulded or discarded after a casting series, such as sand. In the case of long 
casting series or ingot casting, however, the mould is of a more permanent 
material such as cast iron. The technological aspects of pouring and casting 
will not be dealt with here, but we shall confine our discussion simply to the 
mechanics of solidification of metals in a mould. 

4.4.1 Ingot Structure 

Generally speaking three different zones can be distinguished in solidified 
alloy ingots, Fig. 4.40. These are (i) an outer chill zone of equiaxed crystals, 
(ii) a columnar zone of elongated or column-like grains, and (iii) a central 
equiaxed zone. 
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Fig. 4.40 Schematic cast grain structure. (After M.C. Flemings, Solidification Pro­
cessing, McGraw-Hill, New York, 1974.) 

Chill Zone 
During pouring the liquid in contact with the cold mould wall is rapidly cooled 
below the liquidus temperature. Many solid nuclei then form on the mould 
wall and begin to grow into the liquid, Fig. 4.41. As the mould wall warms up 
it is possible for many of these solidified crystals to break away fr,om the wall 
under the influence of the turbulent melt. If the pouring temperature is low 
the whole of the liquid will be rapidly cooled below the liquidus temperature 
and the crystals swept into the melt may be able to continue to grow. This is 
known as 'big-bang' nucleation since the liquid is immediately filled with a 
myriad of crystals. This produces an entirely equiaxed ingot structure, i.e. no 
columnar zone forms. If the pouring temperature is high, on the other hand, 
the liquid in the centre of the ingot will remain above the liquidus tempera­
ture for a long time and consequently the majority of crystals soon remelt 
after breaking away from the mould wall. Only those crystals remaining close 
to the wall will be able to grow to form the chill zone. 
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Fig. 4.41 Competitive growth soon after pouring. Dendrites with primary arms 
normal to the mould wall, i.e. parallel to the maximum temperature gradient, outgrow 
less favourably oriented neighbours. 

Columnar Zone 
Very soon after pouring the temperature gradient at the mould walls de­
creases and the crystals in the chill zone grow dendritically in certain crystal­
lographic directions, e .g. (100) in the ca se of cubic metals. Those crystals with 
a (100) direction dose to the direction of heat flow, i.e. perpendicular to the 
mould walls, grow fastest and are able to outgrow less favourably oriented 
neighbours, Fig. 4.42. This leads to the formation of the columnar grains all 

Nucleation 
sites -~"" 

"­

One 
columnar 
grain 

Fig. 4.42 Favourably oriented dendrites develop into columnar grains. Each colum­
nar grain originates from the same heterogeneous nucleation site, but can contain many 
primary dendrite arms. 
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with (100) almost parallel to the column axis. Note that each columnar crystal 
contains many primary dendrite arms. As the diameter of these grains in­
creases additional primary dendrite arms appear by a mechanism in which 
some tertiary arms grow ahead of their neighbours as shown in the figure. 

The volume fraction of the melt solidified increases with increasing distance 
behind the tips of the dendrites and, when the structure is mainly single-phase, 
the secondary and tertiary arms of adjacent dendrites can link up to form 
walls of solid containing many primary dendrite arms. The region between 
the tips of the dendrites and the point where the last drop of liquid is 
solidifying is known as the mushy or pasty zone. The length of this zone 
depends on the temperature gradient and the non-equilibrium freezing range 
of the alloy. In general it is found that the secondary arms become coarser 
with distance behind the primary dendrite tips. This effect can be seen in 
Fig. 4.28. The primary and secondary dendrite arm spacing is also often 
found to increase with increasing distance from the mould wall. This is simply 
due to a corresponding decrease in the cooling rate with time after pouring. 

Equiaxed Zone 
The equiaxed zone consists of equiaxed grains randomly oriented in the 
cent re of the ingot. An important origin of these grains is thought to be 
melted-off dendrite side-arms. It can be seen from Fig. 4.28 that the side­
arms are narrowest at their roots. Therefore, if the temperature around the 
dendrite increases after it has formed, it will begin to melt and may become 
detached from the main stern. Provided the temperature falls again before the 
arm completely disappears it can then act as a 'seed' for a new dendrite. An 
effective source of suitable temperature pulses is provided by the turbulent 
convection currents in the liquid brought about by the temperature differ­
ences across the remaining melt. Convection currents also provide a means of 
carrying the melted-off arms away to where they can develop uninhibited into 
equiaxed dendrites. If convection is reduced fewer seed crystals are created 
causing a larger final grain size and a greater preponderance of columnar 
grains. Convection also plays a dominant role in the formation of the outer 
chili zone. The mechanism whereby crystals are melted away from the mould 
walls is thought to be similar to the detachment of side-arms15 and when 
convection is absent no chill zone is observed. 

Shrinkage Effects 
Most metals shrink on solidification and this has important consequences for 
the final ingot structure. In alloys with a narrow freezing range the mushy 
zone is also narrow and as the outer shell of solid thickens the level of the 
remaining liquid continually decreases until finally when solidification is co m­
piete the ingot contains a deep central cavity or pipe. 

In alloys with a wide freezing range the mushy zone can occupy the whole 
of the ingot. In this case no central pipe is formed. Instead the liquid level 
gradually falls across the width of the ingot as liquid ftows down to compen-
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sate for the shrinkage of the dendrites. However, as the interdendritic chan­
nels dose up this liquid flow is inhibited so that the last pools of liquid to 
solidify leave sm all voids or pores. 

4.4.2 Segregation in Ingots and Castings 

Two types of segregation can be distinguished in solidified structures. There is 
macrosegregation, i.e. composition changes over distances comparable to the 
size of the specimen, and there is microsegregation that occurs on the scale of 
the secondary dendrite arm spacing. 

It has already been shown that large differences in composition can arise 
across the dendrites due to coring and the formation of non-equilibrium 
phases in the last solidifying drops of liquid. Experimentally it is found that 
while cooling rate affects the spacing of the dendrites it does not substantially 
alter the amplitude of the solute concentration profiles provided the dendrite 
morphology does not change and that diffusion in the solid is negligible. This 
result often applies to quite a wide range of practical cooling rates. 

There are four important factors that can lead to macrosegregation in 
ingots. These are: (i) shrinkage due to solidification and thermal contraction; 
(ii) density differences in the interdendritic liquid; (iii) density differences 
between the solid and liquid; and (iv) convection currents driven by tempera­
ture-induced density differences in the liquid. All of these factors can induce 
macrosegregation by causing mass flow over large distances during solidifica­
tion. 

Shrinkage effects can give rise to wh at is known as inverse segregation. As 
the columnar dendrites thicken solute-rich liquid (assuming k < 1) must flow 
back between the dendrites to compensate for shrinkage and this raises the 
solute conte nt of the outer parts of the ingot relative to the centre. The effect 
is particularly marked in alloys with a wide freezing range, e.g. Al-Cu and 
Cu-Sn alloys. 

Interdendritic liquid flow can also be induced by gravity effects. For exam­
pIe during the solidification of Al-Cu alloys the copper rejected into the 
liquid raises its density and causes it to sink. The effect can be reinforced by 
convection currents driven by temperature differences in the ingot. 

Gravity effects can also be observed when equiaxed crystals are forming. 
The solid is usually denser than the liquid and sinks carrying with it less solute 
than the bulk composition (assuming k < 1). This can, therefore, lead to a 
region of negative segregation near the bottom of the ingot. 

The combination of all the above effects can lead to complex patterns of 
macrosegregation. Fig. 4.43 for example illustrates the segregation patterns 
found in large steel ingots16. 

In general segregation is undesirable as it has marked deleterious effects on 
mechanical properties. The effects of microsegregation can be mitigated by 
subsequent homogenization heat treatment, but diffusion in the solid is far too 
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Fig. 4.43 Segregation pattern in a large killed stee1 ingot. + positive, - negative 
segregation. (After M.C. Flemings, Scandinavian Journal oi Metallurgy 5 (1976) 1.) 

slow to be able to remove macrosegregation which can only be combated by good 
control of the solidification process. 

4.4.3 Continuous Casting 

A number of industrial processes are nowadays employed in which casting is 
essentially a dynamic rather than a static process. In these cases, the molten 
metal is poured continuously into a water-cooled mould (e.g. copper) from 
which the solidified metal is continuously withdrawn in plate or rod form. 
This process is illustrated schematically in Fig. 4.44. 

It is seen that the speed of withdrawal is such that the solid-liquid interface 
is maintained in the shape and position illustrated. Ideally, the ftow behaviour 
of the liquid should be vertically downwards, and if ftow is maintained in this 
way the final composition across the ingot will be kept uniform. In practice, 
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From ladle 

Water- cooled 
copper mou ld 

Liquidus 

Fig. 4.44 Schematic illustration of a continuous casting process. 
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hydrodynamic effects do not allow this simple type of flow and there is a 
tendency for the flow lines to fan outwards (as shown by the arrows) pro duc­
ing negative segregation near the centre. Solidification follows the maximum 
temperature gradient in the melt as given by the norm als to the isotherms. In 
certain respects weId solidification has much in common with continuous 
casting in that it is also a dynamic process. As illustrated in Fig. 4.45 the main 
difference is of course that in continuous casting the heat source (as defined 
by the mould) does not move, whereas in welding the heat source (the 
eIectrode) is moving. We shall now consider the latter case in more detail, but 
it will be found that certain conc1usions concerning weId solidification be­
haviour can weH be applied to both processes. 

Reat Flow in Welding and Continuous Casting 
As discussed earlier, there are many factors concerning heat distribution at 
the melt zone and the dynamics of the process, which are essentiaHy fairly 
similar in both continuous casting and welding. As an example we shaH first 
consider the welding process and then discuss how the results may be applied 
to continuous casting. In contrast to continuous casting, weId solidification 
involves a 'mould' that has approximately the same composition as the melt. 
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Isotherms 

Solidification 

Fusion weld 

x 
f v=weldin~ 

speed 
-ttf-.tHr.-. . Y 

z 

Continuous 
casting 

Isotherms 

v 
v=Plate withdrawal 

speed 
Fig. 4.45 IlIustrating the essential equivalence of isotherms ab out the heat sources in 
fusion welding and continuous casting. 

The most important variables in weld solidification or continuous casting are 
thus: 

1. The rate of heat input, q (determined by type of weId process, weId size, 
etc.); in terms of continuous casting q is represented effectively by the 
volume and temperature of the melt. 

2. Speed of arc movement along join, v; in continuous casting, v is the 
velocity of plate withdrawal. 

3. Thermal conductivity of the metal being welded or cast, K s • 

4. Thickness of plate being welded or cast, t. 

In the case of welding, assuming that the arc moves along the x coordinate, 
the resulting heat distribution in a three-dimensional solid plate is given by 
the solution to the heat ftow equation19: 

(PT a2T a2T aT (4.47) -+-+-=2Kv---
ax2 ay2 az2 s a(x - vt) 

where x, y, z are defined in Fig. 4.45 and t is time. 
Solving this equation gives the temperature distribution about the moving 

heat source in the form of isotherms in the solid metal, in which the distance 
between the isotherms in a given direction (x, y, z) is approximately given by: 

q 
A oe--

(x,y,z) Ksvt (4.48) 

Gray et al. (1975) have solved Equation 4.47 and plotted isotherms for a 
number of different materials and welding speeds and some of their results 
are summarized in Fig. 4.46. 

Assuming a similar isotherm distribution in the melt, it is likely that the 
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parameters K s , v, t and q will largely determine solidification morphology, in 
that dendrites always try to grow in directions as near normal to isotherms as 
their crystallography allows. It is seen in the above figure, for example, that 
holding q, v and t constant (Fig. 4.46a), the distance between isotherms, A, 
increases substantially as a function of the change of heat conductivity, K s , of 
the different materials: aluminium, carbon (ferritic) steel, and austenitic 
steel. If the plate thickness is increased (Fig. 4.46b), or the weId speed is 
higher (Fig. 4.46c), A also decreases proportionally. 

These results can also be applied to continuous casting, in that the isotherm 
distributions shown in Fig. 4.46 are affected in a similar way by the conductiv­
ity of the solidifying metal and its speed of withdrawal from the mould. This 
means, for example, that the depth of the liquid pool in continuous casting is 
much greater for steel than for aluminium alloys under comparable condi-

(a) 

q = 3·1 kJ/s, v =8 mm/s, 

t = 6·0 mm 

-

DlRECTION OF 
• 

TRAVEL 

Fig. 4.46 Effect of various parameters in Equation 5.36 on the isotherm distribution 
at a point heat sOurce. (a) Effect of changes in thermal conductivity, Ks . (b) Effect 
of changes in plate thickness, t. (c) Effect of changes in movement of heat source, lJ. 

(After T.G. Gray, J. Spence and T.H. North, Rational Welding Design, Newnes­
Butterworth, London, 1975.) 
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__ ~ I 

------

q=3.1 kJ/s; t =3mm 

(cl carbon steel 

Fig. 4.46 (continued) 

tions. This implies that in practice the maximum casting speed and billet 
cross-section are less for steel than for aluminium or copper. Another practi­
cal difficulty resulting from, a large depth of liquid is that the billet can not be 
cut until it reaches a point weIl beyond the solidus line (see Fig. 4.44), which 
requires in fact a very taB installation for high speed casting. 

4.5 Solidification ofFusion Welds 

Contact between the weid melt and the base metal will initially cause melting 
back of the base material and dilution of the filler metal as illustrated in 
Fig. 4.47. The amount of dilution involved is not insignificant. Jesseman 
(1975)17 reports for example that in microalloyed steel welds, the weId metal 
may contain 50-70% of the amount of Nb, Ti or V as analysed in the base 
material. The effect of dilution is in fact threefold, and affects the weId metal 

Base 
metal 

Fig. 4.47 Illustrating the effect of dilution. In high-energy welds, the weid metal 
typically exhibits 50-70% of the analysis of microaIloying elements of the base metal 
through dilution. 
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as follows: 

1. The composition of the melt is changed. 
2. The surface oxide layer of the base metal is removed (also into the 

melt). 
3. It cools down the melt. 

Depending upon the type of material being welded as weH as plate thickness, 
the base metal behaves as a very efficient heat sink, and already at T = Te 
solidification nuclei form at the oxide-free surface of the melted-back base 
material. Since the melt has approximately the same composition as the base 
metal, 'wetting' of the base metal is very efficient and e = 0 (see Fig. 4.7). 
This implies in turn that there is almost no nucleation barrier to solidification 
and hence very little undercooling occurs. Solidification is thus predicted to 
occur epitaxially, Le. nuclei will have the same lattice structure and orienta­
tion as the grains at the solid-liquid surface of the base metal, and this is wh at 
is observed in practice. 

Since the temperature of the melt beneath the arc is so high and the base 
material is such an efficient he at sink there is initially a steep temperature 
gradient in the liquid and consequently the degree of constitutional super­
cooling is low. The actual thermal gradient is of course dependent upon the 
welding process and the plate thickness (Equation 4.48). For example TIG 
welding of thin plates will give steeper thermal gradients than submerged arc 

(a) 

(b) 

Rmax 
/ Heat source 

---.. . /? . ~ -Weld cen tre 

90_00\~ _ MM_:elt' 

"'--~--Transition line 
~\.~ 

Base metal 

Rmax 
~---~v 

;±"""--- -~ 

Isotherms 

line 

Fig. 4.48 Illustrating the growth of columnar crystals in the weid, and how growth 
continues to occur approximately normal to the isotherms. 
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welding of thick plates, the latter process having the high er heat input. Since 
certain grains at the base metal are better oriented than others for (100) 
growth with respect to the isotherms of the melt, these quickly predominate 
and widen at the expense of the others. However, the general coarseness of 
the microstructure is largely determined at this stage by the grain size of the 
base meta!. Unfortunately, the base metal at the transition zone receives 
the most severe thermal cycle and after high-energy welding in particular the 
grains in this zone tend to grow and become relatively coarse. The weid 
microstructure is thus inherently coarse grained. 

Welding is essentially a dynamic process in which the he at source is con­
tinuously moving. This means that the maximum temperature gradients are 
constantly changing direction as the heat source moves away. The growing 
columnar crystals are thus faced with the necessity of trying to follow the 
maximum temperature gradients while still maintaining their preferred (100) 
growth direction. This often results in sudden changes in growth direction, as 
illustrated in Fig. 4.48a and b. 

Few of the grains originating at the base metal survive to reach the weid 
centre line. The mechanism by which sudden changes in (100) growth direc­
tion are brought about is not fully understood. One suggestion is that renu­
cleation occurs by the help of dendritic fragments wh ich have broken away 
from the growing interface due to turbulence in the weid pool, or simply from 
melted-off dendrite arms . 

Influence of Welding Speed 
An important effect of increasing the welding speed is that the shape of the 
weid pool changes from an elliptical shape to a narrower, pear shape (see, 

(0) Low V A 

(b) High v A 

Fig. 4.49 Illustrating the effect of increasing welding speed on the shape of the melt 
pool and crystal growth in fusion welds. 
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Fig. 4.50 . (a) TIG weid of nickel, illustrating low erystal growth speed x 25 (by Gudrun 
Keikkala, University of Luleä, Sweden). (b) Submerged are weid of steel, illustrating high 
growth speed x 24 (by H. Äström, University of Luleä, Sweden). 

Fig. 4.51 Illustrating the relationship between erystal growth speed and welding 
speed in terms of rate veetors. 
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e.g. Fig. 4.49). Since growing crystals try to follow the steepest temperature 
gradients, the effect of changing the welding speed is to alter the solidification 
behaviour as illustrated in Fig. 4.49. As shown in 4.49b, the pear-shaped weid 
pool maintains fairly constant thermal gradients up to the weid centre-line, 
corresponding to the more angular geometry of the melt in this case. On this 
basis growing crystals are not required to change growth direction as at slower 
speeds (Fig. 4.49a). Instead, appropriately oriented crystals stabilize and 
widen outgrowing crystals of less favourable orientation. The crystal mor­
phology shown in Fig. 4.49b is in fact fairly typical of the high production rate 
welds based on modern submerged arc welding. An example of a submerged 
arc weid is shown in Fig. 4.50b, and of a TIG weid of nickel in 4.50a. 

16 
15 AIS) 304 Stainless Steel 1mmt I 
14-

0----- v=lO cm/min 
/:,,----- 16 Bead Width = 4 to 5 mm 

13- A---- - 32 

12- .----- 64 

11 -VI - 10 E - 10·7 

E 9-

o 10 20 30 40 50 60 70 80 90 100 

Y (%) 

Fig. 4.52 Measurements of crystal growth rate in stainless steel as a function of per 
cent of weId solidified. (After T. Senda et al., Technical Report, Osaka University 20 
(1970) 932.) 
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While fairly linear dendritic growth is seen to predominate in this figure, it 
is also observed that dendrites suddenly change direction at the centre of the 
weId by as much as 60°. This feature of high-speed welding will now be 
clarified. 

Geometry of Crystal Growth 
Consider a welding process in which the are is moving at a speed v. Crystal 
growth must occur such that it is able to keep pace with the welding speed, 
and this is illustrated in Fig. 4.51. It is seen that for crystal growth rate, R, to 
keep pace with the welding speed, v, the condition must be met that: 

R = v cos 6 (4.49) 

In the figure, the arrows represent vectors of speed. The vector representing 
the welding speed, or the speed of movement of the isotherms, is constant. 
On the other hand, the vector representing crystal growth rate must con­
tinuously adjust itself as growth proceeds towards the weId centre-line. It thus 
follows from Equation 4.49 that the solidification rate is greatest when 6 = 0, 
i.e. at the weId centre-line, and lowest at the weld edge where 6 is a 
maximum. On this basis the sudden change in crystal growth direction at the 
weId centre line illustrated in Fig. 4.50 is associated with high growth rates as 
solidification attempts to keep pace with the moving are. In addition, the 
initial low rates of crystal growth are associated with a relatively plan ar 
solidification front, and as the growth rate increases, the morphology of the 
front changes to cellular and then cellular dendritic. 

An example of weId solidification rates as measured on stainless steel as a 
function of different welding speeds is shown in Fig. 4.52. In confirrnation of 
Equation 4.49, it was found that completion of weId solidification 
(y = 100%) corresponds to the highest growth rates. However, the higher 
welding speeds were associated with a transition from predominantly colum­
nar crystal growth to equiaxed growth at the final stage of solidification. This 
transition is thought to be due to the high amounts of segregation associated 
with the final stages of weId solidification. This, coupled with the shallow 
thermal gradient at this stage leads to high degrees of constitutional super­
cooling and therefore the driving force for random dendritic growth to occur 
is large. However, it should be noted that in general dendritic and cellular 
substructures in welds tend to be on a finer scale than in casting, and this is 
mainly due to the comparatively high solidification rates of weId metal. Since 
high er welding speeds or thicker base metal give larger rates of solidification, 
it follows that the finest substructures are associated with these welds (see 
Equation 4.48). 

When the arc is switched off at the completion of a weId run, an elliptical 
molten pool is left to solidify with a comparatively shallow thermal gradient. 
This leads to large constitutional supercooling and marked segregation. The 
final substructure of these weld 'craters' is thus usually equiaxed-dendritic. 

Summarizing, weId solidification has the following features: 
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1. Solidification initially occurs epitaxially at the melted-back grains of the 
base metal. 

2. To begin with crystal growth is relatively slow, forming first a planar and 
then a fine cellular substructure. 

3. The intermediate stage of crystal growth is cellular-dendritic leading to 
coarse columnar crystal growth in the (100) direction in the case of cubic 
crystals. 

4. Final solidification at the centre-line is associated with rapid crystal 
growth and marked segregation. Depending on welding conditions, final 
dendritic structure can be equiaxed. 

In many ways, therefore, weld solidification and even continuous casting 
exhibit essentially different features to those of ingot casting (problem 4.22). 

4.6 Solidification during Quenching from the Melt 

The treatment of solidification presented in this chapter has been applicable 
for cooling rates of less than about 103 K/s. However, solidification can also 
occur at much higher rates of 104 - 107 K/s in such processes as liquid metal 
atomization, melt spinning, roller-quenching or plasma spraying, as weIl as 
laser or electron be am surface treatment. By quenching melts it is possible to 
achieve various metastable solid states not predicted by equilibrium phase 
diagrams: solid phases with extended solute solubility, new metastable 
crystalline phases or, if the cooling rate is fast enough, amorphous metallic 
glasses. Crystalline solidification can occur without microsegregation or with 
cells or secondary dendrites spaced much more finely than in conventional 
solidification processes. Whether the solid is crystalline or amorphous, 
rapid solidification processing offers a way of producing new materials with 
improved magnetic or mechanical properties. 

One consequence of rapid cooling can be that local equilibrium at the 
solid/liquid interface breaks down. Melts can solidify with no change in 
composition, i.e. partitionless solidification or solute trapping can occur. 
The thermodynamic principles involved in partitionless solidification are 
similar to those for the massive transformation in solids to be treated in 
Section 5.9. 

4.7 Case Studies of some Practical Castings and Welds 

4.7.1 Casting of Carbon and Low-Alloy Steels 

Typical composition ranges: 

C: 0.1-1.0 wt%] 
Si~ 0.1-0.4 wt% carbon steels 

Mn. 0.3-1.5 wt% 
Cr: 1.0-1.6 wt% 

low-alloy steels 

Ni: 1.0-3.5 wt% 
Mo: 0.1-0.4 wt% 
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Casting processes: Castings, ingots, continuous casting. 
Relevant phase diagrams: See Fig. 4.53. 
Solidification transformations: 

L~8+L 

8 + L ~ 8 + 'Y + L (peritectic: 8 + L ~ 'Y) 
8+'Y+L~'Y 

Atomic percentage carbon 
1500~ ________ ~1 __________ ~2r-________ -T3 __ ~ 

1560 

150 

u 1480 0 

Qj 
1460 ... 

::J ..... 
0 ... 
ClI 
Cl. 
E (Y-Fe) ClI 
I- Austenite 

1380 

1360 '----'---I. __ .L-......Io..-----1_.L---'---'_...L.---'----'I-.....L..--L._L....,--,J 

Fe 0·05 010 0·15 0·20 025 o~ 035 OitO 0-45 0·50 0·550-60 0-65 OqO 015 

(0) 
Weight percentage carbon 

(b) Weight percentage nickel (c) Weight percentage nickel 

Fig. 4.53 (a) Part of the iron-earbon phase diagram. (b) Liquidus projeetion for the 
Fe-Cr-Ni system, (e) isothermal seetion (650°C) for the Fe-Cr-Ni system. (From Metals 
Handbook, 8th edn., Vol. 8, Ameriean Soeiety for Metals, 1973, pp. 276 and 425.) 
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Sub se quent transformations: 

"I ~ a + Fe3C (equilibrium structure at ambient temperature ) 

Microstructures: See Fig. 4.54. 

Comments: Figure 4.53 shows that alloying with the relatively small 
amounts of Ni and Cr used in low-alloy steels has little effect on solidification 
temperature and that the equilibrium structure of the alloy is a( + Fe3C)' 
Figure 4.54a shows that quenching from the (,,!, 8 + L) field leaves a structure 
with considerable residual melt between solidified dendrites. As discussed 
earlier, in practical alloys, the presence of residual melt between dendrite 
arms is largely due to impurity segregation. The completely solidified struc­
ture shown in Fig. 4.54b exhibits a residual eutectic between a-Fe dendrites 
of "I /Fe3P /Fe3C, suggesting that the last liquid to solidify was rich in P and C. 
The retention of some "I-Fe in the eutectic is possibly due to the high carbon 
content of the residual iron (the solubility of P in "I-Fe is very low), which, 
together with the stabilizing effect of Ni, may help to retard the "I ~ a 
transformation. Slower rates of cooling would probably reduce the amount of 
retained austenite still further. The presence of Mn induces the reaction: 
Mn + S ~ MnS (see Fig. 4.54b). However, this is certainly preferred to FeS, 
which tends to wet dendrite boundaries more extensively than MnS and is a 
prime cause of hot cracking. 

4.7.2 Casting 0/ High-Speed Steels 

Typical composition ranges: 

C: 0.5-1.0 wt% 
Cr: 0.5-4.0 wt% 

Mo: 0.5-9.5 wt% 
W: 1.5-6.0 wt% 
V: 0.5-2.0 wt% 

Casting processes : Ingot 
Special properties: Hard, tough, wear-resistent at elevated temperatures. 
Relevant phase diagrams: See Fig. 4.55. 
Solidification transformations: 

L~L + a 
L + a ~ L + a + "I (peritectic L + 8 ~ "I) 

L + a + "I ~ L + a + "I + MxC 
L + a + "I + MxC ~ "I + MxC (eventually: ~ a + MxC) 

Microstructures: See Fig. 4.56. 
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......:...L .. ' q. 

Fig.4.54 (a) Alloy quenched from (8, 'Y + L) field (x 25). (b) Cooled to 20 oe. 
E refers to 'Y/Fe3P/Fe3C eutectic (x 1(00). (From Guide to the Solidification of Steels, 
Jemkontoret, Stockholm, 1977.) 
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Fig. 4.55 (a) Phase diagram for steel with approx 4wt% Cr, 5wt% Mo, 6wt% W 
and 2wt% V (after E. Horn and H. Brandis, DEW-Techn. Ber. 11 (1971) 147). (b) 
Effect of W on y field of steel (from Metals Handbook, 8th edn., Vol. 8, American 
Society for Metals, 1973, p. 416). 
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Comments: Reference to the phase diagrams (Fig. 4.55) shows that the 
presence of W, V and the other main alloying elements produces a cascade of 
polyphase fields during cooling of these castings. Solidification occurs initially 
with the formation of a dendrites, but the "I fields are so extensive that rapid 
quenching from the a + L field can not suppress the nucleation and growth of 
austenite (Fig. 4.56a). As expected, the C segregates strongly when a forms, 
but W, Cr and V are not expected to segregate so markedly in a-Fe. It seems 
likely that the early formation of "I through the reaction: a + L ~ "I + L in 
these castings is the main cause of the extensive segregation of W, Cr and V as 
observed in Fig. 4.56b and c. As seen in Fig. 4.56b, it is possible that the 
a ~ "I re action occurs through the rejection of dissolved M back to the melt. 
Reference to the Fe-Cr, Fe-V, and Fe-W binary phase diagrams shows in all 
cases very low high-temperature solubility of these elements in "I-Fe. The 
resulting as-solidified structure (Fig. 4.56c) thus consists of a dendrites (fol­
lowing the "I ~ a solid-state transformation during cooling) with marked 

~--. . :J 
y. . . . 

Fig. 4.56 (a) Quenched from the (L + a (or 3) + 'Y) field at 1335 oe (x 150). 
(b) Quenched from 1245 oe (x 150). (c) Same alloy after mechanical and thermal 
heat treatments (x 750). (a-c from A Guide to the Solidification o[ Steel, Jernkon­
toret, Stockholm, 1977, and d from Metals Handbook, 8th edn., Vol. 7, American 
Society for Metals, 1972, p. 121.) 
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Fig. 4.56b & c (continued) 

interdendritic segregation. The latter appears in the form of a oy/MxC eutec­
tic, where MxC refers to mixed carbides of WC, Cr2c, VC, etc. The final 
structure of this type of tool steel (Fig. 4.56d) is only reached after further 
extensive plastic working to break up the eutectic, followed by austenitizing 
and double-tempering treatments. 
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4.7.3 Stainiess Steei Weid Metai 

Electrode composition range: 

Cr: 17-19 wt% 
Ni: 8 -10 wt% 
C: 0.05-0.1 wt% 
Si: 0.5-1.0 wt% 

Mn: 0.5-1.5 wt% 

~~}traces 
Welding process: Manual metal arc, gas metal arc. 
Relevant phase diagrams: See Fig. 4.57. 
Phase transformations: 

L-8+L 
8 + L - 8 + "{ (approx. peritectic). 

Microstructures: See Fig. 4.58. 

Comments: 
(a) Phase equilibria. Figure 4.57a is the 18% Cr vertical section of the 

Fe-Cr-Ni ternary diagram. The effect of these and other alloying elements 
on the final microstructure, assuming fairly high quench rates typieal of 
welding, can be predieted with the help of the Shaeffler diagram 4.57b. From 
this diagram it can be seen that if the Ni or Cr contents are reduced much 
below the nominal analyses given, there is a risk that martensite forms. The 
most important feature of these alloys with respect to welding, is that some 
8-Fe is retained even at ambient temperatures (see 4.57b). 

There has been much discussion in the literature as to which phase solidifies 
first after welding. According to Fig. 4.57a it appears that solidification 
should initiate with the nucleation of 8-Fe. However, if the base metal is fully 
austenitic at the transition zone, this phase should nucleate first because of 
the requirement of epitaxial growth (see previous discussion). Unfortunately 
the situation is complieated in practiee by the presence of carbon and nit­
rogen, both of whieh te nd to move the peritectic composition towards higher 
Ni content. An example of the effect of N being admitted to the weId pool is 
shown in Fig. 4.58a illustrating a single run weid which has remained fully 
austenitic. The result of this is fairly catastrophic, causing hot cracking at the 
austenite grain boundaries due to increased sulphur and phosphorus segrega­
tion in the austenite during solidification. 

(b) Microstructure. It is thought that the first phase to solidify in this alloy is 
8-Fe, enriehed in Cr and impoverished in Ni, the tendency in either case being 
to stabilize the ferrite. Further cooling causes "{-Fe to nucleate in the Ni-rieh 
liquid between the 8-Fe dendrites. With the development of this duplex "{ + 8 
structure the peritectie reaction: L - "{ + 8 continues to completion. Cool­
ing of the weid metal to ambient temperature causes the "{-Fe phase to grow 
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Fig. 4.57 (a) 18% Cr section of the Fe-Cr-Ni system. (b) Schaeffier diagram 
indicating the alloy concerned. (NI)eq = %Ni + 30 x %C + 0.5 x %Mn. 
(Cr)eq = %Cr + %Mo + 1.5 x %Si + 0.5 x %Nb. A, austenite; F, ferrite; M, 
martensite. (After R.J. Castro and J.J. de Cadenet, Welding Metallurgy of Stainless 
and Heat Resistant Steels, Cambridge University Press, Cambridge, 1974.) 
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(b) 

Fig. 4.58 (a) Illustrating hot cracking in the austenite region of a duplex stainless 
steel weid deposit. (b) STEM-EDX microanalysis of'Y and o-Fe and an inc1usion. 
(After H. Äström et al., Metal Science Journal, July 1976, p. 225.) 

at the expense of 8-Fe until only a fine network of 8-Fe remains. The 
STEM-based X-ray speetrometer mieroanalysis of the ,,{, 8 and inclusion 
phases (Fig. 4.58b) indieates that the Cr-rieh ferrite has dissolved the phos­
phorus (one of the danger elements in hot eraeking), while the sulphur is 
bound up in the inclusion. In this respeet Mn has a double role: both as a 
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deoxidizer and to absorb S through forming MnS. If the weId solidifies 
directly to ')'-Fe, all the Mn remains in solution and thus cannot prevent FeS 
forming at cell boundaries. The fine duplex')' + 8 structure of stainless steel 
welds thus refines and strengthens the microstructure, and effectively renders 
Sand P harmless. It should be pointed out, however, that the 6-8 vol% 
retained 8-Fe at ambient temperature should not be exceeded, since higher 
volume fractions reduce the ductility and toughness of this alloy. In this 
respect, the Shaeffler diagram (Fig. 4.57b) is a useful guide for estimating 
8-Fe as a function of equivalent Cr and Ni conte nt. The amount of 8-Fe can 
also be measured magnetically or metallographically. If the presence of 
nitrogen is to be accounted for, a modified form of Shaeffler diagram (the 
DeLong diagram) can be employed (see, e.g. Castro and Cadenet, 1974)18. 
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Exercises 

4.1 Show that differentiation of Equation 4.4 leads to Equations 4.5 and 
4.6. 

4.2 Use Equations 4.4 and 4.10 to estimate the number of crystal-like 
clusters in 1 mm3 of copper at its melting point for spherical clusters 
containing (a) 10 atoms, (b) 60 atoms. What volume of liquid copper is 
likely to contain one cluster of 100 atoms? The atomic volume of liquid 
copper is 1.6 x 10-29 m3 , YSL is 0.177 J m-2 , k = 1.38 X 10-23 J K- 1 , 

Tm = 1356 K. 
4.3 Why does Tmax in Fig. 4.5 vary with äT? 
4.4 Calculate the homogeneous nucleation rate in liquid copper at under­

coolings of 180, 200 and 220 K, using the following data: 
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L = 1.88 x 10'1 J m-3 , Tm = 1356 K, 'YSL = 0.177 J m-2 , 

10 = 1011 S-l, Co = 6 X 1028 atoms m-3 , k = 1.38 X 10-23 J K- 1. 

4.5 Show that Equation 4.23 applies to homogeneous nucleation and heter­
ogeneous nucleation on a flat mould wall. 

4.6 Show that Equation 4.16 follows from 4.15 using the following re la-
tionships for a spherical cap: 

A SL = 21Tr2 (1 - cos 6) 

A SM = 1Tr2 sin2 6 

Vs = 1Tr3 (2 + cos 6)(1 - cos 6)2/3 

4.7 Of wh at import an ce is the angle of a mould-wall crack in hetero­
geneous nucleation? Of wh at importance is the width of the crack at 
its mouth? 

4.8 Under what conditions can solid metal be retained in a mould-wall 
crevice above Tm? 

4.9 If a single crystal is melted by heating to slightly above its melting point 
and then cooled it subsequently solidifies with the previous orientation. 
Likewise a polycrystalline specimen reverts to its original grain size. Can 
you suggest an explanation for this effect? (See B. Chalmers, Principles 
01 Solidification, Wiley, 1964, p. 85). 

4.10 (a) Show that surface melting is to be expected below Tm in gold 
(1336 K) given 'YSL = 0.132, 'YLV = 1.128, 'YSV = 1.400 J m-2. 

(b) Given that the latent heat of fusion of gold is 1.2 x 109 J m-3 

estimate whether sensible liquid layer thicknesses are feasible at 
measurably lower temperatures than Tm. 

4.11 Use nucleation theory to derive quantitative expressions for the velo city 
of an atomically smooth interface as a function of undercooling (a) for 
repeated surface nucleation, (b) for spiral growth. (See Burton et al., 
Philosophical Transactions, A243: 299 (1950)). 

4.12 Draw diagrams to show how the solid/liquid interface temperature 
varies as a function of position along the bar for Figs. 4.20, 4.21 and 
4.22. 

4.13 Draw figures corresponding to Figs. 4.21 and 4.22 for a dilute binary 
alloy with k > 1. 

4.14 Show that Equation 4.35 satisfies 4.34. 
4.15 The Al-Cu phase diagram is similar to that shown in Fig. 4.19 with 

Tm (Al) = 660°C, TE = 548 °C, Xmax = 5.65 wt%, and 
XE = 33 wt% Cu. The diffusion coefficient for the liquid 
DL = 3 X 10-9 m2 S-l. If an AI-0.5 wt% Cu alloy is solidified with no 
convection and a planar solid/liquid interface at 5 !-Lm S-l: 

(a) Wh at is the interface temperature in the steady state? 
(b) What is the thickness of the diffusion layer? 
(c) Wh at temperature gradient will be required to maintain a planar 

interface? 
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Cd) Answer (a), (b) and (c) for an AI-2 wt% Cu alloy solidified under 
the same conditions. 

4.16 (a) Using Equation 4.33 and the data in problem 4.15 plot the variation 
of copper concentration along a unidirectionally solidified'bar of an 
AI-2 wt% Cu alloy assuming no diffusion in the solid and perfect 
mixing in the liquid. 

(b) What fraction of the bar will solidify to a eutectic structure? 
(c) How much eutectic would form in an AI-0.5 wt% Cu alloy soli­

dified under the same conditions? 
4.17 Explain the experimental observation that in the presence of a convec­

tion current cells grow upstream. 
4.18 Sketch a possible solidification-front structure for the solidification of an 

Fe-0.25 wt% C alloy in a shallow temperature gradient. Consider the 
temperature range 1440-1540 oe. Assume very rapid diffusion of car­
bon in 8-Fe. 

4.19 Show that the condition X. = 2X. * gives (i) the maximum eutectic growth 
rate for a given undercooling, and (ii) a minimum undercooling for a 
given growth rate (Equation 4.43). 

4.20 Calculate the depression of the eutectic temperature for a lamellar 
eutectic with A = 0.2 IJm and A = 1.0 IJm, if Yaß = 400 mJ m-2 , 

fl.H/V m = 800 X 106 J m-3 , TE = 1000 K. 
4.21 If it is assumed that the choice of a rod or lamellar eutectic is governed 

by the minimization of the total u/ß interfacial energy it can be shown 
that for a given X. there is a critical volume fraction of the ß phase (fe) 
below which ß should be rod like, and above which it should be lamel­
lar. Assuming the rods are hexagonally arranged and that 'Yaß is isotro­
pic, calculate the value of fe. 

4.22 Compare the processes of ingot casting and weId solidification, and 
show they are in many ways quite different solidification processes. How 
would you compare continuous casting in this respect? 

4.23 What is the inftuence of welding speed on the solidification structure of 
welds? How is welding speed likely to affect segregation problems? 



5 
Diffusional Transformations in Solids 

The majority of phase transformations that occur in the solid state take place 
by thermally activated atomic movements. The transformations that will be 
dealt with in this chapter are those that are induced by a change of tempera­
tu re of an alloy that has a fixed bulk composition. Usually we will be 
concerned with the transformations caused by a temperature change from a 
single-phase region of a (binary) phase diagram to a region where one or 
more other phases are stable. The different types of phase transformations 
that are possible can be roughly divided into the following groups: (a) pre­
cipitation reactions, (b) eutectoid transformations, (c) ordering reactions, 
(d) massive transformations, and (e) polymorphie changes. Figure 5.1 shows 
several different types of binary phase diagrams that are representative of 
these transformations. 

Precipitation transformations can be expressed in reaction terms as follows 

a' ~ a + ß (5.1) 

where a' is a metastable supersaturated solid solution, ß is a stable or meta­
stable precipitate, and a is a more stable solid solution with the same crystal 
structure as a', but with a composition doser to equilibrium, see Fig. 5.1a. 

Eutectoid transformations involve the re placement of a metastable phase 
(-y) by a more stable mixture of two other phases (a + ß) and can be 
expressed as 

'Y~ a + ß (5.2) 

This re action is characteristic of phase diagrams such as that shown in 
Fig. 5.1b. 

Both precipitation and eutectoid transformations involve the formation of 
phases with a different composition to the matrix and therefore long-range 
diffusion is required. The remaining re action types can, however, proceed 
without any composition change or long-range diffusion. Figure 5.1c shows 
phase diagrams where ordering reactions can occur. In this case the re action 
can be simply written 

a( disordered) ~ a' (ordered) (5.3) 

In a massive transformation the original phase decomposes into one or 
more new phases which have the same composition as the parent phase, but 
different crystal structures. Figure 5.1d illustrates two simple examples of the 
type 

(5.4) 
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(a)A ( i) B A (i i) B A (i i i) B 

(b)A B 

(e) A ( i ) B 

A (i i) B 

y 

a 

(e) A 
Fig. 5.1 Examples of different categories of diffusional phase transformations: 
(a) precipitation; (b) eutectoid; (c) ordering; (d) massive; (e) polymorphie (single 
component). 
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where only one new phase results. Note that the new ß phase can either be 
stable (Fig. 5.ld(i)) or metastable (Fig. 5.ld(ii)). 

Polymorphie transformations occur in single component systems when 
different crystal structures are stable over different temperature ranges, 
Fig. 5.le. The most well-known of these in metallurgy are the transforma­
tions between fcc- and bcc-Fe. In practice, however, such transformations are 
of little practical interest and have not been extensively studied. 

Apart from a few exceptions the above transformations all take place by 
diffusional nucleation and growth. As with solidification, nucleation is usually 
heterogeneous, but for the sake of simplicity let us begin by considering 
homogeneous nucleation. 

5.1 Homogeneous Nucleation in Solids 

To take a specific example consider the precipitation of B-rich ß from a 
supersaturated A-rich a solid solution as shown in Fig. 5.la(i). For the 
nucleation of ß, B-atoms within the a matrix must first diffuse together to form 
a sm all volume with the ß composition, and then, if necessary, the atoms must 
rearrange into the ß crystal structure. As with the liquid ~ solid transforma­
tion an a/ß interface must be created during the process and this leads to an 
activation energy barrier. 

The free energy change associated with the nucleation process will have the 
following three contributions. 

1. At temperatures where the ß phase is stable, the creation of a volume V 
of ß will cause a volume free energy reduetion of VdGv • 

2. Assuming for the moment that the a/ß interfacial energy is isotropic the 
creation of an area A of interface will give a free energy increase of A -y. 

3. In general the transformed volume will not fit perfectly into the space 
originally occupied by the matrix and this gives rise to amisfit strain 
energy dGs per unit volume of ß. (It was shown in Chapter 3 that, for 
both coherent and incoherent inclusions, dGs is proportional to the 
volume of the inclusion.) Summing all of these gives the total free 
energy change as 

dG = - VdGv + A-y + VdGs (5.5) 

Apart from the misfit strain energy term, Equation 5.5 is very similar to that 
derived for the formation of asolid nucleus in a liquid. With solid/liquid 
interfaces -y can be treated as roughly the same for all interfaces, but for 
nucleation in solids -y can vary widely from very low values for coherent 
interfaces to high values for incoherent interfaces. Therefore the A-y term in 
Equation 5.5 should really be replaced by a summation over all surfaces 
of the nucleus l-yjA j. 
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If we ignore the variation of -y with interface orientation and assume the 
nucleus is spherical with a radius of curvature r Equation 5.5 becomes 

4 
äG = -rlTr3(äGv - äGs) + 41Tr2-y (5.6) 

This is shown as a function of r in Fig. 5.2. Note that the effect of the misfit 
strain energy is to reduce the effective driving force for the transformation to 
(äGv - äGs)' Similar curves would in fact be obtained for any nucleus shape 
as a function of its size. Differentiation of Equation 5.6 yields 

(5.7) 

(5.8) 

which is very similar to the expressions for solidification, except now the 
chemical driving force äGv is reduced by a positive strain energy term. 

+ 

O~~~------~----~~--------~ .. r 

flG 

Fig. 5.2 The variation of IlG with r for a homogeneous nuc1eus. There is an 
activation energy barrier IlG *. 
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As discussed in Chapter 4 the concentration of critical-sized nuclei C* will 
be given by 

C* = Co exp (-ilG* /kT) (5.9) 

where Co is the number of atoms per unit volume in the phase. If each nucleus 
can be made supercritical at a rate of f per second the homogeneous nuclea­
tion rate will be given by 

N hom = fC* (5.10) 

f depends on how frequently a critical nucleus can receive an atom from the a 
matrix. This will depend on the surface area of the nucleus and the rate at 
which diffusion can occur. If the activation energy for atomic migration is 
ilGm per atom,! can be written as w exp (-ilGm/kT) where w is a factor that 
includes the vibration frequency of the atoms and the area of the critical 
nucleus. The nucleation rate will therefore be of the form 

( ilGm) (ilG*) N hom = wCo exp - kT exp - kT (5.11) 

This is essentially identical to Equation 4.12 ex ce pt that the temperature 
dependence of f has been taken into account. In order to evaluate this 
equation as a function of temperature wand ilGm can be assumed to be 
constant, but ilG* will be strongly temperature dependent. The main factor 
controlling ilG * is the driving force for precipitation ilGv, Equation 5.8. 
Since composition is variable the magnitude of ilGv must be obtained from 
the free energy-composition diagram. 

If the alloy Xo in Fig. 5.3, is solution treated at Tl and then cooled rapidly 
to T2 it will become supersaturated with Band will try to precipitate ß. When 
the transformation to a + ß is complete the free energy of the alloy will have 
decreased by an amount ilGo per mole as shown in Fig. 5.3b. ilGo is therefore 
the total driving force for the transformation. However, it is not the driving 
force for nucleation. This is because the first nuclei to appear do not signifi­
cantly change the a composition from X o. The free energy released per mole 
of nuclei formed can be obtained as follows. 

If a sm all amount of material with the nucleus composition (X~) is removed 
from the a phase, the total free energy of the system will decrease by AG I 

where 

AG I = I-LÄX~ + I-LBX~ (per mol ß removed) (5.12) 

This follows simply from the definition of chemical potential given by 
Equation 1.29. AG I is a quantity represented by point P in Fig. 5.3b. If these 
atoms are now rearranged into the ß crystal structure and replaced, the total 
free energy of the system will increase by an amount 

AG2 = I-L~X~ + I-L~X~ (per mol ß formed) (5.13) 
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a+ß ß 

(a) A Xe XB- X 8 

~ß Gß 
A~~~~ ______ ~ 

(b) 0 XB~ 

Fig. 5.3 Free energy changes during precipitation. The driving force for the first 
precipitates to nucleate is ,lGn = ,lGv V m' ,lGo is the total decrease in free energy 
when precipitation is complete and equilibrium has been reached. 

which is given by point Q. Therefore the driving force for nucleation 

ilGn = ilGz - ilG1 per mol of ß (5.14) 

which is just the length PQ in Fig. 5.3b. The volume free energy decrease 
associated with the nucleation event is therefore simply given by 

ilGn • 
ilGv = -- per umt volume of ß 

Vrn 
(5.15) 

where V rn is the molar volume of ß. For dilute solutions it can be shown that 



approximately 

t::.Gvc.x t::.X 

where 
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(5.16) 

(5.17) 

From Fig. 5.3a therefore it can be seen that the driving force for precipitation 
increases with increasing undercooling (t::.T) below the equilibrium solvus 
temperature Te. 

It is now possible to evaluate Equation 5.11 for alloy X o as a function of 
temperature. The variation of t::.Gv with temperature is shown schematically 
in Fig. 5.4b. After taking into account the misfit strain energy term t::.Gs the 

T 

0 
(a) 

I:J. Tc 

o 
(c) 

Xo 

---

0 
(b) 

---

o 
(d) 

I:J.G 

Te 

--T: 

N 

N 

Fig. 5.4 How the rate of homogeneous nuc1eation varies with undereooling for alloy 
Xo. (a) The phase diagram. (b) The effeetive driving force (tlGv - tlGs) and the 
resultant energy barrier tlG*. (e) The two exponential terms that determine N as 
shown in (d). 
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effective driving force becomes (äGv - äGs) and the effective equilibrium 
temperature is reduced to T~. Knowing (äGv - äGs) the activation energy 
äG* can be calculated from Equation 5.8 as shown. Figure 5.4c shows the 
two exponential terms in Equation 5.11; exp (-äG*lkT) is essentially the 
potential concentration of nuc1ei and, as with nuc1eation in liquids, this is 
essentially zero until a critical undercooling äTc is reached, after which it 
rises very rapidly. The other term, exp (-äGml kT), is essentially the atomic 
mobility. Since äGm is constant this decreases rapidly with decreasing 
temperature. The combination of these terms, Le. the homogeneous nuc1ea­
tion rate is shown in Fig. 5.4d. Note that at undercoolings smaller than äTc , 

N is negligible because the driving force äGv is too smalI, whereas at very 
high undercoolings N is negligible because diffusion is too slow. A maximum 
nuc1eation rate is obtained at intermediate undercoolings. For alloys contain­
ing less solute the critical supercooling will not be reached until lower abso­
lute temperatures where diffusion is slower. The resultant variation of N with 
T in these alloys will therefore appear as shown in Fig. 5.5. 

In the above treatment of nuc1eation it has been assumed that the nuc1ea­
tion rate is constant. In practice however the nuc1eation rate will initially be 
low, then gradually rise, and finally decrease again as the first nuc1ei to form 
start growing and thereby reduce the supersaturation of the remaining a. 

It has also been assumed that the nuc1ei are spherical with the equilibrium 
composition and structure of the ß phase. However, in practice nuc1eation 
will be dominated by whatever nuc1eus has the minimum activation energy 
barrier äG*. Equation 5.8 shows that by far the most effective way of mini­
mizing äG* is by the formation of nuc1ei with the smallest total interfacial 
energy. In fact this criterion is dominating in nuc1eation processes. Incoherent 
nuc1ei have such a high value of "y that incoherent homogeneous nUc1eation is 
virtually impossible. If, however, the nuc1eus has an orientation relationship 
with the matrix, and coherent interfaces are formed, äG* is greatly reduced 

T 

o 

A'----+-------Te(1 ) 

1---ir-------+---~---Te(2) 

NO) 

(2) (1) Xs 0 N 
Fig. 5.5 The effect of alloy composition on the nucleation rate. The nucleation rate 
in alloy 2 is always less than in alloy 1. 
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and homogeneous nucleation becomes feasible. The formation of a coherent 
nucleus will of course increase IlGs wh ich decreases T~. But below T~ the 
decrease in -y resulting from coherency can more than compensate for the in­
crease in IlGs . Also, by choosing a suitable shape it is often possible to 
minimize IlGs as discussed in Section 3.4.3. 

In most systems the (l and ß phases have such different crystal structures 
that it is impossible to form coherent low-energy interfaces and homogeneous 
nucleation of the equilibrium ß phase is then impossible. However, it is often 
possible to form a coherent nucleus of some other, metastable phase (ß') 
which is not present in the equilibrium phase diagram. The most common 
example of this is the formation of GP zones which will be discussed in 
more detail later. 

There are a few systems in which the equilibrium phase may nucleate 
homogeneously. For example in the Cu-Co system Cu alloys containing 
1-3% Co can be solution treated and quenched to a temperature where Co 
precipitates. Both Cu and Co are fee with only a 2% difference in lattice 
parameter. Therefore very litde coherency strain is associated with the forma­
tion of coherent Co particles. The interfacial energy is ab out 200 mJ m -2 and 
the critical undercooling for measurable homogeneous nucleation is about 
40 oe. This system has been used to experimentally test the theories of 
homogeneous nucleation and reasonably close agreement was found1 . 

Another system in which the equilibrium phase is probably formed 
homogeneously at a few tens of degrees undercooling is the precipitation of 
Ni3Al in many Ni-rich alloys. Depending on the system the misfit varies up to 
a maximum of 2%, and -y is probably less than 30 mJ m- 2 . Most other 
examples of homogeneous nucleation, however, are limited to metastable 
phases, usually GP zones. (See Section 5.5.1.) 

5.2 Heterogeneous Nucleation 

Nucleation in solids, as in liquids, is almost always heterogeneous. Suitable 
nucleation sites are non-equilibrium defects stich as excess vacancies, disloca­
tions, grain boundaries, stacking faults, inclusions, and free surfaces, all of 
which increase the free energy of the material. If the creation of a nucleus 
results in the destruction of adefeet, some free energy (IlGd) will be released 
thereby reducing (or even removing) the activation energy barrier. The 
equivalent to Equation 5.5 for heterogeneous nucleation is 

(5.18) 

Nucleation on Grain Boundaries 
Ignoring any misfit strain energy, the optimum embryo shape should be that 
which minimizes the total interfacial free energy. The optimum shape for an 
incoherent grain-boundary nucleus will consequently be two abutted spherical 
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caps as shown in Fig. 5.6, with 6 given by 

cos 6 = "faa/2"faß (5.19) 

(assuming "faß is isotropic and equal for both grains). The excess free energy 
associated with the embryo will be given by 

IlG = - VIlGv + Aaß"faß - A aa "faa (5.20) 

where V is the volume of the embryo, A aß is the area of a/ß interface of 
energy "faß created, and A aa the area of a/a grain boundary of energy "faa 
destroyed during the process. The last term of the above equation is simply 
IlGd in Equation 5.18. 

a. 

>rOdiUS 
Ya.a. ,. 

a. r* 
volume v· 

Fig. 5.6 The critical nucleus size (V*) for grain boundary nucleation. 

It can be seen that grain boundary nucleation is analogous to solidification 
on a substrate (Section 4.1.3) and the same results will apply. Again the 
critical radius of the spherical caps will be independent of the grain boundary 
and given by 

(5.21) 

and the activation energy barrier for heterogeneous nucleation will be given 
by 

IlG~et = V~et = S(6) 
IlG60m V60m 

where See) is a shape factor given by 

1 
See) = 2(2 + cos 6)(1 - cos e)2 

(5.22) 

(5.23) 

The ability of a grain boundary to reduce IlGhet , i.e. its potency as a 
nucleation site, depends on cos S, i.e. on the ratio Yaa/2Yaß. 

V* and IlG* can be reduced even further by nucleation on a grain edge or 
grain corner, Figs. 5.7 and 5.8. Figure 5.9 shows how IlG~et/IlG~om depends 
on cos 6 for the various grain boundary nucleation sites. 

High-angle grain boundaries are particularly effective nucleation sites for 
incoherent precipitates with high "faß. If the matrix and precipitate are suf­
ficiently compatible to allow the formation of lower energy facets then V* and 
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Fig. 5.7 Critical nucleus shape for nucleation on a grain edge. 

Fig. 5.8 Critical nucleus shape for nucleation on a grain corner. 

• 6Ghet --.-
t::.Ghom \~ 

0·8 ~\ 
\\ 

0·6 '\ 
\, 
\\ , 0-4 
" 

Grain boundaries 

02 G . \ , 
. rain", 

corners' "_ ........ 
o 0-25 0·5 0'75 1O 

cos e 

273 

Fig. 5.9 The effect of 6 on the activation energy for grain boundary nucleation 
relative to homogeneous nucleation. (After J.W. Cahn , Acta Metallurgia 4 (1956) 
449.) 

LlGhet can be further reduced as shown in Fig. 5.10. The nucleus will then 
have an orientation relationship with one of the grains. Such nuclei are to be 
expecred whenever possible, since the most successful nuclei, i.e. those which 
form most rapidly, will have the smallest nucleation barrier. 

Other planar defects such as inclusion/matrix interfaces, stacking faults 
and free surfaces can behave in a similar way to grain boundaries in reducing 
LlG* . Note, however, that stacking faults are much less potent sites due to 
their lower energy in comparison to high-angle boundaries. 



274 Diffusional transformations in solids 

Coherent 

<::: ß ~6cOherent 
a. 

a. 

Fig. 5.10 The critical nucleus size can be reduced even further by forming a 
low-energy coherent interface with one grain. 

Dislocations 
The lattice distortion in the vicinity of a dislocation can assist nucleation in 
several ways. The main effect of dislocations is to reduce the AGs-contribution 
to AG* by reducing the total strain energy of the embryo. A coherent nucleus 
with a negative misfit, i.e. a smaller volume than the matrix, can reduce its 
AG* by forming in the region of compressive strain above an edge disloca­
tion, whereas if the misfit is positive it is energetically favourable for it to form 
below the dislocation. 

Nucleation on dislocations mayaiso be assisted by solute segregation which 
can raise the composition of the matrix to nearer that of the precipitate. The 
dislocation can also ass ist in growth of an embryo beyond the critical size by 
providing a diffusion pipe with a lower AGm . 

Dislocations are not very effective for reducing the interfacial energy con­
tribution to AG*. This means that nucleation on dislocations usually requires 
rather good matching between precipitate and matrix on at least one plane, 
so that low-energy coherent or semicoherent interfaces can form. Ignoring 
strain energy effects, the minimum AG* is then achieved when the nucleus 
shape is the equilibrium shape given by the Wulff construction. When the 
precipitate and matrix have different crystal structures the critical nucleus 
should therefore be disc-like or needle-like as discussed in Section 3.4.2. 

In fcc crystals the ~<110> unit dislocations can dissociate to produce a ribbon 
of stacking fault, e.g. 

giving a stacking fault on (1i1) separated by two Shockley partials. Since the 
stacking fault is in effect four close-packed layers of hcp crystal (Fig 3.59b) it 
can act as a very potent nucleation site for an hcp precipitate. This type of 
nucleation has been observed for the precipitation of the hexagonal transition 
phase "I' in Al-Ag alloys. Nucleation is achieved simply by the diffusion of 
silver atoms to the fault. Thus there will automatically be an orientation 
relationship between the "I' precipitate (fault) and the matrix of the type 

(0001).y'/ /(lin" 
[1120]'1'; /[110]a 

wh ich ensures good matching and low energy interfaces. 
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It should be noted that even in annealed specimens dislocation densities are 
often sufficiently high to account for any precipitate dispersion that is resolv­
able in the light microseope, i.e. -1 j..Lm - 2 . Figure 5.11 shows an example of 
niobium carbonitride precipitates on dislocations in a ferritic iron matrix. This 
is a so-called dark-field electron microscope micrograph in which the precipi­
tates are imaged bright and the matrix dark. The precipitates lie in rows along 
dislocations. 

Excess Vacancies 
When an age-hardening alloy is quenched from a high temperature, excess 
vacancies are retained during the quench. These vacancies can assist nuclea­
tion by increasing diffusion rates, or by relieving misfit strain energies. They 
may influence nucleation either individually or collectively by grouping into 
small clusters . 

Since LlGd is relatively small for vacancies, nucleation will only take place 
when a reasonable combination of the following conditions is met: low 
interfacial energy (i.e. fully coherent nuclei), sm all volume strain energy, and 

Fig. 5.11 Rows of niobium carbonitride preclpltates on dislocations in ferrite 
(x 108 000). (Dark-field electron micrograph in which the precipitates show up 
bright. ) 
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high driving force. These are essentially the same conditions that must be 
fulfilled for homogeneous nucleation. Since individual vacancies or small 
clusters cannot be resolved with conventional transmission electron micros­
copy, evidence for the role of vacancies as hetergenous nucleation sites is 
indirect (discussed later). 

5.2.1 Rate of Heterogeneous Nucleation 

If the various nucleation sites are arranged in order of increasing äGd , i.e. 
decreasingäG*, the sequence would be roughly 

1. homogeneous sites 
2. vacancies 
3. dislocations 
4. stacking faults 
5. grain boundaries and interphase boundaries 
6. free surfaces. 

Nucleation should always occur most rapidlyon sites near the bottom of the 
list. However the relative importance of these sites in determining the overall 
rate at which the alloy will transform also depends on the relative concentra­
tions of the sites. For homogeneous nucleation every atom is a potential 
nucleation site, whereas only those atoms on grain boundaries, for example, 
can take part in boundary-assisted nucleation. 

If the concentration of heterogeneous nucleation sites is Cl per unit volume, 
the heterogeneous nucleation rate will be given by an equation of the form 

( äGm) (äG*) Nhet = wCI exp - kT . exp - kT nuclei m-3s- 1 (5.24) 

This is plotted as a function of temperature in Fig. 5.12. Note that, as with 
heterogeneous nucleation in liquids, measurably high nucleation rates can be 

T 
a. 

o 

a. + ß 

~-~====~==~--r. e 

N 

Fig. 5.12 The rate of heterogeneous nucIeation during precipitation of ß in alloy Xo 
as a function of undercooling. 
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obtained at very sm all driving forces. The relative magnitudes of the hetero­
geneous and homogeneous volume nucleation rates can be obtained by divid­
ing Equation 5.11 by 5.24 giving 

Nhet CI (dGhom - dGhet) -- = -exp 
N hom Co kT 

(5.25) 

(Differences in wand dGm are not so important and have been ignored.) 
Since dG* is always smallest for heterogeneous nucleation the exponential 
factor in the above equation is always a large quantity which favours a high 
heterogeneous nucleation rate. However, the factor (CdCo) must also be 
taken into account, i.e. the number of atoms on heterogeneous sites relative 
to the number within the matrix. For grain boundary nucleation 

(5.26) 

where 8 is the boundary thickness and D is the grain size. For nucleation on 
grain edges and corners (Cd Co) becomes reduced even further to (81 D)2 and 
(81 D)3. Therefore for a 50 fJ.m grain size taking 8 as 0.5 nm gives 
81 D = 10-5 . Consequently grain boundary nucleation will dominate over 
homogeneous nucleation if the boundary is sufficiently potent to make the 
exponential term in Equation 5.23 greater than 105 . Values for CdCo for 
other sites are listed in Table 5.1. 

In general the type of site wh ich gives the highest volume nucleation rate 
will depend on the driving force (dGv)' At very sm all driving forces, when 
activation energy barriers for nucleation are high, the highest nucleation rates 
will be produced by grain-corner nuc1eation. As the driving force increases, 
however, grain edges and then boundaries will dominate the transformation. 
At very high driving forces it may be possible for the (Cd Co) term to 
dominate and then homogeneous nucleation provides the highest nucleation 
rates. Similar considerations will apply to the relative importance of other 
heterogeneous nucleation sites. 

The above comments concerned nuc1eation during isotherm al transforma­
tions when the specimen is held at a constant temperature. If nucleation 
occurs during continuous cooling the driving force for nucleation will increase 
with time. Under these conditions the initial stages of the transformation will 
be dominated by those nucleation sites which can first produce a measurable 
volume nucleation rate. Considering only grain boundaries again, if "{aal "(aß 

is high, noticeable transformation will begin first at the grain corners, whereas 
if the grain boundary is less potent C'Yaahaß sm aller) nucleation may not be 
possible until such high driving forces are reached that less favourable hetero­
geneous or even homogeneous nucleation sites dominate. This will not of 
course exclude precipitation on potent heterogeneous sites, but they will 
make only a very small contribution to the total nucleation rate. 
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5.3 Precipitate Growth 

As explained above, the successful critical nuclei are those with the smallest 
nucleation barrier, i.e. the smallest critical volume. In the absence of strain­
energy effects the precipitate shape satisfying this criterion is that which 
minimizes the total interfacial free energy. Thus nuclei will usually be 
bounded by a combination of coherent or semicoherent facets and smoothly 
curved incoherent interfaces. For the precipitate to grow these interfaces 
must mi grate and the shape that develops during growth will be determined 
by the relative migration rates. As explained in Section 3.5.1, when the two 
phases have different crystal structures semicoherent interfaces have very low 
mobility and are forced to migrate by a ledge mechanism. Incoherent inter­
faces on the other hand are highly mobile. If there are problems in maintain­
ing a constant supply of ledges the incoherent interfaces will be able to 
advance faster than the semicoherent interface and a nucleus with one plane 
of good matching should grow into a thin disc or plate as shown in Fig. 5.13. 
This is the origin of the so-called Widmanstätten morphology12. 

The next few sections will be concerned with developing an approximate 
quantitative treatment for the ledge mechanism and for the rate of migration 
of curved incoherent interfaces, but before treating these two cases it is useful 
to begin with the simpler case of a plan ar incoherent interface. 

Slow 
A t 

Fig. 5.13 The effect of interface type on the morphology of a growing precipitate. 
(A) Low-mobility semicoherent interfaces. (B) High-mobility incoherent interfaces. 

5.3.1 Growth behind Planar Incoherent Interfaces 

It will be apparent from the above discussion that planar interfaces in crystal­
line solids will usually not be incoherent. However, one situation where 
approximately plan ar incoherent interfaces may be found is after grain­
boundary nucleation. If many incoherent nuclei form on a grain boundary 
they might subsequently grow together to form a slab of ß precipitate as 
shown in Fig. 5.14. 

Imagine that such a slab of solute-rich precipitate has grown from zero 
thickness and that the instantaneous growth rate is v. Since the concentration 
of solute in the precipitate (Cß) is higher than in the bulk (Co) the matrix 
adjacent to the precipitate will be depleted of solute as shown. Also since the 
interface is incoherent diffusion-controlled growth and local equilibrium at 
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a 

(0) 

ß ---40 V a 

- - - - -~-----

Ce ----

(b) x -----.. ~ 
Fig. 5.14 Diffusion-controIIed thickening of a precipitate plate. 

the interface can be assumed, i.e. the solute concentration in the matrix 
adjacent to the ß will be the equilibrium value Ce. The growth rate (v) will 
depend on the concentration gradient at the interface dC/dx. 

For unit area of interface to advance a distance dx a volume of material 
1 . dx must be converted from a containing Ce to ß containing Cß moles of B 
per unit volume, i.e. (Cß - Ce)dx moles of B must be supplied by diffusion 
through the a. The flux of B through unit area in time dt is given by 
D(dC/dx)dt, where D is the interdiffusion coefficient (or interstitial diffusion 
coefficient). Equating these two quantities gives 

dx D dC 
v=-= .-

dt Cß - Ce dx 
(5.27) 

As the precipitate grows solute must be depleted from an ever-increasing 
volume of matrix so that dC/dx in the above equation decreases with time. 
To make this quantitative, consider a simplified approach originally due to 
Zener2. If the concentration profile is simplified to that shown in Fig. 5.15 
dC/dx is given by aCo/L where aco = Co - Ce. The width of the diffusion 
zone L can be obtained by noting that the conservation of solute reqmres the 
two shaded areas in Fig. 5.15 to be equal, i.e. 
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~X~ 

Fig. 5.15 A simplification of the concentration profile. 

where x is the thickness of the slab. The growth rate therefore becomes 

D(dCo)2 
v = ---~--'-'----

2(Cß - Ce)(Cß - Co)x 
(5.28) 

If it is assumed that the molar volume (V m) is a constant , the concentrations in 
the above equation can be replaced by mole fractions (X = CV m) . Further­
more , for the sake of simplicity it can often be assumed that 
Cß - Co = Cß - Ce· Integration of Equation 5.28 then gives 

dXo J 
x =( (Xß _ Xe) (Dt) (5.29) 

and 

(5.30) 

where ilo = Xo - Xe (Fig. 5.16) is the supersaturation prior to precipita­
tion. 

Te - - - - - - - - - -

oY-;. 

t:.Xo 

o o 
Fig. 5.16 The effect of temperature and position on growth rate , v. 
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The following points are important to note regarding these equations. 

1. x rx J(Dt) , i.e . precipitate thickening obeys a parabolic growth law. 
2. v rx ilo, i.e. for a given time the growth rate is proportional to the 

supersaturation. 
3. v rx J(D/t). 

The effect of alloy composition and temperature on growth rate is illus­
trated in Fig. 5.16. Growth rates are low at small undercoolings due to small 
supersaturation ilo but are also low at large undercoolings due to slow 
diffusion. A maximum growth rate will occur at so me intermediate under­
cooling. 

When the diffusion fields of separate precipitates begin to overlap 
Equation 5.30 will no longer apply, but growth will decelerate more rapidly 
and finally cease when the matrix concentration is Xe everywhere, Fig. 5.17. 

Although these equations are only approximate and were derived for a 
plan ar interface, the conclusions are not significantly altered by more thor­
ough treatments or by allowing curved interfaces. Thus it can be shown that 

c 

(0 ) 

-- - ----------

(b) Oistonce 
Fig. 5.17 (a) Interference of growing precipitates due to overlapping diffusion fields 
at Iater stage of growth. (b) Precipitate has stopped growing. 
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any linear dimension of a spheroidal precipitate increases as j(Dt) provided 
all interfaces migrate under volume diffusion control. 

Usually grain boundary precipitates do not form a continuous layer along 
the boundary but remain as isolated particles. The growth of such precipitates 
can occur at rates far greater than allowed by volume diffusion. The reason 
for this is that the grain boundary can act as a collector plate for solute as 
shown in Fig. 5.18. 22 Growth of such a so-called grain-boundary allotrio­
morph involves three steps: (1) volume diffusion of solute to the grain 
boundary; (2) diffusion of solute along the grain boundary with so me at­
tachment at the precipitate rim; and (3) diffusion along the a/ß interfaces 
allowing accelerated thickening. This mechanism is of greatest significance 
when substitution al diffusion is involved. In the case of interstitial solutions 
diffusion short circuits are comparatively unimportant due to the high volume 
diffusion rates. 

Salute 

1 1 ~ßa"......--+---l ! Gmin 

~i ( ~ (l r boundary 

Fig. 5.18 Grain-boundary diffusion can lead to rapid lengthening and thickening of 
grain boundary precipitates. 

5.3.2 Dijfusion-Controlled Lengthening of Plates or Needles 

Imagine now that the ß precipitate is a plate of constant thickness having a 
cylindrically curved incoherent edge of radius r as shown in Fig. 5.19a. Again 
the concentration profile across the curved interface will appear as shown in 
Fig. 5.19b, but now, due to the Gibbs-Thomson effect, the equilibrium con­
centration in the matrix adjacent to the edge will be increased to Cr . The 
concentration gradient available to drive diffusion to the advancing edge is 
therefore reduced to !lCI L where !lC = Co - Cr and L is a characteristic 
diffusion distance. The diffusion problem in this case is more complex as 
diffusion occurs radially. However, solution of the relevant equations shows 
that L is given by kr where k is a numerical constant (-1). By analogy with 
Equation 5.27, therefore, the lengthening rate will be given by 

D !lC 
v= .-

Cß - Cr kr 
(5.31) 

The composition difference available to drive diffusion will depend on the 
tip radius as shown in Fig. 5.20. With certain simplifying assumptions it can 
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Distonce olong A Ä 
Fig. 5.19 (a) The edge of a plate-like precipitate. (b) A concentration profile along 
AN in (a). 

be shown that 

(5.32) 

where l1X = Xo - X r , U o = Xo - Xe and r* is the critical nucleus radius, 
i.e. the value of r required to reduce !J.X to zero. Again, assuming constant 
molar volume, the above equations can be combined to give 

(5.33) 

This equation will apply as long as there is no decrease in supersaturation far 
from the interface due to other precipitates. The difference between this 
equation and Equation 5.30 is that for a given plate thickness the lengthening 
rate should be constant, i.e. x cx: t (linear growth). 

Although the above equations were developed for the lengthening of a 
plate, the same equations can be derived for the lengthening of a needle under 
diffusion-controlled growth. The only difference is that the edge of a needle 
has a spherical tip so that the Gibbs-Thomson increase in free energy is 
2'YVrn/r instead of 'YVrn/r. The value of r* in Equation 5.33 will, therefore, 
be different for a plate and a needle. 
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Fig. 5.20 The Gibbs-Thomson effect. (a) Free energy curves at Tl' (b) Corres­
ponding phase diagram. 

The above treatment only applies to plates or needles that lengthen by a 
volume diffusion-controlled continuous growth process. This is a reasonable 
assumption for the curved ends of needles, but in the case of plate-like 
precipitates the edges are often faceted and are observed to migrate by a 
ledge mechanism. Atoms can then only attach at the ledges and new 
equations must be derived as discussed below. 

Another source of deviation between theory and practice is if solute can be 
transported to the advancing precipitate edges by short-circuit diffusion in the 
broad faces of the precipitate plate. 

5.3.3 Thickening 01 Plate-like Precipitates 

The treatment given in Section 5.3.1 for a planar incoherent interface is only 
valid for interfaces with high accommodation factors. In general this will not 
be the case for the broad faces of plate-like precipitates which are semicoher­
ent and are restricted to migrate by the lateral movement of ledges. 

For simplicity, imagine a plate-like precipitate that is thickening by the 
lateral movement of linear ledges of constant spacing A and heigr.t h, 
Fig. 5.21. It can readily be seen that the half-thickness of the plate should 
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h __ U 

~ A 
Fig. 5.21 Thickening of plate-like precipitates by ledge mechanism. 

increase at a rate v given by 

uh 
v =-

A 
(5.34) 

where u is the rate of lateral migration. 
The problem of ledge migration is very similar to that of plate lengthening. 

The necessary composition changes required for precipitate growth must be 
achieved by long-range diffusion to and from the ledges as shown in Fig. 5.21. 
If the edges of the ledges are incoherent the matrix composition in contact 
with the ledges will be Xe and growth will be diffusion controlled. A similar 
treatment to that given in Section 5.3.2 then gives the rate of lateral migration 
as3 

D~o 
u=-----

k(Xß - Xe)h 
(5.35) 

This is essentially the same as Equation 5.33 for the lengthening of a plate 
with h = rand X r = Xe, i.e. no Gibbs-Thomson effect. Combining the 
above equations shows that the thickening rate is independent of hand given 
by 

D~o 
v = ----=--

k(Xß - Xe)A 
(5.36) 

Thus, provided the diffusion fields of different precipitates do not overlap, the 
rate at which plates thicken will be inversely proportional to the interledge 
spacing A. The validity of Equation 5.36 is dependent on there being a 
constant supply of ledges. As with faceted solid/liquid interfaces, new ledges 
can be generated by various mechanisms such as repeated surface nucleation, 
spiral growth, nucleation at the precipitate edges, or from intersections with 
other precipitates. With the exception of spiral growth, however, none of 
these mechanisms can maintain a supply of ledges with constant A. 

By using hot-stage transmission electron microscopy it is possible to mea­
sure the thickening rates of individual precipitate plates. Figure 5.22 shows 
results obtained from a'Y plate in the Al-Ag system4 . It can be seen that there 
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Fig. 5.22 The thickening of a 'Y plate in an AI-15 wt% Ag alJoy at 400 oe. (From 
C. Laird and H.1. Aaronson, Acta Metallurgica 17 (1969) 505.) 

are appreciable intervals of time when there is no perceptible increase in plate 
thickness followed by periods when the thickness increases rapidly as an 
interfacial ledge passes. The two smooth lines in the figure are upper and 
lower limits for the rate of thickening for a planar incoherent interface in the 
same system, assuming diffusion control. The ledge mechanism is clearly a 
very different process. The fact that there is no perceptible increase in 
thickness except when ledges pass is strong evidence in favour of the immobil­
ity of semicoherent interfaces. It can also be seen that the thickening rate is 
not constant implying that ledge nucleation is rate controlling. 

Measurements on precipitates in other systems indicate that even within 
the same system the thickness/time relationship can vary greatly from plate to 
plate, presumably depending on differences in the ease of nucleation of new 
ledges. 

5.4 Overall Transformation Kinetics-TTT Diagrams 

The progress of an isothermal phase transformation can be conveniently 
represented by plotting the fraction transformation (f) as a function of time 
and temperature, i.e. a TIT diagram as shown in Fig. 5.23a for example. For 
transformations of the type a ~ ß, fis just the volume fraction of ß at any 
time. For precipitation reactions a' ~ a + ß, f can be defined as the volume 
of ß at time t divided by the final volume of ß. In bath cases fvaries from 0 to 
1 from the beginning to the end of the transformation, Fig. 5.23b. 

Among the factors that determine f(t, T) are the nucleation rate, the 
growth rate, the density and distribution of nucleation sites, the overlap of 
diffusion fields from adjacent transformed volumes, and the impingement of 
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Fig. 5.23 The percentage transformation versus time for different transformation 
temperatures. 

adjacent transformed volumes. Some of the problems involved are illustrated 
in Fig. 5.24. After quenching to the transformation temperature the meta­
stable a phase will contain many nucleation sites (usually heterogeneous). 
One possible sequences of events, Fig. 5.24a, is that nuclei form throughout 
the transformation so that a wide range of particle sizes exists at any time. 
Another possibility is that all nuclei form right at the beginning of transforma­
tion, Fig. 5.24b. If all potential nucleation sites are consumed in the process 
this is known as sire saturation. In Fig. 5 .24a, f will depend on the nucleation 
rate and the growth rate. In Fig. 5.24b, f will only depend on the number of 
nucleation sites and the growth rate. For transformations of the type a ~ ß 
or a ~ ß + 'Y (known collectively as cellular transformations) all of the 
parent phase is consumed by the transformation product, Fig. 5.24c. In these 
cases the transformation does not terminate by the gradual reduction in the 
growth rate, but by the impingement of adjacent cells growing with a constant 
velocity. Pearlite, cellular precipitation, massive transformations and recrys­
tallization belong to this category. 



Overall transformation kinetics- TTT diagrams 289 

• . ",,' . O' 0 ....0 
~ 

---- Ci) 

-----
(0 

Ci) 

0 
(a) 

Beginning End 

o 0 0 0000 0 

• ~ 
0 0 

----- 0 0 
• 0 

0 0 
0 0 

0 
(b) 

Nudeation sites 

(e) L---___ ~ 

Fig. 5.24 (a) Nucleation at a eonstant rate during the whole transformation. 
(b) Site saturation-all nucleation oeeurs at the beginning of transformation. (e) A 
eellular transformation. 

As a simple example of the derivation of f(t, T) consider a cellular trans­
formation (a ~ ß) in which ß cells are continuously nucleated throughout the 
transformation at a constant rate N 5 . If the cells grow as spheres at a constant 
rate v, the volume of a cell nucleated at time zero will be given by 

4 3 4 3 
V = -11'r = -11'( vt) 

3 3 

A cell which does not nucleate until time T will have a volume 

The number of nuclei that formed in a time increment of dT will be NdT per 
unit volume of untransformed a. Thus if the particles do not impinge on one 
another, for a unit total volume 
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i.e. 

(5.37) 

This equation will only be valid for f ~ 1. As time passes the ß cells will 
eventually impinge on one another and the rate of transformation will de­
crease again. The equation valid for randomly distributed nuclei for both long 
and short times is6 

f = 1 - exp ( -i Nv3t4) 
(5.38) 

Note that this is the same as Equation 5.37 for short times, since 
1 - exp (-z) = z when z ~ 1. It is also reasonable for long times since as 
t~ oo,f~ 1. 
~Equation 5.38 is known as a lohnson-Mehl-Avrami equation. In general, 

depending on the assumptions made regarding the nucleation and growth 
processes, a variety of similar equations can be obtained with the form 

f = 1 - exp (-ktn ) (5.39) 

where n is a numerical exponent whose value can vary from -1 to 4. Provided 
there is no change in the nucleation mechanism, n is independent of tempera­
ture. k, on the other hand, depends on the nucleation and growth rates and 
is therefore very sensitive to temperature. For example, in the case above, 
k = 'ITNv3/3 and both N and v are very temperature sensitive. 

Since exp (-0.7) = 0.5 the time for 50% transformation (to.s) is given by 

i.e. 

kt3.s = 0.7 

0.7 
to.s = k lln 

For the ca se discussed above 

0.9 

(5.40) 

(5.41) 

Consequently it can be seen that rapid transformations are associated with 
large values of k, i.e. rapid nucleation and growth rates, as expected. 

Civilian transformations that occur on cooling are typified by C-shaped 
TIT curves as shown in Fig. 5.23a. This can be explained on the basis of the 
variation of nucleation and growth rates with increasing undercooling. At 
temperatures close to Te the driving force for transformation is very sm all so 
that both nucleation and subsequent growth rates are slow and a long time is 
required for transformation. When LlT is very large, on the other hand, slow 
diffusion rates limit the rate of transformation. A maximum rate is, therefore, 
obtained at intermediate temperatures. 
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5.5 Precipitation in Age-Hardening Alloys 

The theory of nucleation and growth that has been described above is able to 
provide general guidelines for understanding civilian transformations. Let us 
now turn to a consideration of so me examples of the great variety of civilian 
transformations that can occur in solids, and begin with alloys that can be 
age-hardened. These alloys are characterized by phase diagrams such as that 
shown in Fig. 5.1a(i). Two extensively researched and illustrative examples 
are aluminium-copper and aluminium-silver alloys. 

5.5.1 Precipitation in Aluminium-Copper Alloys 

CP Zones 
Figure 5.25 shows the Al-rich end of the Al-Cu phase diagram. If an alloy 
with the composition AI-4 wt% Cu (1.7 atomic %) is heated to a tempera­
ture of about 540°C all copper will be in solid solution as a stable fee Cl phase, 
and by quenching the specimen rapidly into water there is no time for any 
transformation to occur so that the solid solution is retained largely un­
changed to room temperature . However, the solid solution is now supersatu­
rated with Cu and there is a driving force for precipitation of the equilibrium e 
phase, CuAI2 . 

Atomic percent Cu 
700r----------r~----------r___, 

1 

600 

500 

V 400 
~ 
::J 
"§ 
~ 300 
E 
~ 

200 

2 

2 3 4 5 

Weight percent Cu 

Fig. 5.25 Al-Cu phase diagram showing the metastable GP zone, eil and e' solvuses. 
(Reproduced from G. Lorimer, Precipitation Processes in Solids, K. C. Russell and 
H.1. Aaronson (Eds.), The Metallurgical Society of AMTE, 1978, p. 87.) 
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If the alloy is now aged by holding for aperiod of time at room temperature 
or some other temperature below about 180°C it is found that the first 
precipitate to nucleate is not e but coherent Cu-rich GP zones. (Copper-rieh 
zones in Al-Cu alloys were detected independently in 1938 by Guinier and 
Preston from streaks in X-ray diffraction patterns.) The reason for this can be 
understood on the basis of the relative activation energy barriers for nuclea­
tion as discussed earlier. GP zones are fully coherent with the matrix and 
therefore have a very low interfacial energy, whereas the e phase has a 
complex tetragonal crystal structure whieh can only form with high-energy 
incoherent interfaces. In addition, the zones minimize their strain energy by 
choosing a disc-shape perpendicular to the elastically soft (100) directions in 
the fcc matrix, Fig. 5.26. Therefore, despite the fact that the driving force for 
precipitation of GP zones (äGv - äGs) is less than for the equilibrium phase, 
the barrier to nucleation (äG*) is still less, and the zones nucleate most 
rapidly. The microstructure of an Al-Cu alloy aged to produce GP zones is 
shown in Fig. 5.30a. These zones are about 2 atomic layers thick and 10 nm in 
diameter with a spacing of -10 nm. The zones themselves are not resolved. 
The contrast in the image is due to the coherency misfit strain perpendicular 
to the zones. This distorts the lattice causing local variations in the intensity of 
electron diffraction, which in turn shows up as variations in the image intensity. 
Mierostructurally, the zones appear to be homogeneously nucleated, 
however excess vacancies are thought to play an important role in their 
formation. This point will be returned to later. 

GP zones are formed as the first precipitate during low-temperature ageing 
of many technologically important alloys, notably those based on aluminium 
(see Tables 5.2 and 5.3). In dilute Al-Zn and Al-Ag alloys Zn-rieh and 
Ag-rich GP zones are found. In these cases there is very little misfit strain and 
äG* is minimized by the formation of spherical zones with a minimum 
interfacial energy, Fig. 3.39. 

Transition Phases 
The formation of GP zones is usually followed by the precipitation of so­
called transition phases. In the case of Al-Cu alloys the equilibrium e phase is 

° ° °0°0°0° 

~ 060~; 
000000 

°0°0°0°000°0 
OAl • Cu 

Fig. 5.26 Section through a GP zone parallel to the (200) plane. (Based on the work 
of V. Gerold: Zeitschrift für Metallkunde 45 (1954) 599.) 
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Table 5.2 Some Precipitation-Hardening Sequences 
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(Mainly from J.W. Martin, Precipitation Hardening, Pergamon Press, 
Oxford, 1968.) 

Base metal Alloy 

Aluminium Al-Ag 
Al-Cu 

AI-Cu-Mg 

AI-Zn-Mg 

AI-Mg-Si 
Copper Cu-Be 

Cu-Co 
lron Fe-C 

Fe-N 
Nickel Ni-Cr-Ti-Al 

Precipitation sequence 

GPZ (spheres) ~ "Y' (plates) ~ "Y (Ag2AI) 
GPZ (discs) ~ e" (discs) ~ e' (plates) 
~ e (CuAI2) 

GPZ (rods) ~ S' (laths) ~ S (CuMgAI2) 
(laths) 

GPZ (spheres) ~ 'T]' (plates) ~ 'T] (MgZn2) 
(plates or rods) 

GPZ (rods) ~ ß' (rods) ~ ß(Mg2Si) (plates) 
GPZ (discs) ~ "Y' ~ "Y (CuBe) 
GPZ (spheres) ~ ß (Co) (plates) 
E-carbide (discs) ~ Fe3C (plates) 
cl' (discs) ~ Fe4N 
"Y' (cubes or spheres) 

preceded by e" and e'. The total precipitation process can be written 

Uo ~ UI + GP zones ~ U2 + e" ~ U3 + e' ~ U4 + e 
where Uo is the original supersaturated solid solution, UI is the composition of 
the matrix in equilibrium with GP zones, U2 the composition in equilibrium 
with e" etc. 

Figure 5.27 shows a schematic free energy diagram for the above phases. 
Since GP zones and the matrix have the same crystal structure they lie on the 
same free energy curve (ignoring strain energy effects-see Section 5.5.5). 
The transition phases e" and e' are less stable than the equilibrium e phase 
and consequently have higher free energies as shown. The compositions 
of the matrix in equilibrium with each phase-ut, u2, u3, u4-are given 
by the common tangent construction. These compositions correspond to 
points on the solvus lines for GP zones, e", e' and e shown in Fig. 5.25. The 
free energy of the alloy undergoing the above precipitation sequence de­
creases as 

Go~ GI ~ G2~ G3~ G4 

as shown in Fig. 5.27. Transformation stops when the minimum free energy 
equilibrium state G4 is reached, i.e. U4 + e. 

Transition phases form because, like GP zones, they have a lower activa­
tion energy barrier for nucleation than the equilibrium phase, Fig. 5.28a. The 
free energy of the alloy therefore decreases more rapidly via the transition 
phases than by direct transformation to the equilibrium phase, Fig. 5.28b. 
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Fig. 5.27 A sehematie molar free energy diagram for the Al-Cu system. 

The lower activation energy barriers are achieved because the crystal struc­
tures of the transition phases are intermediate between those of the matrix 
and the equilibrium phase. In this way the transition phases can achieve a 
high degree of coherence and thus a low interfacial energy c0l!tribution to 
b.G*. The equilibrium phase on the other hand usually has a complex crystal 
structure that is incompatible with the matrix and results in high-energy 
interfaces and high b.G*. 

The crystal structures of e", e' and e are shown in Fig. 5.29 along with that 
of the fee matrix for eomparison. 8" has a tetragonal unit eeH which is 
essentially a distorted fec structure in whieh the copper and aluminium atoms 
are ordered on (001) planes as shown. Note that the atomie strueture of the 
(001) planes is identical to that in the matrix, and the (010) and (100) planes 
are very similar, apart from a sm all distortion in the [001] direetion. e" forms 
as fully co he re nt plate-like preeipitates with a {DOlle. habit plane and the 
following orientation relationship to the matrix: 

(001)9',11(001)", 

[100]e" 11[100]", 

A high magnification transmission electron micrograph of an alloy aged to 
produce e" precipitates is shown in Fig. 5.30b. Like the GP zones in 
Fig. 5.30a, the e" precipitates are visible by virtue of the coherency-strain 
fields caused by the misfit perpendicular to the plates. e" precipitates are 
larger than GP zones being up to -10 nm thick and 100 nm in diameter. 

e' is also tetragonal with an approximate composition CuAl2 and again has 
(001) planes that are identicaI with {001}",. The (100) and (010) planes, 



296 

(0) 

Total 
Free energy 

Go 
G1 

G2 

G3 

G4 

(b) 

size 

Diffusional transformations in solids 

~ I 

a +9 ~a + 9 
2 3 

- - - - - - - - - - - - - - - - - - - - - - 'I 

e~e 

Time 

I 

\ 

-'-

Fig. 5.28 (a) The activation energy barrier to the formation of each transition phase 
is very small in comparison to the barrier against the direct precipitation of the 
equilibrium phase. (b) Schematic diagram showing the total free energy of the alloy 
v. time. 

however, have a different crystal structure to the matrix and a large misfit in 
the [001] direction. 8' therefore forms as plates on {OO1}n with the same 
orientation relationship as e". The broad faces of the plates are initially fully 
coherent but lose coherency as the plates grow, while the edges of the plates 
are either incoherent or have a complex semicoherent structure. A transmis­
sion electron micrograph of 8' plates -1 j.Lm diameter is shown in Fig. 5.30c. 
Note the presence of misfit dislocations in the broad faces of the precipitates. 
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Fig. 5.29 Structure and morphology of fl", e' and fl in Al-Cu (0 Al, • Cu). 

Note also that since the edges of the plates are not coherent there are no 
long-range coherency-strain fields. 

The equilibrium 6 phase has the approximate composition CuAl2 and a 
complex body-centred tetragonal structure as shown in Fig. 5.29. There are 
no planes of good matching with 'the matrix and only incoherent, or at best 
complex semicoherent interfaces are possible. The microstructure at this final 
stage of ageing is shown in Fig. 5.30d. Note the large size and coarse distribu­
tion of the precipitates. 

The transformation from GP zones to 6" occurs by the in situ transforma­
tion of the zones, which can be considered as very potent nucleation sites 
for 6". After longer ageing times the 6' phase nucleates on matrix dislQca­
tions with two orientations of 6' plates on any one ~(110) dislocation. This is 
because the strain field of such a dislocation is able to reduce the misfit in two 
(100) matrix directions. Figure 5.31a shows 6' plates that have nucleated on 
dislocations. Note that as the 8' grows the surrounding, less-stable 8" can be 
seen to dissolve. After still longer ageing times the equilibrium 6 phase 
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Fig. 5.30 Microstructures at different stages during ageing of AI-Cu alloys. (a) GP 
zones x 720000. (b) 8" x 63000. (e) 8' x 18000. (d) 8 x 8000. [Ca) After R.B. 
Nieholson and J. Nutting, Philosophical Magazine 3 (1958) 531. (b) R .B. Nieholson , 
G. Thornas and J. Nutting , Journal of the Institute of Metals 87 (1958-1959) 431. 
(e) G.c. Weatherly and R.B. Nieholson, Philosophical Magazine 17 (1968) 813. 
(d) G .A. Chadwiek, Metallography of Phase Transformations , Butterworths, London , 
1972, frorn C. Laird .) 
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(a) 

(b) 

(e) 
Fig. 5.31 Electron micrographs showing nucleation sites in Al-Cu alloys. 
(a) ß" ~ ß/. ß' nucleates at dislocation (x 70000). (b) ß nucleation on grain bound­
ary (GB) (x 56000). (c) ß' ~ ß. ß nucleates at ß'/ matrix interface (x 70000). 
(After P. Haasen, Physical Metallurgy, Cambridge University Press, Cambridge, 
1978.) 
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nueleates either on grain boundaries, Fig. 5.31b, or at EI' /matrix interfaces, 
Fig. 5.31c. The choice of these nueleation sites is governed by the need to 
reduce the large interfacial energy contribution to !l.G* for this phase. 

The full sequence of GP zones and transition precipitates is only possible 
when the alloy is aged at a temperature below the GP zones solvus. For 
example, if ageing is carried out at a temperature above the EI" solvus but 
below the EI' solvus, Fig. 5.25, the first precipitate will be EI', heterogeneously 
nueleated on dislocations. If ageing is carried out above the EI' solvus, the only 
precipitate that is possible is EI which nueleates and grows at grain boundaries. 
Also, if an alloy containing GP zones is heated to above the GP zone solvus 
the zones will dissolve. This is known as reversion. 

The effect of ageing temperature on the sequence of precipitates is illus­
trated by a schematic TTT diagram in Fig. 5.32. The fastest transformation 
rates are associated with the highest nueleation rates and therefore the finest 
precipitate distributions. There is consequently an increasing coarseness of 
microstructure through the sequence of precipitates as can be seen in 
Fig. 5.30. 

The mechanism whereby a more stable precipitate grows at the expense of 
a less stable precipitate is illustrated in Fig. 5.33 for the case EI" /6'. 
Figure 5.27 shows that the Cu concentration in the matrix elose to the EI" 
precipitates (az) will be higher than that elose to EI'(a3)' Therefore Cu will 
tend to diffuse through the matrix away from EI", which thereby dissolves, and 
towards EI', which grows. 

-~ -.... 
,/ 
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/" 
//e' 

/ ......... 
/ ,,-

I / 
/ 

/ 
Q/ /6" ... 
::J / -(5 / ,/ 
Q; / ,/ 
a. I / 
E I // GP Q/ I ~ 

I / 
I / 
I I 

I 

(a) ./. Cu x (b) Log (time) 

Fig. 5.32 (a) Metastable solvus lines in Al-Cu (schematic). (b) Time for start of 
precipitation at different temperatures for alloy X in (a). 
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e" e' 
Fig. 5.33 Matrix in equilibrium with 8" (0:2) contains more Cu than matrix in 
equilibrium with 8' (0:3)' Cu diffuses as shown causing 8" to shrink and 8' to grow. 

5.5.2 Precipitation in Aluminium-Si/ver Alloys 

Figure 5.34 shows the Al-Ag phase diagram. If alloys containing up to about 
23 atomic % Ag are solution treated, quenched and given a low-temperature 
ageing treatment the precipitation sequence is 

Uo --? UI + GP zones --? U2 + 'Y' --? U3 + 'Y 

Weight percent aluminium 
10000 10 20 30 40 50 60 80 100 

960. 5° 

900 

Liquid 

u 
0 

600 
<lI a.Ag 
I-

::l 500 -0 
I-

<lI 400 a. 
E 
<lI 300 t-

'--', , , 
I , 

GPzone,' , 
solvus ""-, 

,7 

200 , , 
100 

",,,," 
," ", ... "'-

0 10 20 30 40 50 60 70 80 90 100 
Ag Atomic percen t alum i nium Al 

Fig. 5.34 Al-Ag phase diagram showing metastable two-phase field corresponding 
to GP zones. (After R. Baur and V. Gerold, Zeitschrift für Metallkunde 52 (1961) 
671.) 
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As discussed earlier, the GP zones in this system are spherical. ,,/' is a 
close-packed hexagonal transition phase with an orientation relationship to 
the matrix of 

(0001),,) /(111)" 

[1120],,/ /[liO]" 

,,/' is heterogeneously nucleated on helical dislocations by the enrichment of 
stacking faults with silver as discussed in Section 5.2. The equilibrium "/ phase 
has the composition Ag2Al, is hexagonal and has the same orientation 
relationship with the matrix as ,,/'. It forms as plate-like precipitates with (111) 
habit planes. "/ can be formed from ,,/' by the latter acquiring misfit 
dislocations. It can also be separately nucleated at grain boundaries and grow 
by a cellular mechanism (see Seetion 5.7). 

5.5.3 Quenched-in Vacancies 

It was shown in Chapter 1 that the equilibrium concentration of vacancies 
increases exponentially with temperature. Thus the equilibrium vacancy con­
centration will be relatively high at the solution treatment temperature and 
much lower at the ageing temperature. However, when the alloy is rapidly 
quenched from the high temperature there will be no time for the new 
equilibrium concentration to be established and the high vacancy concentra­
tion becomes quenched-in. Given time, those vacancies in excess of the 
equilibrium concentration will anneal out. There will be a tendency for 
vacancies to be attracted together into vacancy clusters, and some clusters 
collapse into dislocation loops which can grow by absorbing more vacancies. 
The dislocations that are already present can also absorb vacancies by climb­
ing. In this way straight screw dislocations can become converted into longer 
helical edge dislocations. There are many ways, therefore, in which excess 
vacancies are able to provide heterogeneous nucleation sites. 

Another effect of quenched-in vacancies is to greatly increase the rate at 
which atoms can diffuse at the ageing temperatures. This in turn speeds up the 
process of nucleation and growth. Indeed the only way of explaining the rapid 
formation of GP zones at the relatively low ageing temperatures used is by the 
presence of excess vacancies. 

If GP zones are separated by a mean spacing >,., the mean diffusion distance 
for the solute atoms is >../2. Therefore, if the zones are observed to form in a 
time t, the effective diffusion coefficient is roughly given by x 2/t, i.e. 

>,.2 
D=-

4t 

If high-temperature diffusion data are extrapolated down to the ageing 
temperature, the values obtained are orders of magnitude sm aller than the 
above value. The difference can, however, be explained by a quenched-in 
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vacancy concentration that is orders of magnitude greater than the equilib­
rium value. In Al-Cu alloys, for example, GP zones can form by ageing at 
room temperature, which would not be feasible without assistance from 
excess vacancies. 

There is other evidence for the role of quenched-in vacancies in enhancing 
diffusion rates. If the alloy is quenched from different solution treatment 
temperatures and aged at the same temperature, the initial rate of zone 
formation is highest in the specimens quenched from the highest tempera­
tures. Also, if the quench is interrupted at an intermediate temperature, so 
that a new equilibrium concentration can be established, the rate of trans­
formation is reduced. Reducing the rate of cooling from the solution treat­
ment temperature pro duces a similar effect by allowing more time for va­
cancies to be lost during the quench. This is important when large parts are 
to be he at treated as the cooling rate varies greatly from the surface to the 
centre when the specimen is water-quenched for example. 

Apart from dislocations, the main sinks for excess vacancies are the grain 
boundaries and other interfaces within the specimen. Since vacancies have 
such a high diffusivity it is difficult to avoid losing vacancies in the vicinity of 
grain boundaries and interfaces. This has important effects on the distribution 
of precipitates that form in the vicinity of grain boundaries on subsequent 
ageing. Figure 5.35a shows the vacancy concentration profiles that should be 
produced by vacancy diffusion to grain boundaries du ring quenching. Close to 
the boundary the vacancy concentration will be the equilibrium value for the 
ageing temperature , while away from the boundary it will be that for the 
solution treatment temperature. On ageing these alloys it is found that a 
precipitate-free zone (PFZ) is formed as shown in Fig. 5.35b. The solute 
concentration within the zone is largely unchanged, but no nucleation has 
occurred. The reason for this is that a critical vacancy supersaturation must be 
exceeded for nucleation to occur. The width of the PFZ is determined by the 
vacancy concentration as shown in Fig. 5.35c. At low temperatures, where 
the driving force for precipitation is high, the critical vacancy supersaturation 
is lower and narrower PFZs are formed. High quench rates will also produce 
narrow PFZs by reducing the width of the vacancy concentration profile. 
Similar PFZs can also form at inclusions and dislocations. 

Finally, it should be mentioned that another cause of PFZs can be the nu­
cleation and growth of grain boundary precipitates during cooling from the 
solution treatment temperature. This causes solute to be drained from the 
surrounding matrix and a PFZ results. An example of this type of PFZ is 
shown in Fig. 5.36. 

5.5.4 Age Hardening 

The reason for the interest in alloy systems that show transition phase pre­
cipitation is that great improvements in the mechanical properties of these 
alloys can be achieved by suitable solution treatment and ageing operations. 
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Fig. 5.36 PFZs around grain boundaries in a high-strength commercial Al-Zn-Mg­
Cu alloy. Precipitates on grain boundaries have extracted solute from surrounding 
matrix. (x 59 200) 

This is illustrated for various Al-Cu alloys in Fig. 5.37. The alloys were 
solution treated in the single-phase a region of the phase diagram, quenched 
to room temperature and aged at either 130°C (Fig. 5.37a) or 190°C 
(Fig. 5.37b). The curves show how the hardness of the specimens varies as a 
function of time andthe range of time over which GP zones, e" and e' appear 
in the microstructure. Immediately after quenching the main resistance to 
dislocation movement is solid solution hardening. The specimen is relatively 
easily deformed at this stage and the hardness is low. As GP zones form the 
hardness increases due to the extra stress required to force dislocations 
through the coherent zones. 

The hardness continues to increase with the formation of the co he re nt e" 
precipitates because now the dislocations must also be forced through the 
highly strained matrix that results from the misfit perpendicular to the e" 
plates (see Fig. 5.30b). Eventually, with the formation of e' the spacing 
between the precipitates becomes so large that the dislocations are able to 
bow between the precipitates and the hardness begins to decrease. Maximum 
hardness is associated with a combination of e" and e'. Further ageing 
increases the distance between the precipitates making dislocation bowing 
easier and the hardness decreases. Specimens aged beyond peak hardness are 
referred to as overaged. 
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Fig. 5.37 Hardness v. time for various Al-Cu alloys at (a) 130°C (b) 190 oe. (After 
J.M. Silcock. T.J. Heal and H.K. Hardy, Journal of the Institute of Metals 82 
(1953-1954) 239. 

If AI-4.5 wt% Cu is aged at 190 °C,GP zones are unstable and the first 
precipitate to form is e". The volume fraction of e" increases with time 
causing the hardness to increase as shown in Fig. 5.37b. However, at 190°C 
the e" nucleates under the influence of a smaller driving force than at 130°C 
and the resultant precipitate dispersion is therefore coarser. Also the max­
imum volume fraction of e" is reduced. Both of these factors contribute to a 
lower peak hardness on ageing at the higher temperature (compare Fig. 5.37a 
and b). However, diffusion rates are faster at higher temperatures and peak 
hardness is therefore achieved after shorter ageing times. 

It can be seen that at 130°C peak hardness in the AI-4.5 wt% Cu alloy is 
not reached for several tens of days. The temperatur es that can be used in the 
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heat treatment of commercial alloys are limited by economic considerations 
to those which produce the desired properties within a reasonable period of 
time, usually up to -24 h. In some high-strength alloys use is, therefore, 
made of a double ageing treatment whereby ageing is carried out in two steps: 
first at a relatively low temperature below the GP zone solvus, and then at a 
higher temperature. In this way a fine dispersion of GP zones obtained during 
the first stage can act as heterogeneous nucleation sites for precipitation at the 
higher temperature. This type of treatment can lead to a finer precipitate 
distribution than would be obtained from a single ageing treatment at the 
higher temperature. 

Another treatment used commercially is to give the alloy a controlled 
deformation either before a single-stage age or between the two stages of a 
double-ageing treatment. The strength of the alloy after this treatment can be 
increased by a higher precipitate density, resulting from a higher nucleation 
rate, and by the retained dislocation networks which also act as a barrier to 
further deformation. However, deformation prior to ageing does not always 
result in an improvement in properties. In some cases deformation can lead to 
a coarser precipitate distribution. 

Precipitation hardening is common to many alloy systems. Some of the 
more important systems are listed in Table 5.2. Some commercial alloys are 
listed in Table 5.3, along with their mechanical properties. In many of these 
systems it is possible to co me very close to the maximum theoretical strength 
of the matrix, Le. about -fJ./30. However, engineering alloys are not heat 
treated for maximum strength alone. Consideration must also be given to 
toughness, stress corrosion resistance, fatigue, etc., when deciding on the best 
he at treatment in practice. 

5.5.5 Spinodal Decomposition 

It was mentioned at the beginning of this chapter that there are certain 
transformations where there is no harrier to nucleation. One of these is the 
spinodal mode of transformation. Consider a phase diagram with a miscibility 
gap as shown in Fig. 5.38a. If an alloy with composition Xo is solution treated 
at a high temperature Tl and then quenched to a lower temperature Tz the 
composition will initially be the same everywhere and its free energy will be 
Go on the G curve in Fig. 5.38b. However, the alloy will be immediately 
unstable because small fluctuations in composition that produce A-rich and 
B-rich regions will cause the total free energy to decrease. Therefore 'up-hill' 
diffusion takes place as shown in Fig. 5.39 until the equilibrium compositions 
Xl and Xz are reached. 

The above process can occur for any alloy composition where the free 
energy curve has a negative curvature, Le. 

dZG 
dXz < 0 (5.42) 
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Fig. 5.38 Alloys between the spinodal points are unstable and can decompose into 
two coherent phases Ul and U2 without overcoming an activation energy barrier. 
Alloys between the coherent miscibility gaps and the spinodal are metastable and can 
decompose only after nucleation of the other phase. 

Therefore the alloy must lie between the two points of inftection on the free 
energy curve. The locus of the points on the phase dia gram , Fig. 5.32a, is 
known as the chemical spinodal. 

If the alloy lies outside the spinodal, sm all variations in composition lead to 
an increase in free energy and the alloy is therefore metastable. The free 
energy of the system can only be decreased in this case if nuclei are formed 
with a composition very different from the matrix. Therefore, outside the 
spinodal the transformation must proceed by a process of nucleation and 
growth. Normal down-hill diffusion occurs in this case as shown in Fig. 5.40. 

The rate of spin odal transformation is controlled by the interdiffusion 
coefficient, D. Within the spinodal D < 0 and the composition ftuctuations 
shown in Fig. 5.39 will therefore increase exponentially with time, with a 
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Fig. 5.39 Schematic composition profiles at increasing times in an alloy quenched 
into the spin odal region (Xo in Fig. 5.38). 

characteristic time constant T = -X?j47r2D, where h is the wavelength of the 
composition modulations (assumed one-dimensional). The rate of trans­
formation can therefore become very high by making h as sm all as possible. 
However, as will be shown below, there is a minimum value of h below wh ich 
spinodal decomposition cannot occur. 

In order to be able to calculate the wavelength of the composition fluctua­
tions that develop in practice it is necessary to consider two important factors 
that have been omitted from the above discussion: (1) interfacial energy 
effects, and (2) coherency strain energy effects. 

If a homogeneous alloy of composition Xo decomposes into two parts one 
with composition Xo + AX and the other with composition Xo - AX, it can 
be shown thaC the total chemical free energy will change by an amount AGc 

given by 

(5.43) 

If, however, the two regions are finely dispersed and coherent with each 
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Fig. 5.40 Schematic composition profiles at increasing times in an alloy outside the 
spinodal points (Xü in Fig. 5.38). 

other there will be an additional energy change due to interfacial energy 
effects. Although, during the early stages of spinodal decomposition, the 
interface between A-rich and B-rich regions is not sharp but very diffuse, 
there is still an effective interfacial energy contribution. The magnitude of this 
energy depends on the composition gradient across the interface, and for this 
reason it is known as a 'gradient energy' . In solid solutions which tend to 
cluster the energy of like atom-pairs is less than that of unlike pairs. Thus the 
origin of the gradient energy is the increased number of unlike nearest 
neighbours in a solution containing composition gradients compared to a 
homogeneous solution. For a sinusoidal composition modulation of 
wavelength X. and amplitude l:1X the maximum composition gradient is pro­
portional to (ß.x/x.) and the gradient energy term ß.G'Y is given by 

(ß.X)2 
ß.G'Y = K T (5.44) 

where K is a proportionality constant dependent on the difference in the bond 
energies of like and unlike atom pairs . 
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If the sizes of the atoms making up the solid solution are different, the 
generation of composition differences will introduce a coherency strain en­
ergy term, AGs • If the misfit between the A-rich and B-rich regions is 8, 
AGs cx E82 where Eis Young's modulus. For a total composition difference 
AX, 8 will be given by (daldX)AXla, where a is the lattice parameter. An 
exact treatment of the elastic strain energy shows that 

AGs = 1)2(AX)2E'V m (5.45) 

where 

(5.46) 

i.e. 1) is the fractional change in lattice parameter per unit composition 
change. E' = EI(1 - ,,), where " is Poisson's ratio, and V m is the molar 
volume. Note that AGs is independent of A. 

If all of the above contributions to the total free energy change accompany­
ing the formation of a composition fluctuation are summed we have 

AG= -+-+2 .... 2E'V --{ d2G 2K } (AX)2 
dX2 A2 ., m 2 (5.47) 

It can be seen therefore that the condition for a homogeneous solid solution 
to be unstable and decompose spinodally is that 

d2G 2K 2 
-- > - + 21) E'V: (5.48) dX2 A2 m 

Thus the limits of temperature and composition within which spinodal decom­
position is possible are given by the conditions A = 00 and 

d2G 
dX2 = -21)2E'Vm (5.49) 

The line in the phase diagram defined by this condition js known as the 
coherent spinodal and it lies entirely within the chemical spinodal 
(d2GldX2 = 0) as shown in Fig. 5.41. It can be seen from Equation 5.48 that 
the wavelength of the composition modulations that can develop inside the 
coherent spinodal must satisfy the condition 

1.2 > - 2K /(: + 21)2E'Vm) (5.50) 

Thus the minimum possible wavelength decreases with increasing undercool­
ing below the coherent spinodal. 

Figure 5.41 also shows the coherent miscibility gap. This is the line defining 
the equilibrium compositions of the coherent phases that result from spinodal 
decomposition (Xl and X2 in Fig. 5.39). The miscibility gap that normally 
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Fig. 5.41 Schematic phase diagram for a clustering system. Region 1: homogeneous 
IX stable. Region 2: homogeneous IX metastable, only incoherent phases can nucleate. 
Region 3: homogeneous IX metastable, coherent phases can nucleate. Region 4: 
homogeneous IX unstable , no nucleation barrier, spinodal decomposition occurs. 

appears on an equilibrium phase dia gram is the incoherent (or equilibrium) 
miscibility gap. This corresponds to the equilibrium compositions of incoher­
ent phases, i.e. in the absence of strain fields. The chemical spinodal is also 
showrt in Fig. 5.41 for comparison, but it is of no practical importance. 

Spin odal decomposition is not only limited to systems containing a stable 
miscibility gap. All systems in which GP zones form, for example, contain a 
metastable coherent miscibility gap, i.e. the GP zone solvus (see the Al-Ag 
system in Fig. 5.34 for example). Thus it is possible that at high supersatura­
tions GP zones are able to form by the spinodal mechanisffi. If ageing is 
carried out below the coherent solvus but outside the spinodal, GP zones can 
only form by a process of nucleation and growth, Fig. 5.40. Between the 
incoherent and coherent miscibility gap, Fig. 5.41, tlGv - tlGs < 0 and only 
incoherent strain-free nuclei can form. 

The difference in temperature between the coherent and incoherent mis­
cibility gaps, or the chemical and coherent spinodals in Fig. 5.41, is depend­
ent on the magnitude of 1111. When there is a large at?mic size difference 1111 is 
large and a large undercooling is required to overcome the strain energy 
effects. As discussed earlier large values of 1111 in cubic metals can be mitigated 
if the misfit strains are accommodated in the elastically soft (100) directions. 
This is achieved by the composition modulations building up parallel to {lOO}. 
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Figure 5.42 shows a spinodal structure in a specimen of AI-22.5 Zn-
0.1 Mg (atomic %) solution treated at 400 oe and aged 20 h at 100 oe. The 
wavelength in the structure is 25 nm, but this is greater than the initial 
microstructure due to coarsening which occurs on holding long times at high 
temperatures. 

5.5.6 Particle Coarseninl 

The microstructure of a two-phase alloy is always unstable if the total interfa­
cial free energy is not aminimum. Therefore a high density of small precipi­
tates will tend to coarsen into a lower density of larger particles with a sm aller 
total interfacial area. However, such coarsening often produces an undesir­
able degradation of properties such as a loss of strength or the disappearance 
of grain-boundary pinning effects (see Section 3.3.5). As with grain growth, 
the rate of coarsening increases with temperature and is of particular concern 
in the design of materials for high temperature applications. 

Fig. S.42 A coarsened spinodal microstructure in AI-22.S at% Zn-O.l at% Mg 
solution treated 2 h at 400 oe and aged 20 h at 100 oe. Thin foil electron micrograph 
(x 314000) . (After K.B. Rundman, Metals Handbook, 8th edn., Vol. 8, American 
Society for Metals, 1973, p. 184.) 
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In any precipitation-hardened specimen there will be a range of particle 
sizes due to differences in the time of nucleation and rate of growth. Consider 
two adjacent spherical precipitates9 with different diameters as shown in 
Fig. 5.43. Due to the Gibbs-Thomson effect, the solute concentration in the 
matrix adjacent to a particle will increase as the radius of curvature decreases, 
Fig. 5.43b. Therefore there will be concentration gradients in the matrix 
which will cause solute to diffuse in the direction of the largest particles away 
from the smallest, so that the small particles shrink and disappear while large 
particles grow. The overall result is that the total number of particles de­
creases and the mean radius (f) increases with time. By assuming volume 
diffusion is the rate controlling factor it has been shown lO that the following 
relationship should be obeyed: 

(;)3 - rg = kt (5.51) 

where 

k (X D-yXe 

ro is the mean radius at time t = 0, D is the diffusion coefficient, -y is the 
interfacial energy and Xe is the equilibrium solubility of very large particles. 
Since D and Xe increase exponentially with temperature, the rate of co arsen­
ing will increase rapidly with increasing temperature, Fig. 5.44. Note that the 
rate of coarsening 

(a) 

G 

(b)~ ______ ~ __ ~ __ ~~ ______________ ~ 
Xs .. 

Fig. 5.43 The origin of partic\e coarsening. ß with a small radius of curvature (r2) has 
a higher molar free energy than ß with a large radius of curvature (r]). The 
concentration of solute is therefore highest outside the smallest partic\es. 
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Fig. 5.44 Schematic diagram illustrating how the mean partic1e radius f increases 
with time at different temperatures. 
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so that distributions of sm all precipitates coarsen most rapidly. 

(5.52) 

In practice the rate at which partieies coarsen may not follow a linear r3-t 

relationship. Deviations from this relationship can be caused by diffusion 
short-circuits such as dislocations, or grain boundaries. Also the coarsening 
rate may be interface controlled. Nevertheless, apart from the case of inter­
face control, the rate of coarsening should depend on the product D-yXe , (k in 
Equation 5.51). Therefore high temperature alloys whose strength depends 
on a fine precipitate dispersion must have a low value for at least one of -y, Xe 
or D. Let us consider examples of each of these. 

Low -y 
The heat-resistant Nimonic alloys based on Ni-Cr with additions of Al and Ti 
obtain their high strength from a fine dispersion of the ordered fcc phase Ni3 

(TiAl) (-y') which precipitates in the fcc Ni-rieh matrix. The Nij-y' interfaces 
are fully coherent and the interfacial energy is exceptionally low (-10-
30 mJ m -2) which enables the alloys to maintain a fine structure at high 
temperature. The misfit between the precipitates and matrix varies between 
zero and about 0.2% depending on composition. It is interesting that the total 
creep-rupture life of these alloys can be increased by a factor of 50x by 
careful control of composition to give zero misfit as compared to 0.2% misfit. 
The reason for this may be that during creep deformation the partieies with 
the slightly higher misfits lose coherency with the result that -y is increased 
thereby increasing the rate of coarsening. 

LowXe 

High strength at high temperatures can also be obtained with fine oxide 
dispersions in a metal matrix. For example Wand Ni can be strengthened for 
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high temperature use by fine dispersions of thoria Th02 • In general, oxides 
are very insoluble in metals and the stability of these microstructures at high 
temperatures can be attributed to a low value of Xe in the product D",Xe. 

LowD 
Cementite dispersions in tempered steels coarsen very quickly due to the high 
diffusivity of interstitial carbon. However, if the steel contains a substitution al 
alloying element that segregates to the carbide, the rate of coarsening becomes 
limited by the much slower rate at which substitution al diffusion can occur. If 
the carbide-forming element is present in high concentrations more stable 
carbides are formed which have the additional advantage of a lower solubility 
(Xe)' Therefore low-alloy steels used for medium temperature creep resist­
an ce often have additions of strong carbide-forming elements. 

5.6 The Precipitation of Ferrite from Austenite 

In this section we will be concerned with phase transformations in which 
the first phase to appear is that given by the equilibrium phase diagram. The 
discussion will be illustrated by reference to the diffusional transformation of 
Fe-C-austenite into ferrite. However, many of the principles are quite 
general and have analogues in other systems where the equilibrium phases are 
not preceded by the precipitation of transition phases. Under these conditions 
the most important nucleation sites are grain boundaries and the surfaces of 
inclusions. 

Consider an Fe-0.15 wt% C alloy which, after austenitizing, is allowed to 
partially transform to ferrite at various temperatures below A 3 (Fig. 5.45) and 
then quenched into water. The resultant microstructures are shown in 
Fig. 5.46. The white areas are ferrite (a). The grey areas are martensite that 
formed from the untransformed austenite ("') during quenching. At small 
undercooling below A 3 , Fig. 5.46a, the ferrite nucleates on austenite grain 
boundaries and grows in a 'blockey' manner to form what are known as 
grain-boundary allotriomorphs. Note that both smoothly curved, presumably 
incoherent, al", interfaces as well as faceted, semicoherent interfaces are 
present. At larger undercoolings there is an increasing tendency for the ferrite 
to grow from the grain boundaries as plates, so-called Widmanstätten side­
plates, which become finer with increasing undercooling, Fig. 5.46b, c and d. 

Experimental measurements on Widmanstätten ferrite in other ferrous 
alloys show that the habit planes are irrational, scattered 4 to 20° from {111}-y, 
and that orientation relationships close to the Nishiyama-Wasserman or 
Kurdjumov-Sachs type are usually found. High resolution transmission 
electron microscopy has also shown that the habit planes have a complex 
semicoherent structure, containing structural ledges and misfit dislocations, 
similar to that described in Section 3.4.1 11 . 
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Fig. 5.45 Holding temperatures for steel in Fig. 5.46. 

As explained previously, the need to minimize tlG* leads to the creation of 
semicoherent interfaces and orientation relationships, even in the case of 
grain-boundary nucleation. A critical nucleus could therefore appear as 
shown in Fig. 3.45b with faceted (planar) coherent (or semicoherent) inter­
faces and smoothly curved incoherent interfaces. For certain misorientations 
across the grain boundary it may even be possible for low-energy facets to 
form with both grains. Due to their low mobility faceted interfaces will tend 
to persist during growth while incoherent interfaces will be able to grow 
continuously and thereby retain a smooth curvature. Thus it is possible to 
explain the presence of smoothly curved and faceted interfaces in Fig. 5.46a. 

The reason for the transition from grain boundary allotriomorphs to Wid­
manstätten side-plates with increasing undercooling is not fully understood. It 
has been suggested by Aaronson and co-workers12 that the relative rates at 
which semicoherent and incoherent interfaces can migrate vary with under­
cooling as shown in Fig. 5.47. At sm all undercoolings it is proposed that both 
semicoherent and incoherent interfaces can migrate at similar rates, while at 
large undercoolings only incoherent interfaces can make full use of the 
increased driving force. Consideration of Fig. 5.13 thus shows that approxi­
mately equiaxed morphologies should develop at low undercoolings while 
plate-like morphologies, with ever-increasing aspect ratios, should develop at 
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Fig. 5.46 Microstructures of an Fe-0·15% e alloy. The specimens were austenitized, 
held at an intermediate temperature to give some ferrite, and then quenched to room 
temperature. The ferrite is white. The grey, fine constituent is a mixture offerrite and 
carbide formed on quenching. All photographs are x 100 except (d). (a) 800 oe for 
150 s-primarily ferrite allotriomorphs with a few plates . (b) 750 oe for 40 s­
many more plates, mostly growing from grain boundaries. (c) 650 oe for 9 s­
relatively fine. Note common direction of plates along each boundary. (d) 550 oe 
for 2 s (x 300) (After P.G. Shewmon, Transformations in Metals, McGraw-Hill, New 
York, 1969, after H.1. Aaronson.) 
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Widmanstö t ten 

__ J 

Undercooling ~ T 
Fig. 5.47 A possible variation of the relative velocity of incoherent and semicoherent 
interfaces at different undercoolings. Above a certain ratio Widmanstätten morpholo­
gies should develop, as shown in Fig. 5.13. (After H.1. Aaronson, in Decomposition of 
Austenite by Diffusional Processes, V.F. Zackay and H.1. Aaronson (Eds.), 1962, by 
permission of The Metallurgical Society of AlME.) 

high undercoolings. Another factor which may contribute to the increased 
fineness of the Widmanstätten morphologies with decreasing temperature is 
that the minimum plate-tip radius r* is inversely proportional to the under­
cooling. 

It can be seen in Fig. 5.46 that ferrite can also precipitate within the 
austenite grains (intra granular ferrite). Suitable heterogeneous nucleation 
sites are thought to be inclusions and dislocations. These precipitates are 
generally equiaxed at low undercoolings and more plate-like at higher 
undercoolings. 

In general the nucleation rate within grains will be less than on grain 
boundaries. Therefore, whether or not intragranular precipitates are ob­
served depends on the grain size of the specimen. In fine-grained austenite, 
for example, the ferrite that forms on grain boundaries will rapidly raise the 
carbon concentration within the middle of the grains, thereby reducing the 
undercooling and making nucleation even more difficult. In a large-grained 
specimen, however, it takes a longer time for the carbon rejected from the 
ferrite to reach the centres of the grains and meanwhile there will be time 
for nucleation to occur on the less favourable intragranular sites. 

A TIT diagram for the precipitation of ferrite in a hypoeutectoid steel will 
have a typical C shape as shown in Fig. 5.48. The 'Y ~ a transformation 
should be approximately described by Equation 5.39 and the time for a given 
percentage transformation will decrease as the constant k increases, e.g. 
Equation 5.40. As usual, k increases with sm all increases in T due to 
increased nucleation and growth rates-k is also raised by an increase in the 
total number of nucleation sites. Thus decreasing the austenite grain size has 
the effect of shifting the C curve to shorter transformation times. 

It is possible to mark a temperature T w below which the ferrite forms as 
predominantly Widmanstätten plates and above which it is mainly in the form 
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Fig. 5.48 (a) Typical TTT curve for 'Y ~ u transformation. (b) Temperature­
composition regions in which the various morphologies are dominant at late reaction 
times in specimens with ASTM grain size Nos. 0-1. GBA = grain boundary allot­
riomorphs, W = Widmanstätten sideplates and/or intragranular plates, M = massive 
ferrite, see Section 5.9. (After H.1. Aaronson, in Decomposition of Austenite by 
Diffusional Processes, V.F. Zackay and H.l. Aaronson (Eds.), 1962, by permission of 
The Metallurgical Society of AlME.) 

of grain boundary allotriomorphs. For alloys of different carbon content A 3 

and Tw vary as shown on the phase diagram in Fig. 5.48b. 
During practical he at treatments, such as normalizing or annealing, trans­

formation occurs continuously during cooling. Under these circumstances the 
final microstructure will depend on the cooling rate. If the specimen is cooled 
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very slowly there will be time for nucleation to occur at small undercoolings 
on grain corners, edges and boundaries. As these nuclei grow the carbon 
rejected into the austenite will have time to diffuse over large distances and 
the austenite grain should maintain a uniform composition given by the 
equilibrium phase diagram. Finally the austenite reaches the eutectoid 
composition and transforms to pearlite. Furnace cooling corresponds fairly 
closely to these conditions and an example is shown in Fig. 5.49c. The final 
proportions of ferrite and pearlite should be as determined by the equilibrium 
phase diagram. 

The microstructure that results from more rapid cooling will depend on the 
grain size and the cooling rate. If the rate of cooling is moderately high the 
specimen will not remain long enough at high temperatures for nucleation to 
occur. Thus nuclei will not be formed until higher supersaturations are 
reached. The nucleation rate will then be rapid and large areas of grain 
boundary will become covered with nuclei. If the temperature is below T w the 
ferrite will grow into the austenite as Widmanstätten side-plates with a 
spacing that becomes finer with decreasing temperature. 

The nuclei that form at the highest temperatures will be on grain corners 
which will be followed by edges at lower temperatures and finally grain 
boundaries at still lower temperatures. In a small-grained specimen where 
there are a large number of grain corner and edge sites a large number of 
nuclei can be formed above the T w temperature and grow as grain-boundary 
allotriomorphs. In a larged-grained specimen, on the other hand, relatively 
few nuclei will form at high temperatures and the austenite far from these 
particles will remain supersaturated until lower temperatures, below T w, 

when ferrite will be able to nucleate on grain boundary sites and grow as 
Widmanstätten side-plates. The effect of cooling rate and grain size is illus­
trated in Fig. 5.49. Note also that the total volume fraction of ferrite de­
creases as the transformation temperature decreases. This point will be 
returned to later. 

It the austenite contains more than about 0.8wt% C, the first phase to 
form will be cementite. This also nucleates and grows with an orientation 
relationship to the austenite, producing similar morphologies to ferrite­
grain boundary allotriomorphs at high temperatures and Widmanstätten 
side-plates at lower temperatures as shown in Fig. 5.48b. 

5.7 Cellular Precipitation 

Grain-boundary precipitation does not always result in grain-boundary a11ot­
riomorphs or Widmanstätten side-plates or needles. In some cases it can 
result in a different mode of transformation, known as cellular precipitation. 
The essential feature of this type of transformation is that the boundary 
moves with the growing tips of the precipitates as shown in Fig. 5.50. Mor­
phologica11y the transformation is very similar to the eutectoid reaction. 
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(b) 

(d) 
Fig. 5.49 Mierostruetures obtained from different he at treatments in plain earbon 
steels (x 60). 0.23wt% e 1.2% Mn air-eooled, showing infiuenee of prior austenite 
grain size: (a) austenitized at 900 oe (b) austenitized at 1150 oe. 0.4% e showing 
effeet of eooling rate far same grain size: (e) furnaee eooled (annealed), (d) air 
eooled (normalized). (After P.G. Shewmon, Transformations in Metals, MeGraw­
Hill , New York. 1969: (a) and (b) after R. Yoe, (e) and (d) after K. Zurlippe.) 



324 Diffusional transformations in solids 
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Fig. 5.50 A schematic diagram showing a possible sequence of steps during the 
development of cellular precipitation. 

However, in this ca se the re action can be written 

a ' - a + ß 
where a ' is the supersaturat,d matrix, a is the same phase but with a lower 
thermodynamie excess of solute, and ß is the equilibrium precipitate. The 
mechanism whereby grain-boundary nucleation develops into cellular pre­
cipitation differs from one alloy to another and is not always fully understood. 
The reason why cells develop in so me alloys and not in others is also unclear. 

Figure 5.51 shows an example of cellular precipitation in a Mg-
9 atomie % Al alloy. The ß phase in this case is the equilibrium precipitate 
Mg17A112 indieated in the phase diagram, Fig. 5.52. It can be seen in Fig. 5.51 
that the Mg17A112 forms as lamellae embedded in a Mg-rieh matrix. The grain 
boundary between grains 1 and 11 was originally straight along AA but has 
been displaced, and the cell matrix and grain 1 are the same grain. 

Figure 5.53 shows another specimen whieh has been given a two-stage heat 
treatment. After solution treating at 410 oe the specimen was quenched to a 
temperature of 220 oe for 20 min followed by 90.s at 277 oe and finally water 
quenched. It is apparent that the mean interlamellar spacing is higher at 
higher ageing temperatures . As with eutectie solidification this is because 
less free energy is available for the formation of a/ß interfaces when the total 
driving force for transformation is reduced. 



Cellular precipitation 325 

Fig. 5.51 Cellular preclpltation of Mg l7Al 12 in an Mg-9 at% Al alloy solution 
treated and aged 1 h at 220°C followed by 2 min at 310 oe. Some general Mg17A1 12 

precipitation has also occurred on dislocations within the grains . 

The growth of cellular precipitates requires the partitioning of solute to the 
tips of the precipitates in contact with the advancing grain boundary. This can 
occur in one of two ways: either by diffusion through the lattice ahead of the 
advancing cell front, or by diffusion in the moving boundary. Partitioning by 
lattice diffusion would require solute concentration gradients ahead of the cell 
front while , if the grain boundary is the most effective diffusion route, the 
matrix composition should remain unchanged right up to the cell front. In 
the case of the Mg-AI alloy it has been possible to do microanalysis with 
sufficiently high spatial resolution to resolve these possibilities directly. (The 
technique used was electron energy loss spectroscopy using plasmon 10sses13. ) 

The results of such measurements, Fig. 5.54a, clearly indicate that the matrix 
composition remains unchanged to within 10 nm of the advancing cell front so 
that partitioning must be taking place within the boundary itself. This is to be 
expected since precipitation is occurring at relatively low temperatures where 
solute transport tends to become more effective via grain boundaries than 
through the lattice. 

Figure 5.54b shows the aluminium concentration in the a matrix along a 
line between the ß (Mg17Aln) lamellae . This is essentially a replica of a 
similar concentration profile that must exist within the advancing grain 
boundary. Therefore apart from the matrix in contact with the ß precipitate, 
the cell matrix is still supersaturated with respect to equilibrium. 
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Fig. 5.52 The relevant part of the Mg-Al phase diagram. 

Cellular preeipitation is also known as discontinuous precipitation beeause 
the eomposition of the matrix ehanges diseontinuously as the eell front passes. 
Preeipitation that is not eellular is referred to as general or eontinuous 
beeause it oeeurs generally throughout the matrix on disloeations or grain 
boundaries, ete. and the matrix eomposition at a given point deereases 
eontinuously with time. Often general precipitation leads to a finely distri­
buted intermediate precipitate that is assoeiated with good meehanieal 
properties. The eellular reaetion is then unwanted beeause the intermediate 
preeipitates will dissolve as they are overgrown and replaeed by the eoarse 
equilibrium precipitates within the eells. 

5.8 Eutectoid Transformations 

5.8.1 The Pearlite Reaction in Fe-C Alloys 

When austenite eontaining about O.8wt% C is eooled below the Al tem­
perature it beeomes simultaneously supersaturated with respeet to ferrite 
and eementite and a eutectoid transformation results, i.e. 

-y ~ a + Fe3C 
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Fig. 5.53 A cell formed during ageing at two temperatures; 30 min at 220 oe 
followed by 30 min at 277 oe and water quenched. Note the change in interlamellar 
spacing caused by the change in undercooling. 

The manner in which this reaetion oecurs is very similar to a euteetic trans­
formation where the original phase is a liquid instead of a solid. In the case of 
Fe-C alloys the resultant mierostructure eomprises lamellae, or sheets, of 
eementite embedded in ferrite as shown in Fig. 5.55. This is known as 
pearlite. Both cementite and ferrite form directly in eontaet with the austenite 
as shown. 

Pearlite nodules nucleate on grain boundaries and grow with a roughly 
constant radial veloeity into the surrounding austenite grains. At sm all under­
eoolings below Al the number of pearlite nodules that nucleate is relatively 
smalI, and the nodules ean grow as hemispheres or spheres without interfer­
ing with each other. At larger undercoolings the nucleation rate is much 
higher and site saturation oeeurs, that is all boundaries become quiekly cov­
ered with nodules which grow together forming layers of pearlite outlining the 
prior austenite grain boundaries, Fig. 5.56. 

Nucleation of Pearlite 
The first stage in the formation of pearlite is the nucleation of either eement­
ite or ferrite on an austenite grain boundary. Which phase nucleates first will 
depend on the grain-boundary strueture and composition. Suppose that it is 
eementite. The cementite will try to minimize the aetivation energy barrier to 
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Fig. 5.54 (a) The variation of aluminium concentration ac ross an advancing grain 
boundary midway between two precipitate lamellae. (b) A similar profile along a line 
such as S in Fig. 5.53. 

nueleation by forming with an orientation relationship to one of the austenite 
grains, 'Yl in Fig. 5.57a. (The crystal structure of cementite is orthorhombic 
and the orientation relationship is elose to (100)cI 1(111),/, (010)cll(110),/, 
(001)cll(112),/,) Therefore the nueleus will have a semicoherent, low­
mobility interface with 'Yl and an incoherent mobile interface with 'Y2 ' The 
austenite surrounding this nueleus will become depleted of carbon which will 
increase the driving force for the precipitation of ferrite, and a ferrite nucleus 
forms adjacent to the cementite nueleus also with an orientation relationship 
to 'Yl (the Kurdjumov-Sachs relationship). This process can be repeated 
causing the colony to spread sideways along the grain boundary. After nu-
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Fig. 5.55 A pearlite colony advancing into an austenite grain. (After L.S . Darken 
and R.M. Fisher in Decomposition of Austenite by Diffusional Processes, V.F. Zackay 
and H.l. Aaronson (Eds.), by permission of The Metallurgical Society of AlME. 

cleation of both phases the colony can grow edgewise by the movement of the 
incoherent interfaces, that is pearlite grows into the austenite grain with which 
it does not have an orientation relationship. The carbon rejected from the 
growing ferrite diffuses through the austenite to in front of the cementite, as 
with eutectic solidification. 

If the alloy composition does not perfectly correspond to the eutectoid 
composition the grain boundaries may already be covered with a proeutectoid 
ferrite or cementite phase. If, for example, the grain boundary already 
contains a layer of cementite, the first ferrite nucleus will form with an 
orientation relationship to this cementite on the mobile incoherent side of the 
allotriomorphs as shown in Fig. 5.57b. Again due to the higher mobility of 
the incoherent interfaces the pearlite will grow into the austenite with which 
there is no orientation relationship. 

Whatever the pearlite nucleation mechanism, new cementite lamellae are 
able to form by the branching of a single lamella into two new lamellae as 
shown in Fig. 5.57a(iv) or c. The resultant pearlite colony is effectively two 
interpenetrating single crystals. 

It can be seen that the nucleation of pearlite requires the establishment of 
cooperative growth of the two phases. It takes time for this cooperation to be 
established and the rate of colony nucleation therefore increases with time. In 



Fig. 5.56 A partially transformed eutectoid steel. Pearlite has nucleated on grain 
boundaries and inclusions ( x 100). (After J.W. Cahn and W.c. Hagel in Decomposi­
tion 0/ Austenite by Diffusional Processes, V.F. Zackay and H.1. Aaronson (Eds.), 
1962, by permission of The Metallurgical Society of AlME .) 

some cases cooperation is not established and the ferrite and cementite grow 
in a non-lamellar manner producing so-called degenerate pearlite14• 

Pearlite Growth 
The growth of pearlite in binary Fe-C alloys is analogous to the growth of a 
lamellar eutectic with austenite replacing the liquid. Carbon can diffuse 
interstitially through the austenite to the tips of the advancing cementite 
lamellae so that the equations developed in Section 4.3.2 should apply 
equally well to pearlite. Consequently the minimum possible interlamellar 
spacing (S*) should vary inversely with undercooling below the eutectoid 
temperature (A l )' and assuming the observed spacing (So) is proportional to 
S* gives 

So cx S* cx (AT)-l (5 .53) 

Similarly the growth rate of pearlite colonies should be constant and given by 
a relationship of the type 

v = kD~(AT)2 (5.54) 

where k is a thermodynamic term which is roughly constant. 
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Fig. 5.57 Nucleation and growth of pearlite. (a) On a 'clean' grain boundary. 
(i) Cementite nucleates on grain boundary with coherent interface and orientation 
relationship with 'il and incoherent interface with 'i2. (ii) 0. nucleates adjacent to 
cementite also with a coherent interface and orientation relationship with 'il. (This 
also produces an orientation relationship between the cementite and ferrite.) 
(iii) The nucleation process repeats sideways, while incoherent interfaces grow into 'i2 . 
(iv) New plates can also form by a branching mechanism. (b) When a proeutectoid 
phase (cementite or ferrite) already exists on that boundary, pearlite will nucleate and 
grow on the incoherent side . A different orientation relationship between the 
cementite and ferrite results in this case. (c) A pearlite colony at a later stage of 
growth. 
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Observed spacings are found to obey Equation 5.53, varying from -1 flm at 
high temperatures to -0.1 flm at the lowest temperatures of growth15. 

However, it is found that So is usually greater than 2S*, i.e. the observed 
spacing is not determined by the maximum growth rate criterion. Instead it 
may be determined by the need to create new cementite lamellae as the 
perimeter of the pearlite nodules increases. This can occur either by the 
nucleation of new cementite lamellae, or by the branching of existing lamel­
lae, Fig. 5.57c. 

In the case of binary Fe-C alloys, observed growth rates are found to agree 
rather well with the assumption that the growth velo city is controlled by the 
diffusion of carbon in the austenite. Figure 5.58 shows measured and calcu­
lated growth rates as a function of temperature. The calculated line is based 
on an equation similar to Equation 5.54 and shows that the measured growth 
rates are reasonably consistent with volume-diffusion control. However, it is 
also possible that some carbon diffusion takes place through the 'Y / (X and 
'Y/cementite interfaces, which could account for the fact that the predicted 
growth rates shown in Fig. 5.58 are consistently too low. 

A schematic TTT diagram for the pearlite reaction in eutectoid Fe-C alloys 
is shown in Fig. 5.59. Note the 'C' shape typical of diffusion al transformations 
that occur on cooling. The maximum rate of transformation occurs at about 
550°C. At lower temperatures another type of transformation product, 
namely Bainite, can grow faster than pearlite. This transformation is dealt 
with in the next section. 

Eutectoid transformations are found in many alloys besides Fe-C. In alloys 
where all elements are in substitution al solid solution, lattice diffusion is found 
to be too slow to account for observed growth rates. In these cases diffusion 
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Fig. 5.58 Pearlite growth rate v. temperature for plain carbon steels. (After M.P. 
Puls and J.S. Kirkaldy, Metallurgical Transactions 3 (1972) 2777, © American Society 
for Metals and the Metallurgical Society of AlME, 1972.) 
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T 

Y-Pearlite -- --............ -

Log (time) 
Fig. 5.59 Schematic diagram showing relative positions of the transformation curves 
for pearlite and bainite in plain carbon eutectoid steels. 

occurs instead through the colonyjmatrix interface. Consideration of the 
diffusion problem in this case leads to a relationship of the type 

v = kDB(Il.T)3 (5.55) 

where k is a thermodynamic constant and DB is the boundary diffusion 
coefficient. 

Pearlite in OJf-Eutectoid Fe-C Alloys 
When austenite containing more or less carbon than the eutectoid composi­
tion is isothermally transformed below the Al temperature the formation of 
pearlite is usually preceded by the precipitation of proeutectoid ferrite or 
cementite. However, if the undercooling is large enough and the departure 
from the eutectoid composition is not too great it is possible for austenite of 
non-eutectoid composition to transform directly to pearlite. The region in 
which this is possible corresponds approximately to the condition that the 
austenite is simultaneously saturated with respect to both cementite and 
ferrite, Le. the hatched region in Fig. 5.60. (See also Fig. 5.48). Thus a 
0.6% C alloy, for example can be transformed to ~100% pearlite provided 
the temperature is low enough to bring the austenite into the hatched region 
of Fig. 5.60 (but not so low that bainite forms). At intermediate undercool­
ings some proeutectoid ferrite will form but less than predicted by the equilib­
rium phase diagram. 
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%C 
(b) 

Log time 
(0) 

Fig. 5.60 Effect of transformation temperature on the volume fraction of pro eu tec­
toid ferrite. 

Similar considerations apply to transformations during continuous cool­
ing-Iarger grain sizes and faster cooling rates favour low volume fractions of 
ferrite. Compare Fig. 5.49c and d. 

5.8.2 The Bainite Transformation 

When austenite is cooled to large supersaturations below the nose of the 
pearlite transformation curve a new eutectoid product called bainite is pro­
duced. Like pearlite, bainite is a mixture of ferrite and carbide, but it is 
microstructurally quite distinct from pearlite and can be characterized by its 
own C curve on a 1TI diagram. In plain carbon steels this curve overlaps with 
the pearlite curve (Fig. 5.59) so that at temperatures around 500°C both 
pearlite and bainite form competitively. In some alloy steels, however, the 
two curves are separated as shown in Fig. 5.65. 

The microstructure of bainite depends mainly on the temperature at which 
it forms 16. 

Upper Bainite 
At high temperatures (350 °C-550 0c) bainite consists of needles or laths of 
ferrite with cementite precipitates between the laths as shown in Fig. 5.61. 
This is known as upper bainite. Figure 5.61a shows the ferrite laths growing 
into partially transformed austenite. The light contrast is due to the cemen­
tite. Figure 5.61b illustrates schematically how this microstructure is thought 
to develop. The ferrite laths grow into the austenite in a similar way to 
Widmanstätten side-plates. The ferrite nucleates on a grain boundary with a 
Kurdjumov-Sachs orientation relationship with one of the austenite grains, 
Y2, say. Since the undercooling is very large the nucleus grows most rapidly 
into the Y2 grain forming ferrite laths with low energy semicoherent inter-



(b) 

Eutectoid transformations 335 

~ '>. 
~::t:1 =========::::::Ji 

(c) 

Fig. 5.61 (a) Upper bainite in medium-earbon steel (repliea x 13 000) (by permis­
sion of the Metals Soeiety) . (b) Sehematie of growth meehanism . Widmanstätten 
ferrite laths growth into 'Y2' (cx and 'Y2 have Kurdjumov-Saehs orientation rela­
tionship .) Cementite plates nucleate in earbon-enriehed austenite. (e) Illustrating 
the shape of a 'lath'. 
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faces. This takes place at several sites along the boundary so that a group of 
finely spaced laths develops. As the laths thicken the carbon content of the 
austenite increases and finally reaches such a level that cementite nucleates 
and grows. 

At the higher temperatures of formation upper bainite closely resembles 
finely spaced Widmanstätten side-plates, Fig. 5.46d. As the temperature 
decreases the bainitic laths become narrower so that individuallaths may only 
be resolved by electron microscopy. 

At the highest temperatures where pearlite and bainite grow competitively 
in the same specimen it can be difficult to distinguish the pearlite colonies 
from the upper bainite. Both appear as alternate layers of cementite in 
ferrite. The discontinuous nature of the bainitic carbides does not reveal the 
difference since pearlitic cementite can also appear as broken lamellae. 
However, the two microstructures have formed in quite different ways. The 
greatest difference between the two constituents lies in their crystallography. 
In the case of pearlite the cementite and ferrite have no specific orientation 
relationship to the austenite grain in which they are growing, whereas the 
cementite and ferrite in bainite do have an orientation relationship with the 
grain in which they are growing. This point is illustrated in Fig. 5.62. The 
micrograph is from a hypoeutectoid steel (0.6% C) which has been partially 
transformed at 710 oe and then quenched to room temperature, whereupon 
the untransformed austenite was converted into martensite. The quench, 
however, ,was not fast enough to prevent further transformation at the "tla 
interface. The dark constituent is very fine pearlite which was nucleated on 
the incoherent a/'Y interface, across which there is no orientation relationship. 
The ferrite and lower austenite grain, however, have an orientation rela­
tionship which has led to bainite formation. 

Fig. 5.62 Hypoeutectoid steel (0.6% C) partially transformed for 30 min at 710 oe, 
inefficiently quenched. Bainitic growth into lower grain of austenite and pearlitic 
growth into upper grain during quench (x 1800). (After M. Hillert in Decomposition 
of Austenite by Diffusional Processes, V.F. Zackay and H.1. Aaronson (Eds.), 1962, 
by permission of the Metallurgical Society of AlME.) 



Eutectoid transformations 337 

Lower Bainite 
At sufficiently low temperatures the microstructure of bainite changes from 
laths into plates and the carbide dispersion becomes much finer, rather like 
in tempered martensite. The temperature at which the transition to lower 
bainite occurs depends on the carbon content in a complex manner. For 
carbon levels below ab out 0.5wt% the transition temperature increases with 
increasing carbon, from 0.5-0.7wt% C it decreases and above approxi­
mately 0.7wt% C it is constant at about 350 oe. At the temperatures where 
lower bainite forms the diffusion of carbon is slow, especially in the aus­
tenite and carbides precipitate in the ferrite with an orientation relationship. 
The carbides are either cementite or metastable transition carbides such as 
E-carbide and they are an aligned at approximately the same angle to the 
plane of the ferrite plate (Fig. 5.63). The habit plane of the ferrite plates in 
lower bainite is the same as that of the martensite that forms at lower 
temperatures in the same aIloy. As with upper bainite, some carbides can 
also be found between the ferrite plates. 

The different modes of formation of upper and lower bainite resuIt in 
different transformation kinetics and separate C curves on the TTT diagram. 
An example, the case of a low-alloy steel, is shown in Fig. 5.68. 

Transformation Shears 
If a polished specimen of austenite is transformed to bainite (upper or lower) 
it is found that the growth of bainite laths or plates produces a surface relief 
effect like that of martensite plates. For example Fig. 5.64 shows the surface 
tiIts that resuIt from the growth of lower bainite plates. This has been 
interpreted as suggesting that the bainite plates form by a shear mechanism in 
the same way as the growth of martensite plates (see Chapter 6). In other 
words it is supposed that the iron atoms are transferred across the 
ferrite/austenite interface in an ordered military manner. However, the 
growth rate of the bainite plates is controlled by the rate at which carbon can 
diffuse away from the interface, or by the rate at which carbides can 
precipitate behind the interface, whereas martensite plates are able to 
advance without any carbon diffusion, and the plates can grow as fast as the 
glissile interfaces can advance. 

There is, however, much uncertainty regarding the mechanism by which 
bainitic ferrite grows, and the nature of the austenite-ferrite interface in 
martensite and bainite. In fact the formation of Widmanstätten side-plates 
also leads to surface tiIts of the type produced by a shear transformation. Also 
the phenomenological theory of martensite is able to account for the observed 
orientation relationships and habit planes found in Widmanstätten plates as 
weIl as bainite and martensite. It can be seen, therefore, that some phase 
transformations are not exclusively military or civilian, but show characteris­
tics common to both types of transformation. For a detailed review of the 
bainite transformation the reader should consult the article by Bhadeshia 
and Christi an , given in the Further Reading section at the end of this 
chapter. 
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5.8.3 The Effect of Alloying Elements on Hardenability 

The primary aim of adding alloying elements to steels is to increase the 
hardenability, that is, to delay the time required for the decomposition into 

Fig. 5.63 (a) Lower bainite in 0.69wt% C low-alloy steel (replica x 1100). (After 
R.F. Heheman in Metals Handbook, 8th edn., Vol. 8, American Society far Metals, 
1973, p. 196.) (b) A possible growth mechanism. aly interface advances as fast as 
carbides precipitate at interface thereby removing the excess carbon in front of the a. 
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/ 

(b) 
Fig. 5.63 (continued) 

ferrite and pearlite. This allows slower cooling rates to produce fully mar­
tensitic structures. Figure 5.65 shows some examples of TTT diagrams for 
various low-alloy steels containing Mn, Cr, Mo and Ni in various combina­
tions and concentrations. Note the appearance of two separate C curves for 
pearlite and bainite, and the increasing time for transformation as the alloy 
conte nt increases. 

Basically there are two ways in wh ich alloying elements can reduce the rate 
of austenite decomposition. They can re du ce either the growth rate or the 
nucleation rate of ferrite, pearlite, or bainite. 

The main factor limiting hardenability is the rate of formation of pearlite at 
the nose of the C curve in the TTT diagram. To discuss the effects of alloy 
elements on pearlite growth it is necessary to distinguish between austenite 
stabilizers (e.g. Mn, Ni, Cu) and ferrite sta:bilizers (e.g. Cr, Mo, Si). Aus­
tenite stabilizers depress the Al temperature, while ferrite stabilizers have the 
opposite effect. All of these elements are substitutionally dissolved in the 
austenite and ferrite. 

At equilibrium an alloy element X will have different concentrations in 
cementite and ferrite, i.e. it will partition between the two phases. Carbide­
forming elements such as Cr, Mo, Mn will concentrate in the carbide while 
elements like Si will concentrate in the ferrite. When pearlite forms close to 
the Al temperature the driving force for growth will only be positive if the 
equilibrium partitioning occurs. Since X will be homogeneously distributed 
within the austenite, the pearlite will only be able to grow as fast as substitu­
tional diffusion of X allows partitioning to occur. The most likely diffusion 
route for substitutional elements is through the 'Y / IX and 'Y / cementite inter­
faces. However, it will be much slower than the interstitial diffusion of carbon 
and will therefore reduce the pearlite growth rate. 
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Fig. 5.65 TTT diagrams for four eommereial low-alloy steels all of whieh eontain 
roughly 0.4% C and 1% Mn. In addition (b) eontains 0.9% Cr, (e) contains 
1.0% Cr and 0.2% Mo, and (d) contains 0. 8% er, 0.3% Mo, and 1.8% Ni. Note the 
tendency to form two distinct knees , one for pearlite formation and one for bainite 
formation. (From Atlas of Isothermal Transformation and Cooling Transformation 
Diagrams, American Society for Metals, 1977.) 
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When Xis a ferrite stabilizer there are thermodynamic considerations that 
suggest that X will partition even at large undercoolings close to the nose of 
the C curve. Thus Si, for example, will increase the hardenability by diffusing 
along the austenite/pearlite interface into the ferrite. The partitioning of 
alloying elements in an Fe-O.6 wt% C-O.85% Cr-O.66% Mn-O.26% Si steel 
transformed at 597°C for 2 min is shown in Fig. 5.66. 

When X is an austenite stabilizer such as Ni, it is possible, at sufficiently 
high undercoolings, for pearlite to grow without partitioning. The ferrite and 
cementite simply inherit the Ni content of the austenite and there is no need 
for substitutional diffusion. Pearlite can then grow as fast as diffusion of 
carbon allows. However, the growth rate will still be lower than in binary 
Fe-C alloys since the non-equilibrium concentration of X in the ferrite and 
cementite will raise their free energies, thereby lowering the eutectoid 
temperature, Fig. 5.67, and reducing the total driving force. For the same 
reasons zero-partitioning is only possible at temperattires below the meta­
stable eutectoid as shown in Fig. 5.67. 

When Xis a strong carbide-forming element such as Mo or Cr it has been 
suggested17 that it can reduce the rate of growth of pearlite, as weIl as 
proeutectoid ferrite, by a solute-drag effect on the moving ,,//0. interface. 
These elements also partition to cementite as shown in Fig. 5.66. 

Hardenability is not solely due to growth-rate effects. It is also possible that 
the alloying elements affect the rate of nucleation of cementite or ferrite. For 

5 

4 
% Chromium 

3 

2 

Ferrite Ferrite 

OL---------~~~----r=~-----------
2 

% Manganese 
1 

% Silicon 

----------..... 

40 20 o 20 40 nm 

Fig. 5.66 Schematic diagram showing the measured variations of alloying elements 
in pearlite. These measurements were made using a time-of-flight atom probe. (P.R. 
Williams, M.K. Miller, P.A. Beavan and G.D.W. Smith, Phase Transformations, Vol. 
2, Institute of Metallurgists, 1979, p. 98.) 
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Fig. 5.67 Schematic phase diagram for Fe-C-X alloy where Xis a substitutional 
element. Between the solid and dashed lines, precipitation can occur in the austenite 
only if X is partitioned between the phases. 

example, it has been suggested18 that the 'bay' at -500°C in the TTT 
diagrams of steels containing Cr, Mo and B (see Fig. 5.65) may be due to the 
poisoning of ferrite nucleation sites by the precipitation of X-carbide clusters 
in grain boundaries. 

The diagrams shown in Fig. 5.65 are not entirely accurate especially with 
regard to the bainite transformation at temperatures in the vicinity of the Ms 

temperatures. It has been found that below the Ms temperature the bainite 
transformation rate is greatly increased by the martensite-transformation 
strains. The TTT diagram for the bainite transformation in Fig. 5.65d has 
recently been redetermined using a new experimental technique based on 
magnetic permeability measurements19 and the results are shown in Fig. 5.68. 
The acceleration of the transformation close to Ms and the existence of 
separate C curves for upper and lower bainite are apparent. 

5.8.4 Continuous Cooling Diagrams 

Isothermal transformation (TTT) diagrams are obtained by rapidly quenching 
to a given temperature and then measuring the volume fraction of the various 
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constituents that form as a function of time at that temperature. Practical heat 
treatments, however, are usually concerned with transformations that occur 
du ring continuous cooling, and under these conditions TTT diagrams cannot 
be used to give the times and temperatures of the various transformations. A 
continuous cooling transformation (CCT) diagram must be used instead. 

To a first approximation the CCT diagram is the TTT diagram shifted to 
lower temperatures and longer times. This can be understood as follows. In a 
specimen held at a constant temperature the transformation starts when the 
product (Nt) reaches a certain value, a, say. In a continuously cooled sampie, 
time near the start of cooling is not very effective since N is low at low 
supercoolings. Therefore when the cooling curve reaches the TTT start curve 
the total value of Nt will be less than a and further time (and therefore 
cooling) will be required before the start of the CCT diagram is reached. 
Similarly the end of the re action will be displaced to lower temperatures and 
longer times. The relationship between a CCT and an TIT diagram for a 
eutectoid steel is shown in Fig. 5.69. Note that whereas the TTT diagram is 
interpreted by reading from left to right at a constant temperature the CCT 
diagram is read along the cooling curves from the top left to bottom right. The 
cooling curves in Fig. 5.69 refer to various distances from the quenched end 
of a Jominy end-quench specimen. Transformation occurs along the hatched 
parts of the lines. Figure 5.69 is in fact simplified and cooling along B would 
lead to the production of some bainite. But otherwise it can be seen that point 
B will transform partly to fine pearlite at high temperatures around 500-
450°C. Between 450 and 200°C the remaining austenite will be unable to 
transform and below 200°C transformation to martensite occurs. 

The above relationship between TTT and CCT diagrams is only approxi­
mate. There are several features of CCT diagrams that have no counterpart in 
TTT dia grams especially in alloy steels. These include the following: (i) a 
depression of the M s temperature at slow cooling rates, (ii) the tempering of 
martensite that takes pi ace on cooling from M s to about 200°C, (iii) a greater 
variety of microstructures. 

Figure 5.70 shows more complete CCT diagrams for a medium-carbon steel 
with different Mn contents. These diagrams were obtained with a high-speed 
dilatometer using programmed linear cooling rates for all except the highest 
quench rates. For each cooling curve the cooling rate and volume fractions of 
ferrite and pearlite are indicated. Note how the volume fraction of pearlite 
increases as the cooling rate is increased from 2.5 to 2300 °F Imin in the 
low-Mn steel. In practical heat treatments the cooling curves will not be linear 
but will depend on the transfer of heat from the specimen to the quenching 
medium and the rate of release of latent heat during transformation. In 
general, the evolution of latent heat reduces the rate of cooling during the 
transformation range and can even lead to a rise in temperature, i.e. recales­
cence. Recalescence is often associated with the pearlite transformation when 
the growth rate is very high, e.g. in unalloyed steels, but the effect can also be 
seen quite clearly for a cooling rate of 4100 °F/min in Fig. 5.70a. 
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Fig. 5.69 Correlation of continuous cooling and isothermal transformations with 
end-quench hardenability test ~ata for eutectoid carbon steel. (Atlas o[ Isothermal 
Transformation and Cooling Transformation Diagrams, American Society for Metals, 
1977, p. 376.) 
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Fig. 5.70 CCT diagrams showing the influence of Mn on a 0.4 wt% C steel. 
(a) 0.39 C, 0.72 Mn, 0.23 Si, 0.018 S, 0.010 P. Ac! = 728 °C, AC3 = 786 oe. Grain 
size, ASTM No. 7-8. (b) 1.6 Mn: 0.39 C, 1.56 Mn, 0.21 Si, 0.024 S, 0.010 P. 
Ac! = 716 °C. AC3 = 788 oe. Grain size, ASTM No. 8. F, ferrite; P, pearlite; B, 
bainite; M, martensite, (Atlas of Isothermal Transformation and Cooling Transforma­
tion Diagrams, American Society of Metals, 1977, p. 414.) 
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5.8.5 Fibrous and Interphase Precipitation in Alloy Steels 

When a few per cent of a strong carbide-forming element (e.g. Mo, W, Cr, 
Ti, V) is alloyed with steel, cementite is entirely replaced by a more stable 
carbide. When such steels are isothermally transformed at temperatures 
where the substitutional alloying element has appreciable mobility (-600-
750°C) two new alloy-carbide morphologies can form. 

Sometimes a fibrous morphology can be formed as illustrated in Fig. 5.71. 
This is a mixture of M02C fibres in ferrite. The interfibre spacings are ab out 
an order of magnitude less than found in pearlite with fibre diameters 
-10-50 nm. 

In other cases planar arrays of alloy carbides in ferrite are produced, 
Fig. 5.72. The spacing of the sheets of precipitates decreases with decreasing 
temperature of transformation, being of the order of 10-50 nm. The sheets of 
precipitate are parallel to successive positions of the 'Y /0: interface, hence this 
type of pn!cipitation is known as interphase precipitation. The mechanism by 
which the microstructure develops is shown in the thin-foil electron micro­
graphs in Fig. 5.73a and band schematically in Fig. 5.73c. The o:f-y interface 
can be seen to advance by the ledge mechanism, whereby mobile incoherent 
ledges migrate across immobile semicoherent facets. Note that these growth 
ledges are -100 atom layers high in contrast to the structuralledges discussed 
in Section 3.4.1 which are only a few atom layers high at most. Normally the 
incoherent risers would be energetically favourable sites for precipitation, but 
in this case the alloy carbides nucleate on the low-energy facets. This is 
because the ledges are moving too fast for nucleation to occur. As can be seen 
in Fig. 5.73a and as shown schematically in Fig. 5.73c, the precipitate size 
increases with distance behind the step, indicating that nucleation occurs on 
the semicoherent facets just ahead of the steps. 

5.9 Massive Transformations 

Consider the Cu-Zn alloys in Fig. 5.74 containing approximately 38 atomic 
% Zn. The most stable state for such alloys is ß above -800°C, 0: below 
-500°C and a mixture of 0: + ß with compositions given by the equilibrium 
phase diagram in between. The type of transformation that occurs on cooling 
the ß phase depends on the cooling rate. At slow to moderate cooling rates 0: 

precipitates in a similar way to the precipitation of ferrite from austenite in 
Fe-C alloys: slow cooling favours transformation at small undercooling and 
the formation of equiaxed 0:; higher cooling rates result in transformation at 
lower temperatures and Widmanstätten 0: needles precipitate. According to 
the phase diagram, the 0: that precipitates will be richer in Cu than the parent 
ß phase, and therefore the growth of the 0: phase requires the long-range 
diffusion of Zn away from the advancing o:/ß interfaces. This process is 
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Fig. 5.72 Fe-O.75% V-O.15% C after 5 min at 725 oe. Thin foil electron micrograph 
showing sheets of vanadium carbide precipitates (interphase precipitation). (After 
R. W.K. Honeycombe, 'Transformation from Austenite in Alloy Steels', Metallurgical 
Transactions, 7A (1976) 91, © American Society for Metals and The Metallurgical 
Society of AlME, 1976, after A.D. Batte.) 

relatively slow, especially since the Cu and Zn form substitution al solid 
solutions, and consequently the C curve for the 0: precipitation on a TIT or 
CCT diagram will be located at relatively long times. A possible CCT diagram 
is shown schematically in Fig. 5.75. 

If the alloy is cooled fast enough, by quenching in brine for example, there 
is no time for the precipitation of 0:, and the ß phase can be retained to 
temperatures below 500°C where it is possible for ß to transform into 0: with 
the same composition. The result of such a transformation is a new massive 
transformation product, Fig. 5.76. 

Massive 0: grains nucleate at grain boundaries and grow rapidly into the 
surrounding ß. Note also that because of the rapid growth the o:/ß boundaries 
have a characteristic irregular appearance. Since both the 0: and ß phases 
have the same composition, massive O:(O:m) can grow as fast as the Cu and Zn 
atoms can cross the o:/ß interface, without the need for long-range diffusion. 
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•••• 11 .,.. .................. _ 

a. 

(c) 

Fig. 5.73 Fe-12% Cr%-0.2 % C transformed 30 min at 650°C. lnterphase precipita­
ti on of Cr23C6 at aIy interface. (a) Dark-field micrograph showing bright precipi­
tates . (b) Bright-field micrograph of same area showing ledges in the a/'y interface. 
Precipitates appear dark. (c) Schematic of nucleation and growth mechanism for 
interphase precipitation. (After R.W.K. Honeycombe, 'Transformation from Auste­
nite in Alloy Steels', Metallurgical Transactions 7 A (1976) 91 , © American Society for 
Metals and The Metallurgical Society of AlME , 1976, after K. Campbell.) 



Massive transformations 

1000 

900 

800 

u 70 
0 

~ 600 
::J -~ 500 
C1I 
0-
E 400 
~ 

300 

-1~[ 
0 

Cu 

Ms\ r 
10 20 30 40 50 
Atomic per cent zinc 

353 

Fig. 5.74 Apart of the Cu-Zn phase diagram showing the niß equilibrium. The 
temperature at which Ga = GI3 is marked as To. Ms marks the beginning of the 
martensite transformation in rapidly quenched specimens. (After T.B. Massaiski in 
Phase Transformations, American Society for Metals, 1970.) 

Since growth only involves thermally activated jumping across the a/ß 
interface, the massive transformation can be defined as a diffusionless 
civilian transformation and it is characterized by its own C curve on 1TT 
or CCT diagrams as shown in Fig. 5.75. The migration of the a/ß interfaces 
is very similar to the migration of grain boundaries during recrystallization 
of single-phase material. However, in the case of the massive transformation 
the driving force is orders of magnitude greater than for recrystallization, 
which explains why the transformation is so rapid. 

Massive transformations should not be confused with martensite. Although 
the martensitic transformation also produces a change of crystal structure 
without a change in composition, the transformation mechanism is quite 
different. Martensite growth is a diffusionless military transformation, i.e. 
ß is sheared into a by the cooperative movement of atoms across a glissile 
interface, whereas the growth of massive a involves thermally activated 
interface migration. Systems showing massive transformations will gene rally 
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t 
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T 

Mortensite \ 
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Fig. 5.75 A possible CCT diagram for systems showing a massive transformation. 
Slow cooling (1) produces equiaxed a. Widmanstätten morphologies result from 
faster cooling (2). Moderately rapid quenching (3) produces the massive trans­
formation, while the highest quench rate (4) leads to a martensitic transformation. 
Compare with Fig. 5.79. 

also transform martensitically if sufficiently high quench rates are used to 
suppress the nucleation of the massive product, Fig. 5.75. However Fig. 5.74 
shows that for the Cu-Zn alloys the Ms temperature is below 0 °C and some 
ß phase is therefore retained after quenching to room temperature, as can 
be seen in Fig. 5.76. 

It was stated above that ß can transform massively into a provided the ß 
phase could be cooled into the stable a phase field without precipitation at a 
high er temperature, Thermodynamically, however, it is possible for the trans­
formation to occur at higher temperatures. The condition that must be 
satisfied for a massive transformation is that the free energy of the new phase 
must be lower than the parent phase, both phases having the same composi­
tion. In the case of Cu-38 atomic % Zn therefore, it can be seen from 
Fig. 5,77 that there is a temperature -700°C below which Ga becomes less 
than Gß, This temperature is marked as To in Fig. 5.74 and the locus of To is 
also shown for other alloy compositions. Therefore it may be possible for a 
massive transformation to occur within the two-phase region of the phase 
diagram anywhere below the To temperature. In practice, however, there is 
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Fig. 5.76 Massive (X formed at the grain boundaries of ß in Cu-38.7 wt% Zn 
quenched from 850°C in brine at 0 oe. Some high temperature precipitation has also 
occurred on the boundaries. (From D. Hull and K. Garwood, The Mechanism of 
Phase Transformations in Metals, Institute of Metals, London, 1956.) 

Gß Ga ~700·C 

~%./ 
-500·C 

Xzn =O'38 

Fig. 5.77 A schematic representation of the free energy-composition curves for (X 

and ß in the Cu-Zn system at various temperatures . 
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evidence that massive transformations usually occur only within the single­
phase region of the phase diagram. 

Massive transformations are found in many alloy systems. Usually the 
interfaces are incoherent and mi grate by continuous growth in a similar 
manner to a high-angle grain boundary, but in some cases growth can take 
place by the lateral movement of ledges across faceted interfaces. The Cu-Al 
phase diagram is similar to that shown in Fig. 5.74. Figure 5.78 shows a 
specimen of Cu-20 atomic % Al that has been quenched from the ß field to 
produce almost 100% massive a. Again, characteristically irregular phase 
boundaries are apparent. In both Figs. 5.76 and 5.78 the cooling rate has 
been insufficient to prevent some precipitation on grain boundaries at higher 
temperatures before the start of the massive transformation. 

The 'Y ~ a transformation in iron and its alloys can also occur massively 
provided the 'Y is quenched sufficiently rapidly to avoid transformation near 
equilibrium, but slow enough to avoid the formation of martensite. The effect 
of cooling rate on the temperature at which transformation starts in pure iron 
is shown in Fig. 5.79. The microstructure of massive ferrite is shown in 
Fig. 5.80. Note the characteristically irregular grain boundaries . 

Massive transformations are not restricted to systems with phase diagrams 

Fig. 5.78 Massive Cl in Cu-20 atomic % Al after quenching from the ß field at 
1027 °C into iced brine. Note the irregular Cl / Cl boundaries. Some other transforma­
tion (possibly bainitic) has occurred on the grain boundaries. (After G.A. Chadwick, 
Metallography of Phase Transformations, Butterworths, London, 1972.) 
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Fig. 5.79 The effect of cooling rate on the transformation temperature of pure iron. 
(After M.J. Bibby and J .G. Parr, Journal 01 the Iron and Steel Institute 202 (1964) 
100.) 

Fig. 5.80 Massive a in an Fe-0.OO2 wt% C quenched into iced brine from 1000 °C. 
Note the irregular ala boundaries. (After T.B. Massaiski in Metals Handbook, 8th 
edn., Vol. 8, American Society for Metals, 1973, p. 186.) 

like that shown in Fig. 5.74. Metastable phases can also form massively as 
shown in Fig. 5.1d(ii) for example . It is not even necessary for the trans­
formation product to be a single phase: two phases, at least one of which must 
be metastable, can form simultaneously provided they have the same com­
position as the parent phase. 
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5.10 Ordering Transformations 

The structure of ordered phases has already been briefly discussed in 
Section 1.3.7. To recap: solid solutions which have a negative enthalpy of 
mixing (il < 0) prefer unlike nearest neighbours and therefore show a 
tendency to form ordered phases at low temperatures. The five main types of 
ordered solutions are shown in Fig. 1.22. An example of a phase diagram 
containing low-temperature ordering reactions is the Au-Cu diagram in 
Fig. 1.21. Another example is the ordering of bcc ß-brass below ~460 °C to 
the so-called L20 (or B2) superlattice, Fig. 5.74. The bcc (or so-called A2) 
lattice can be considered as two interpenetrating simple cubic lattices: one 
containing the corners of the bcc unit cell and the other containing the 
body-centring sites. If these two sublattices are denoted as A and B the 
formation of a perfectly ordered ß' superlattice involves segregation of all Cu 
atoms to the A sublattice, say, and Zn to the B sublattice. This is not feasible 
in practice, however, as the ß' does not have the ideal CuZn composition. 
There are two ways of forming ordered structures in non-stoichiometric 
phases: either some atom sites can be left vacant or some atoms can be 
located on wrong sites. In the case of ß(CuZn) the excess Cu atoms are 
located on some of the Zn sites. 

Let us begin the discussion of ordering transformations by considering what 
happens when a completely ordered single crystal such as CuZn or CU3Au is 
heated from low temperatures to above the disordering temperature. To do 
this it is useful to quantify the degree of order in the crystal by defining a 
long-range order parameter L such that L = 1 for a fully ordered alloy where 
all atoms occupy their 'correct' sites and L = 0 for a completely random 
distribution. A suitable definition of L is given by 

or 

where X A is the mole fraction of A in the alloy and rA is the prob ability that 
an A sublattice site is occupied by the 'right' kind of atom. 

At absolute zero the crystal will minimize its free energy by choosing the 
most highly ordered arrangement (L = 1) which corresponds to the lowest 
internal energy. The configurational entropy of such an arrangement, how­
ever, is zero and at higher temperatures the minimum free energy state will 
contain some disorder , i.e. some atoms will interchange positions by diffusion 
so that they are located on 'wrong' sites. Entropy effects become increasingly 
more important with rising temperature so that L continuously decreases 
until above some critical temperature (Tc) L = o. By choosing a suitable 
model, such as the quasi-chemical model discussed in Section 1.3.4, it is 
possible to calculate how L varies with temperature for different superlat­
tices. The results of such a calculation for the CuZn and CU3Au superlattices 
are shown in Fig. 5.81. It can be seen that the way in which L decreases to 
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Fig. 5.81 The vanatJon of long-range order (L) and short-range order (s) for 
(a) CuZn-type and (b) CU3Au-type transformations (schematic). 

zero is different for the different superlattiees. In the equiatomie Cu Zn ease L 
deereases eontinuously with temperature up to Tc> whereas in CU3Au L 
deereases only slightly up to Tc and then abruptly drops to zero above Tc. 
This differenee in behaviour is a eonsequenee of the different atomie 
eonfigurations in the two superlattiees. 

Above Tc it is impossible to distinguish separate sublattices extending over 
long distanees and L = O. However, sinee n < 0 there is still a tendeney for 
atoms to attraet unlike atoms as nearest neighbours, i.e. there is a tendeney 
for atoms to order over short distanees. The degree of short-range order (s) is 
defined in Seetion 1.3.7. The variation of s with temperature is shown as the 
dashed lines in Fig. 5.81. 

The majority of phase transformations that have been discussed in this 
book have been so-ealled first-order transformations . This means that at the 
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equilibrium transformation temperature the first derivatives of the Gibbs free 
energy aG/aT and aGjaP are discontinuous. The meIting of asolid is such a 
transformation, Fig. 5.82a. Since aG/aT = - Sand aG/ap = V, first order 
transformations are characterized by discontinuous changes in Sand V. There 
is also a discontinuous change in enthalpy H corresponding to the evolution of 
a latent heat of transformation. The specific heat of the system is effectively 
infinite at the transformation temperature because the addition of a sm all 
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Fig. 5.82 The thermodynamic characteristics of (a) first-order and (b) second­
order phase transformations. 
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quantity of heat converts more solid into liquid without raising the tempera­
ture. 

Figure 5.82b illustrates the characteristics of a second-order transforma­
tion. For such a transformation the second derivatives of Gibbs free energy 
iiGjaT2 and a2GjaJ'2 are discontinuous. The first derivatives, however, are 
continuous which means that H is also continuous. Consequently since 

there is no latent heat, only a high specific heat, associated with the trans­
formation. 

Returning to a consideration of order-disorder transformations it can be 
seen from Fig. 5.81 that the loss of long-range order in the ß' ~ ß (CuZn) 
transformation corresponds to a gradual disordering of the structure over a 
range of temperatures. There is no sudden change in order at Tc and conse­
quently the internal energy and enthalpy (H) will be continuous across Tc. 
The ß' ~ ß transformation is therefore a se co nd-order transformation. In the 
case of CU3Au, on the other hand, a substantial change in order takes place 
discontinuously at Tc. Since the disordered state will have a higher internal 
energy (and enthalpy) than the ordered state, on account of the greater 
number of high-energy like-like atom bonds, there will be a discontinuous 
change in H at Tc, i.e. the transformation is first order. 

So far we have been concerned with the disordering transformation that 
takes place on heating a fully ordered single crystal. The mechanism by which 
order is lost is most likely the interchange of atoms by diffusional processes 
occurring homogeneously throughout the crystal. The same changes will of 
course take place in every grain of a polycrystal. Let us now turn to the 
reverse transformation that occurs on cooling a single crystal, i.e. 
disorder ~ order. 

There are two possible mechanisms for creating an ordered superlattice 
from a disordered solution. (1) There can be a continuous increase in short­
range order by local re arrangements occurring homogeneously throughout 
the crystal which finally leads to long-range order. (2) There may be an 
energy barrier to the formation of ordered domains, in which case the trans­
formation must take place by a process of nucleation and growth. These two 
alternative mechanisms are equivalent to spin odal decomposition and pre­
cipitation as mechanisms for the formation of coherent zones in alloys with 
positive heats of mixing (0, > 0). The first mechanism may only be able to 
operate in second-order transformations or at very high supercoolings below 
Tc. The second mechanism is gene rally believed to be more common. 

The nucleation and growth process is illustrated in Fig. 5.83. The dis­
ordered lattice is represented by the cross-grid of lines. Within this lattice two 
sublattices are marked by heavy and faint lines. Atoms are located at each 
intersection but only atoms within the ordered regions, or domains, are 
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marked; the unmarked sites are disordered. The diagram is only schematic, 
but could represent a (100) plane of the CU3Au superlattice. Since the two 
types of atoms can order on either the A or B sublattice, the independently 
nucleated domains will often be 'out of phase' as shown. When these domains 
subsequently grow together a boundary will form (known as an antiphase 
domain boundary or APB) across which the atoms will have the wrong kind 
of neighbours. APBs are therefore high-energy regions of the lattice and are 
associated with an APB energy. 

Even at rather low undercoolings below Tc the activation energy barrier to 
the nucleation of ordered domains AG* should be rather small because both 
nucleus and matrix have essentially the same crystal structure and are there­
fore coherent with a low interfacial energy. Also, provided the alloy has a 
stoichiometric composition, both nucleus and matrix have the same com­
position so that there should not be large strain energies to be overcome. 
Consequently, it is to be expected that nucleation will be homogeneous, 
independent of lattice defects such as dislocations and grain boundaries. 
Figure 5.84 shows evidence for the existence of a nucleation and growth 
mechanism during ordering in Co Pt. This is a field ion micrograph showing 
that the two types of atoms are ordered in a regular manner in the upper part 
but disordered in the lower part of the micrograph. 

At low AT the nucleation rate will be low and a large mean domain size 
results, whereas higher values of AT should increase the nucleation rate and 
diminish the initial domain size. The degree of long-range order in a given 
domain will vary with temperature according to Fig. 5.81 and with decreasing 
temperature the degree of order is increased by homogeneous diffusive rear­
rangements among the atoms within the domain. Within the crystal as a 
whole, the degree of long-range order will initially be very sm all because 
there are likely to be equal numbers of domains ordered on both A and B 
lattices. The only way for long-range order to be established throughout the 
entire crystal is by the coarsening of the APB structure. The rate at which this 
occurs depends on the type of superlattiee. 

In the Cu Zn-type superlattice (L2o) there are only two sublattiees on whieh 
the Cu atoms, say, can order and therefore only two distinet types of ordered 
domain are possible. A eonsequenee of this is that it is impossible for a 
metastable APB structure to form. It is therefore relatively easy for the APB 
structure to coarsen in this type of ordered alloy. Figure 5.85 shows an 
eleetron micrograph of APBs in AIFe (L20 superlattiee) along with a schema­
tic diagram to illustrate the two different types of domain. The CU3Au (L12) 

superlattice is different to the above in that there are four different ways in 
which ordered domains can be formed from the disordered fee lattice: the Au 
atoms can be located either at the corners of the unit cell, Fig. 1.20c, or at the 
one of the three distinct face-cent red sites. The CU3Au APBs are therefore 
more complex than the Cu Zn type, and a consequence of this is that it is 
possible for the APBs to develop a metastable, so-ealled foam strueture, 
Fig. 5.86. Another interesting feature of this microstructure is that the APBs 
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Fig. 5.84 A field ion micrograph of the boundary between an ordered domain 
(above) and disordered matrix (belaw) in Ca Pt. (After E.W. Müller and Tien Tzou 
Tsong, Field Ion Microscopy, Principles and Applications, Elsevier , 1969.) 

te nd to align parallel to {lOO} planes in order to minimize the number of 
high·energy Au-Au bonds, 

The rate at wh ich ordering occurs varies greatly from one alloy to another. 
For example the ordering of ß(CuZn) is so rapid that it is alm ost impossible to 
quench-in the disordered bcc structure. This is because the transformation is 
second order and can occur by a rapid continuous ordering process. 

Ordering of CU3Au on the other hand is relatively slow requiring several 
hours for completion, despite the fact that the atomic mobilities ought to be 
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similar to those in the Cu Zn transformation. This transformation, however, is 
second order and proceeds by nucleation and growth. Also the development 
of long-range order is impeded by the formation of metastable APB net­
works. 

The above comments have been concerned primarily with alloys of 
stoichiometric composition. However, it has already been pointed out that 
ordering is often associated with non-stoichiometricalloys. 

In the case of first-order transformations there is always a two-phase region 
at non-stoichiometric compositions, Fig. 1.21, so that the transformation can 
be expressed as: disordered phase ~ ordered precipitates + disordered ma­
trix. There is then a change in composition on ordering and long-range 
diffusion must be involved. Second-order transformations on the other hand 
do not involve a two-phase region even at non-stoichiometric compositions, 
Fig. 5.74. 

Fig. 5.85 (a) A thin-foil electron micrograph showing APBs in an ordered A1Fe 
alloy (x 17 000). (b) A schematic representation of the atomic configurations 
comprising the APB structure in (a). (After M.l. Marcinkowski in Metals Handbook. 
8th edn., Vol. 8, American Society for Metals, 1973, p. 205.) 
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5.11 Case Studies 

5.11.1 Titanium Forging Alloys 

Composition: Ti-6 wt% AI-4 wt% V. 
Phase diagrams: Binary Ti-Al and Ti-V diagrams in Fig. 5.87. 
Important phases: a-hep, ß-bee. 
Mierostruetures: See Figs. 5.88-5.9l. 

AI 

Fe 

AI 

Fe 

AI 

Fe 

AI 

Fe 

AI 

Fe 

AI 
Fe 

Applications: As a result of the high eost of titanium, uses are restricted to 
applieations where high performance is required and high strength to weight 
ratio is important, e.g. gas turbine aero engines and airframe struetures. 

Comments: At low temperatures pure titanium exists as the hcp a phase, 
but above 883°C up to the melting point (~1672 0c) the bcc ß phase is stable. 
Figure 5.87 shows that Al is an a stabilizer, i.e. it raises the a/ß transition 
temperature, whereas V is a ß stabilizer which lowers the transition tempera-
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Fig. 5.86 APBs in ordered CU3Au. Thin-foil electron micrograph x 53 000. Note 
that due to the method of imaging about one third of the APBs are invisible. (After 
M.J. Marcinkowski in Metals Handbook, 8th edn., Val. 8, American Society for 
Metals. 1973, p. 205 .) 

ture. A wide range of titanium alloys are available. These can be classified as 
either a, a + ß, or ß alloys. The Ti-6AI-4V alloy to be discussed here 
belongs to the a + ß group of alloys. For simplicity, the phase diagram 
relevant to these alloys can be envisaged as that shown in Fig. 5.87c. Two 
principal types of transformation are of interest. The first of these is the 
precipitation of a from ß on cooling from above the ß transus into the a + ß 
field. This is in principle the same as the formation of ferrite during the 
cooling of austenite in Fe-C alloys. However, in this case the Widmanstätten 
morphology predominates at all practical cooling rates, Fig. 5.88a. 
Figure 5.88b is a thin-foil electron micrograph of a similar structure and 
shows more clearly the two phases present after air cooling. The ß phase 
remains as a thin layer between the Widmanstätten a plates. Furnace cooling 
pro duces similar though coarser microstructures. The a plates and the ß 
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The se co nd important transformation is the formation of martensite that 
takes pI ace when ß is rapidly cooled by water quenching. The transformation 
can be written ß ~ a' where a' is a supersaturated hcp a phase. Mf for ß 
containing 6 wt% AI-4 wt% V is above room temperature so that quenching 
from above the ß transus produces a fully martensitic structure, Fig. 5.89a. 
The martensite can be aged by heating to temperatures where appreciable 
diffusion can occur, in which case the supersaturated a' can decompose by the 
precipitation of ß on the martensite plate boundaries and dislocations, 
Fig. 5.89b. 

Alloys for engineering applications are not usually used in the above 
conditions but are hot worked in the a + ß region of the phase diagram in 

Fig. 5.88 (a) Widmanstätten (1 (light) and ß (dark) in a Ti-6 AI-4 V alloy air cooled 
from 1037 oe. (S.M. Copley and J.e. Williams, in Al/oy and Microstructural Design 
J.K. Tien and G.S. AnseIl (Eds.), Academic Press, 1976.) (b) Alternate layers of (1 

(light) and ß (dark) in a Widmanstätten microstructure . Ti-6 AI-4 V forged at 
1038 °C above the ß transus, air-cooled, annealed 2 h at 704°C, air cooled. Thin-foil 
electron micrograph (x 15 000). (From Metals Handbook, 8th edn., Vol. 7, American 
Society for Metals, 1972, p. 00.) 
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Fig. 5.88 (b) 

order to break up the structure and dis tribute the a phase in a finely divided 
form. This is usually followed by annealing at 700 °C wh ich produces a 
structure of mainly a with finely distributed retained ß, Fig. 5.90. The advan­
tage of this structure is that it is more ductile than when the a is present in a 
Widmanstätten form. When additional strength is required the alloys are 
hardened by heating to high temperatures in the a + ß range (-940°C) so 
that a large volume fraction of ß is produced, followed by a water quench to 
convert the ß into a' martensite, and then heating to obtain precipitation 
hardening of the martensite (Fig. 5.91) . Mechanical properties that can be 
obtained after these treatments are given in Table 5.4. If the alloy is held 

Table 5.4 Room Temperature Mechanical Properties of Ti-6 wt% AI-
4 wt % V Alloys 

Condition 

annealed 
hardened 

YS/MPa 

930 
950 

UTS/MPa 

990 
1030 

Elongation 

15% 
14% 
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120001, 

Fig. 5.89 (a) 0;' Martensite in Ti-6 AI-4 V held above the ß transus at 1066 oe and 
water quenched. Prior ß grain boundaries are visible (x 370) . (From Metals Hand­
book, 8th edn., Vol. 7, American Society Ior Metals , 1972, p. 328) (b) ß precipitates 
that have formed during the tempering of 0; ' martensite in Ti-6 AI-4 V. Specimen 
quenched from 1100 oe and aged 24 h at 600 oe. Thin-foiled electron micrograph. 
(After S.M. Copley and J.e. Williams in Alloy and Microstructural Design, J.K. Tien 
and G .S. AnseIl (Eds.), Academic Press, New York , 1976.) 
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Fig. 5.90 Microstructure of hot-worked and annealed Ti-6 AI-4 V (x 540) . (P.H. 
Morton in Rosenhain Centenary Conference , The Royal Society, London, 1976.) 

lower in the a + ß field before quenching the ß phase that forms can be so 
rieh in vanadium that the Ms temperature is depressed to below room tem­
perature and quenching results in retained ß, see Fig. 5.87c. 

5.11.2 The Weidability of Low-Carbon and Microalloyed Rolled Steels 

Composition: C :5 0.22 wt%, Si = 0.3%, Mn = 1.0-1.5%, P:5 0.04%, 
S :5 0.04%. Ceq (see text) ::::; 0.4%. 
Possible mieroalloying elements: Al, Nb, Ti, V, with possible additions of Zr 
andjor N. The total amount of microalloying elements does not usually 
exceed 0.15%. 
Phase diagrams: Fe-C binary. 
Modified CCT diagrams (see below). 
Welding nomographs (see text). 
Microstructure: Depends on type of steel, e.g. whether quench and tem­
pered, microalloyed-fine grained, plain rolled C-Mn, etc. See, e.g. 
Fig. S.49a. 
Applications: Constructional steels for building frames, bridges, pressure 
vessels, ships, oil platforms, etc. 
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Fig. 5.91 Microstructure of hardened Ti-6 AI-4 V. Solution treated at 954 oe (high 
in the a. + ß range), water quenched, aged 4 hat 538 oe. Equiaxed 'primary' a. grains 
(light) in an aged martensitic matrix. (From Metals Handbook, 8th edn., Vol. 7, 
American Society for Metals, 1972, p. 329.) 

Comments: Steels used for heavy, high-strength constructions are nowa­
days rather sophisticated, relying for their high strength and toughness on 
having a fine and uniform grain size. When fusion welding plates together, the 
steel is subjected to an extremely severe thermal cycle, and at the fusion line 
the temperature attains the melting point of the alloy. Because the steel plate 
provides an effective thermal sink (see Section 4.5) the cooling rate is very 
high for most types of welding process as illustrated in Fig. 5.92. This thermal 
cycle causes changes in properties of the base material in the heat-affected 
zone due to the combination of phase changes and thermallmechanical 
stresses. Typical microstructural changes experienced by aC-Mn steel are 
illustrated in Fig. 5.93, showing that recrystallization, grain growth and even 
ageing are occurring in the heat-affeeted zone. Of these ehanges, grain growth 
is potentially the most troublesome in deereasing the strength and toughness 
of these steels partieularly sinee in most eases high-energy submerged are 
welding is used with its associated relatively long dweil-time at peak tempera­
tures. In order to avert the problem of grain growth at high temperatures, 
new steels have reeently been introdueed eontaining a fine dispersion of TiN 
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precipitates. These precipitates remain fairly stable at temperatures as high as 
1500 °C and, at their optimum size of about 10 nm, act as a barrier to grain 
growth during welding. 

Another important problem in welding high-strength steels concerns the 
formation of martensite. The reason for this is that it is very difficult in 
welding to avoid the presence of hydrogen. This is because hydrogen­
containing compounds are invariably present in fluxes, the electrode material 
or even in the environment if welding is done outside. In this way atomic 
hydrogen is absorbed into the molten metal of the fusion weId where it then 
diffuses rapidly into theheat-affected base metal. If during subsequent cooling, 
martensite forms, hydrogen (whose solubility in martensite is lower than in 
ferrite) is forced out of the martensite where it concentrates at the marten­
site-ferrite phase boundary, or at inclusion boundaries. Thus in combination 
with weId residual stresses the hydrogen weakens the iron lattice and may 
initiate cracks. This phenomenon is known as cold cracking. It is found vital 
in welding to exert a close control over the amount of residual hydrogen in 
welds and to avoid martensite, particularly in cases where residual stresses 
may be high. Since it is usually difficult to totally avoid the presence of 
hydrogen, special CCT diagrams are employed in conjunction with estimated 
cooling rates in the heat affected material as shown in Fig. 5.94. The essential 
feature of this type of eCT dia gram is that the phase boundaries need to bt( 
plotted under conditions of actual welding, or weId simulation, in which both 
thermal and residual stresses are present20 . In the case of weId simulation, a 
special equipment is employed in which it is possible to programme in the 
appropriate thermal and stress cycles. As illustrated in Fig. 5.94, the various 
cooling curves 1-8 represent different heat inputs corresponding to different 
welding processes or parameters. The parameter tr in the table refers to the 
time in seconds for cooling through the temperature range: 800-500 oe, this 
being almost a constant within the heat-affected zone, and is thus considered a 
useful parameter in welding in helping to predict microstructure as a function 
of welding input energy. The working temperature in the table refers to 
whether or not pre-heating was employed. Thus in Fig. 5.94, martensite is 
predicted to occur for all welding energies below about 37 500 J / cm (curve 
5), this corresponding in practice to a weId deposit on a 20 mm thick plate of 
the composition given. In practice of course it is more useful if microstruc­
tural or cold cracking predictions could be made as a function of differing 
chemical composition, plate thickness, peak temperature, pre-heating and 
welding variables. This obviously requires much more complex diagrams than 
that of Fig. 5.94, and will therefore be correspondingly less accurate, 
although such diagrams, or welding nomographs as they are called, have been 
developed for certain applications. The composition variations are estimated 
using a so-called carbon equivalent21 , in which the effect of the various 
elements present is empirically expressed as a composition corresponding to a 
certain carbon content. This is then used to estimate possible martensite 
formation for the welding conditions given. 
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Fig. 5.94 CCT diagrams for a 0.19% C-1.52 Mn-0.55 Si steel, with superimposed 
cooling rates corresponding to the weId heat inputs given in the table. (From I1W's 
Doc. 115/11W-382-71, 1971.) 
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Exercises 

5.1 An approximate expression for the total driving force for precipitation 
in a regular solution (ilGo in Fig. 5.3) is 

ilGo = RT[Xo In ~: + (1 - X o) In ~~ = ~~;] -O(Xo - xef 

where X o and Xe are the mole fractions of solute defined in Fig. 5.3. 
(a) Use this equation to estimate the total free energy released when 
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a ' ~ a + ß at 600 K if Xo = 0.1, Xe = 0.02 and n = 0 (ideal 
solution) (R = 8.31 J mol-1 K-1). 

(b) Estimate the volume fraction of precipitate at equilibrium if ß is 
pure solute (X~ = 1). (Assurne the molar volume is constant.) 

(c) If the alloy is he at treated to produce a precipitate dispersion with a 
spacing of 50 nm estimate the total a/ß interfacial area m-3 of 
alloy. (Assurne a simple cubic array.) 

(d) If "faß = 200 mJ m-2 what is the total interfacial energy m-3 of 
alloy? mol-1 of alloy? (V m = 10-5 m3). 

(e) What fraction of the total driving force would remain as interfacial 
energy in the above case? 

(f) Repeat c-e for a dispersion of 1 J.Lm spacing. 
5.2 Use the methods of Chapter 1 to derive the expression for ~Go in 

problem 5.1. 
5.3 In dilute or ideal solutions the driving force for precipitate nucleation 

(assuming X~ = 1) is given approximately by 

Xo .. 
~Gn = RT In - per mole of prec1pltate 

Xe 
where Xo and Xe are the mole fractions of solute defined in Fig. 5.3. 
(a) Evaluate ~Gn for the precipitate in problem 5.1. 
(b) Assuming homogeneous nucleation, wh at will be the critical nucleus 

radius? 
(c) How does the me an precipitate size in problem 5.1c compare with 

the size of the critical nucleus? 
5.4 Derive the expression for ~Gn in problem 5.3. (Use equation 1.68.) 
5.5 (a) Calculate e in Fig. 5.6 if "faß = 500 and "faa = 600 mJ m-2. 

(b) Evaluate the magnitude of the shape factor See) for this nucleus. 
5.6 Imagine the Fe-0.15 wt% C alloy in Fig. 5.45 is austenitized above A J , 

and then quenched to 800°C where ferrite nucleates and covers the 
austenite grain boundaries. 
(a) Draw a composition profile normal to the a/'Y interface after partial 

transformation assuming diffusion-controlled growth. 
(b) Derive an approximate expression for the thickness of the ferrite 

slabs as a function of time. 
(c) Given that DJ (800°C) = 3 X 10-12 m2 S-l plot the thickness as a 

function of time. 
(d) If the austenite grain size is 300 J.Lm extend the above curve to long 

times. (State any simplifying assumptions you make.) 
5.7 Derive Equation 5.34. 
5.8 (a) By considering short transformation times derive expressions for k 

and n in Equation 5.39 for the pearlite transformation when nuclea­
tion is restricted to grain corners and all nuclei form at time zero 
(site saturation). Assurne spherical pearlite nodules and a cubic 
grain structure with a cube side d. 
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(b) Repeat the above for grain-boundary nucleation again assuming site 
saturation. In this ease pearlite grows as grain-boundary slabs. 

5.9 Draw sehematic diagrams to show how growth rate and nucleation rate 
should vary with temperature for eivilian transformations that are in­
dueed by an inerease in temperature. 

5.10 A and B form a regular solution with a positive heat of mixing so that 
the A-B phase diagram eontains a miseibility gap. 
(a) Starting from Equation 1.39 derive an equation for d2G/dX~, 

assuming GA = GB = O. 
(b) Use the above equation to ealculate the temperature at the top of 

the miseibility gap Tc in terms of O. 
(c) Plot the miseibility gap for this system. Hint: the limits of solubility 

for this simple ease are given by dG/dXB = O. 
(d) On the same diagram plot the loeus of d2G/dX~ = 0, i.e. the 

ehemical spinodal. 
5.11 By expressing G as a Taylor series, i.e. 

dG d2G (.:lX)2 
G(Xo + .:lX) = G(Xo) + dX (.:lX) + dX2 -2 - + 

show that Equation 5.43 is valid for sm all values ofAX. 
5.12 How should alloy eomposition affeet the initial wavelength of a spino­

dally deeomposed mierostrueture at a given temperature? 
5.13 (a) Aeeount for the loeation of massive transformations in Table 3.5. 

(b) Why do massive transformations generally oeeur at lower tempera­
tures but higher rates than preeipitation transformations? 



6 
Diffusionless Transformations 

One of the most important technological processes is the hardening of steel by 
quenching. If the steel is quenched rapidly enough from the austenitic field, 
there is insufficient time for eutectoidal diffusion-controlled decomposition 
processes to occur, and the steel transforms to martensite-or in so me cases 
martensite with a few per cent of retained austenite. This transformation is 
important and best known in connection with certain types of stainless steels, 
quenched and tempered steels and ball bearing steels. Important re cent 
developments involving the martensitic transformation in steels include 
maraging steels (precipitation-hardened martensite), TRIP steels (trans­
formation induced by plastic deformation), ausforming steels (plastically 
deformed austenite prior to quenching) and dual phase steels (a mixture of 
ferrite + martensite obtained by quenching from the "I + ex field). 

Because of the technological import an ce of hardened steel we shall mainly 
be concerned with this transformation, although martensite is a term used in 
physical metallurgy to describe any diffusionless transformation product, i.e. 
any transformation in which from start to completion of the transformation 
individual atomic movements are less than one interatomic spacing. The 
regimented manner in which atoms change position in this transformation has 
led to it being termed military, in contrast to diffusion-controlled transforma­
tions which are termed civilian. In principle, all metals and alloys can be made 
to undergo diffusionless transformations provided the cooling rate or heating 
rate is rapid enough to prevent transformation by an alternative mechanism 
involving the diffusion al movement of atoms. Martensitic transformations can 
thus occur in many types of metallic and non-metallic crystals, minerals and 
compounds. In the case of martensite in steel, the cooling rate is such that the 
majority of carbon atoms in solution in the fcc "I-Fe remain in solution in the 
ex-Fe phase. Steel martensite is thus simply a supersaturated solid solution of 
carbon in ex-Fe. The way in which this transformation occurs, however, is a 
complex process and even today the transformation mechanism, at least in 
steels, is not properly understood. The main purpose of this chapter is to 
consider some of the characteristics of martensitic transformations including a 
brief study of their crystallography, and to examine possible theories of how 
the phase nucleates and grows. We shall then consider the process of temper­
ing steel martensites and finally.give some examples of engineering materials 
based on martensitic transformations. 



Characteristics of diffusionless transformations 

6.1 Characteristics of Diffusionless Transformations 
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There have been a number of excellent reviews of martensitic transforma­
tions, and the most complete treatments to date have been given by Christian 
(1965)1 and Nishiyama (1978? The formation of martensite appears from 
micrographs to be a random process and the way it is observed to develop is 
illustrated schematically in Fig. 6.1a and b. As seen from Fig. 6.1a, the 
martensitic phase (designated <x') is often in the shape of a lens and spans 
initially an entire grain diameter. The density of plates does not appear to be 
a function of the grain size of the austenite. For example it is observed to form 
randomly throughout a sam pie with a plate density which appears to be 
independent of grain size. Where the plates intersect the surface of a polished 
specimen they bring about an elastic deformation, or tilting of the surface as 
shown in Fig. 6.2. Observations have shown that, at least macroscopically, 
the transformed regions appear coherent with the surrounding austenite. This 
means that intersection of the lenses with the surface of the specimen does not 
result in any discontinuity. Thus, lines on a polished surface are displaced, as 
illustrated in Fig. 6.2a, but remain continuous after the transformation. It has 
been shown that a fully grown plate spanning a whole grain may form within 
~ 10-7 s which means that the <x'hinterface reaches almost the speed of 
sound in the solid. Martensite is thus able to grow independently of thermal 
activation, although some Fe-Ni alloys do exhibit isotherm al growth charac­
teristics. This great speed of formation makes martensite nucleation and 
growth a difficult process to study experimentally. 

It is seen in Fig. 6.1a and b that the volume fraction of martensite increases 
by the systematic transformation of the austenite remaining between the 
plates that have already formed. The first plates form at the Ms (martensite 
start) temperature. This temperature is associated with a certain driving force 
for the diffusionless transformation of'Y into <x' as shown in Fig. 6.3a and b. 
In low-carbon steels, Ms = 500°C (Fig. 6.3c), but increasing C contents 
progressively decrease the Ms temperature as shown. The M f tempera­
ture (martensite finish) corresponds to that temperature below which 
further cooling does not increase the amount of martensite. In practice the 
Mf may not correspond to 100% martensite, and so me retained austenite 
can be left even below Mf . The 'retention of austenite in such cases may be 
due to the high elastic stresses between the last martensite plates to form, 
which tend to suppress further growth or thickening of existing plates. As 
much as 10-15% retained austenite is a common feature of especially the 
high er C conte nt alloys such as those used for ball bearing steels. Figure 
6.3d is a TTT diagram used for estimating the speed of quench necessary to 
obtain a given microstructure. These dia grams are plotted and used in 
technological applications for any one particular alloy, and that illustrated 
for example applies to only one carbon content, as shown. 
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(c) 

(0) 

(d) 

~o \..Im I 

Fig.6.1 (a), (b) Growth of martensite with increasing cooling below Ms . (c)­
Ce) Different martensite morphologies in iran alloys: Ce) low C (lath), (d) medium C 
(plate), Ce) Fe-Ni (plate). 
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Fig. 6.2 Illustrating how a martensite plate remains (macroscopically coherent with 
the surrounding austenite and even the surface it intersects. 

By analogy with Equation 1.17, the driving force for the nucleation of 
martensite at the Ms temperature should be given by: 

II G"Y---'> 0<' = llH"Y---'> 0<' (Ta - Ms) 

Ta 
(6.1) 

where Ta and Ms are defined in Fig. 6.3a. Some calorimetric measurements 
of llH are given in Table 6.1 for a number of alloys exhibiting martensitic 
transformations, together with the corresponding amounts of undercooling 
and free energy changes. Note especially in this table the large differences in 
llG"Y---'> 0<' between ordered and disordered alloys, the ordered alloys exhibiting 
a relatively sm all undercooling. We shall now examine the atomic structures 
of steel austenite and martensite in more detail. 

6.1.1 The Solid Solution of Carbon in lron 

In an fee (or hep) lattiee strueture, there are two possible positions for 
aeeommodating interstitial atoms as shown in Fig. 6.4. These are: the tet­
rahedral site which is surrounded by four atoms and the octahedral site which 
has six nearest neighbours. The sizes of the largest atoms that ean be 
accommodated in these holes without distorting the surrounding matrix 
atoms can be calculated if it is assumed that the atoms are close-packed hard 
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Fig. 6.3 Various ways of showing the martensite transformation. (a) Free energy­
temperature diagram for austensite and martensite of fixed carbon concentration (co 
in (b». (b) Free energy-eomposition diagram for the austensite and martensite 
phases at the Ms temperature. (e) Iron-earbon phase diagram with To as defined in 
(a), M s and M f superimposed. (d) M s and Mf in relation to the TIT diagram for alloy 
Co in (e) . 
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(0) tetrahedral (b) octahedral 
Fig. 6.4 IIlustrating possible sites for interstitial atoms in the fee or hep lattiees. 

spheres. Such a calculation gives: 

tetrahedral interstice d4 = 0.225 D 

octahedral interstice d6 = 0.414 D 
(6.2a) 

where D is the diameter of the parent atoms and d4 and d6 are the maximum 
interstitial diameters in the two types of site. In the case of "(-iron, at ambient 
temperature D = 2.52 A, so that interstitial atoms of diameter 0.568 A or 
1.044 A can be contained in tetrahedral and octahedral interstices without 
distorting the lattice. However, the diameter of a carbon atom is 1.54 A. This 
means that considerable distortion of the austenite lattice must occur to 
contain carbon atoms in solution and that the octahedral interstices should be 
the most favourable. 

The possible positions of interstitials in the bcc lattice are shown in 
Fig. 6.5a. It is seen that there are three possible octahedral positions (![100], 

Table 6.1 Comparisons of Calorimetric Measurements of Enthalpy and 
Undercooling in some martensitic alloys 

G. Guenin, Ph.D. thesis, Polytechnical lost. of Lyon; 1979 

Alloy 
IlH'Y--->a' To - M s -IlG'Y--->a ' 

(J mol- I) (K) (J mol-I) 

Ti-Ni 1550 20 92 
Cu-Al 170-270 20-60 19.3 ± 7.6 
Au-Cd 290 10 11.8 
Fe-Ni 28% 1930 140 840 
Fe-C 1260 
Fe-Pt 24% 340 10 17 
ordered 
Fe-Pt 2390 -150 ~1260 

disordered 
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Fig. 6.5 IIlustrating (a) possible sites for interstitial atoms in bee lauiee, and (b) the 
large distortion neeessary to aeeommodate a earbon atom (1.54 A diameter) eom­
pared with the spaee available (0.346 A). (e) Variation of a and c as a funetion of 
earbon eontent. (After C.S. Roberts, Transactions AlME 191 (1953) 203.) 

HOlO], H001]), and six possible tetrahedral spaees for each unit cello In this 
case, the maximum sizes of interstitials that can be accommodated without 
distorting the lattice are as follows: 

d4 = 0.291 D 

d6 = 0.155 D (6.2b) 
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The interesting feature of the bcc lattice is that although there is more 'free' 
space than the close-packed lattices, the larger number of possible interstitial 
positions means that the space available per interstitial is less than for the fcc 
structure (compare Equations 6.2a and 6.2b). In spite of the fact that d6 < d4 , 

measurements of carbon and nitrogen in solution in iron show that these 
interstitials in fact prefer to occupy the octahedral positions in the bcc lattice. 
This causes considerable distortion to the bcc lattice as illustrated in 
Fig. 6.5b. It is conjectured that the bcc lattice is weaker in the (100) directions 
due to the lower number oi near and next nearest neighbours compared to the 
tetrahedral interstitial position (see, e.g. Cottrell, 1963)3. The estimated 
atomic diameters of pure carbon and nitrogen are 1.54 and 1.44 A respec­
tively, although these values are very approximate. It should also be remem­
bered that in a given steel relatively few (!OO) sites are occupied. Neverthe­
less, the martensitic Fe-C lattice is distorted to a bct structure as shown in 
Fig. 6.5c. These measurements, made by X-ray diffraction at -100°C to 
avoid carbon diffusion, show that the c/a ratio of the bct la-ttice is given by: 

c/a = 1.005 + 0.045(wt% C) (6.3) 

As seen by these results, the distortion of the lattice in one direction (z) 
causes a contraction in the two directions normal to z(x, y). In fact, these 
measurements suggest a certain long-range order in the distribution of the 
carbon interstitials. 

6.2 Martensite Crystallography4 

A feature of the microstructures shown in Fig. 6.1 is the obvious crystallo­
graphic dependence of martensite plate formation. Within a given grain, all the 
plates grow in a limited number of orientations. In the case of iron alloys, for 
example, the orientation variants and even plate morphology chosen turn out 
to be dependent upon alloy content, particularly carbon or nickel, as illus­
trated in Table 6.2. 

The irrational nature of the growth planes of high carbon or high nickel 
martensites has been the subject of much discussion in the literature for the 
following reason: if martensite is able to grow at speeds approaching the 
speed of sound, then so me sort of highly mobile dislocation interface is re­
quired. The problem is then to explain the high mobility of an interface 
moving on austenite planes not always associated with dislocation glide. Yet 
another is that the growth or habit plane of martensite is observed to be 
macroscopically undistorted, i.e. the habit plane is a plane which is common 
to both the austenite and martensite in which all directions and angular 
separations in the plane are unchanged during the transformation. That this is 
so can be reasoned in conjunction with Fig. 6.2. The absence of plastic 
deformation in the form of a discontinuity at the surface shows that the shape 
strain does not cause any significant rotation of the habit plane. If the habit 
plane had been rotated, plastic deformation would be necessary to maintain 
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eoherenee between the martensite and parent austenite and this would have 
resulted in additional displacements of the surfaee, or of the lines traversing 
the plate. In order that the habit plane is left undistorted, the martensitie 
transformation appears to oeeur by a homogeneous shear parallel to the habit 
plane (see Fig. 6.2). Sinee the 'Y ~ a' transformation is also assoeiated with 
-4% expansion, this implies in turn that the dilatation in quest ion must take 
pi ace normal to the habit plane, i.e. normal to the lens. However, so me 
homogeneous dilatation of the habit plane may be neeessary. 

The question now arises: ean the bet martensite lattice strueture be gener­
ated by simple shear parallel to the habit plane, together with a sm all 
dilatation normal to the plane? In order to answer this question adequately 
we must eonsider the erystallography of the 'Y ~ a' transformation in more 
detail. 

It has been stated that the habit plane of a martensite plate remains 
undistorted following the transformation. An analogous situation is found in 
twinning as illustrated in Fig. 6.6a and b. It is eonvenient to eonsider the 
(111)'1 (112)'1 twinning re action illustrated in Fig. 6.6a in terms of the 
homogeneous shear of a sphere, Fig. 6.6b. In the shearing plane K, the lattiee 
is undistorted, i.e. it is invariant. Let us assurne first that the equivalent 
maeroseopie shape change in the formation of a martensite plate is a twinning 
shear oeeurring parallel to the habit (or twinning) plane, plus a simple 
uni axial tensile dilatation perpendicular to the habit plane. Astrain of this 
type is termed: an invariant plane strain, beeause a shear parallel to the habit 
plane, or an extension or eontraetion perpendieular to it, eannot change the 
positions or magnitude of veetors lying in the plane. We shall now try to 
answer the question of whether the fee lattiee ean be homogeneously de­
formed to generate the bet strueture. 

6.2.1 The Bain Model of the fee ~ bel Transformation 

In 1924, Bain5 demonstrated how the bet lattiee eould be obtained from the 
fee strueture with the minimum of atomie movement, and the minimum of 
strain in the parent lattiee. To illustrate this we shall use the eonvention that 
x, y, z and x', y', z' represent the original and final axes of the fee and bee unit 
eells as illustrated in Fig. 6.7. As shown by this figure, an elongated unit eell 
of the bee strueture ean be drawn within two fee eells. Transformation to a bee 
unit eell is aehieved by: (a) eontraeting the eell 20% in the z direetion and 
expanding the eell by 12% along the x and y axes. In the ease of steels, the 
earbon atoms fit into z' axes of the bee eell at ~(100) positions eausing the 
lattice to elongate in this direetion. In 1 atomie % esteei, for example, 
earbon oeeupies one position along the z' axis for every 50 iron unit eells. The 
positions oeeupied by the earbon atoms in the bet strueture do not exaetly 
eorrespond to the equivalent oetahedral positions in the parent fee struetute, 
and it is assumed that small shuffies of the e atoms must take plaee during the 
transformation. 
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(0) 

(b) 

Diffusionless transformations 

Matrix 

011> Twinning 
plane 

Twin 

("1> Twinning 
plane 

d,sheor 
direction 

K,.shear 
plane 

Fig. 6.6 (a) Showing the twinning of an fee strueture. Blaek and white circles 
represent atoms on different levels. (R .E. Reed-Hill , Physical Metallurgy Principles, 
2nd edn., Van Nostrand, 1973.) (b) Graphical representation of a twinning shear 
occurring on a plane K1 in a direction d (from C.M. Wayman, Introduction to the 
Crystallography of Martensite Transformations, MaeMillan, New York, 1964). 

It is an interesting fact that the Bain deformation involves the absolute 
minimum of atomie movements in gene rating the bee from the fee lattiee . 
Examination of Fig. 6.7 shows that the Bain deformation results in the 
following eorrespondenee of erystal planes and directions: 

(111)"1 ~ (Oll)u' 
[101 1"1 ~ [ii 11u' 
[1101'1 ~ [lOO]u' 
[1l2]-y ~ [0111u ' 
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Experimental observations of orientation relationships between austenite and 
martensite show that (111)'1 planes are approximately parallel to (Oll)", planes, 
and that the relative direetions ean vary between (101)'111(111)" (the Kurd­
jumov - Sachs relation) and (110)'111(101)" (the Nishiyama-Wasserman rela­
tion). These two orientations differ by ~5° about [111]'1' 

By using the sphere ~ ellipsoid transformation applied earlier to demons­
trate the twinning shear (Fig. 6.6) we ean now test whether the Bain deforma­
tion also represents a pure deformation in whieh there is an undeformed 
(invariant) plane. If a sphere of unit radius represents the fee strueture then 
after the Bain distortion it will be an ellipsoid of revolution with two axes (x' 
and y') expanded by 12 % and the third axis (z') eontraeted by 20%. The x' z' 
seetion through the sphere before and after distortion is shown in Fig. 6.8. In 
this plane the only veetors that are not shortened or elongated by the Bain 
distortion are OA or 0' A'. However in order to find a plane in the fee 
strueture that is not distorted by the transformation requires that the veetor 
OY' (perpendieular to the diagram) must also be undistorted. This is clearly 
not true and therefore the Bain transformation does not fulfil the require­
ments of bringing about a transformation with an undistorted plane. 

Henee the key to the erystallographie theory of martensitie transformations 
is to postulate an additional distortion whieh, in terms of Fig. 6.8, reduees the 
extension of y' to zero (in fact a slight rotation, e, of the AO plane should also 
be made as shown in the figure ). This seeond deformation ean be in the form 
of disloeation slip or twinning as illustrated in Fig. 6.9. Applying the twinning 
analogy to the Bain model, we ean see that an internally twinned martensite 
plate ean form by having alternate regions in the austenite undergo the Bain 
strain along different contraction axes such that the net distortions are eom­
pensated. By also adjusting the width of the individual twins, the habit plane 
of the plate ean even be made to adopt any desired orientation. These 
features of twinned martensite plates are illustrated in Fig. 6.10. In this figure 
<I> defines the angle between so me referenee plane in the austenite and the 
martensite habit plane. It is seen that <I> is a funetion of twin widths I, 11 (see, 

I 

A 
I 

~"TZ~( contraction ax is) 

--tt--X' (expansion axis) 

y' (expansion axis) 

Fig. 6.8 The Bain deformation is he re simulated by the pure deformation in 
compressing a sphere elastically to the shape of an oblate ellipsoid. As in the Bain 
deformation, this 'transformation' involves two expansion axes and one contraction 
axis. 
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Austenite Martensite 
Fig. 6.9 This figure illustrates schematically how dislocation glide or twinning of the 
martensite can compensate for a pure lattice deformation such as a Bain deformation 
and thereby reduce the strain of the surrounding austenite. The transformation shear 
(s) is defined. Note how s can be reduced by slip or twinning. 

e.g. Fig. 6.9c). On this basis, the habit plane of the martensite plate can be 
defined as a plane in the austenite which undergoes no net (macroscopic) 
distortion. By 'net distortion', it is meant that the distortion when averaged 
over many twins is zero. There will of course be loeal regions of strain energy 
associated with the (x' hinterface of the twins at the edge of the plate. 
However, if the plate is very thin (a few atomic spaeings) this strain can be 
relatively smalI. 

Martensite habit plane 

Fig. 6.10 Twins in martensite may be self-accommodating and reduce energy by 
having alternate regions of the austenite undergo the Bain strain along different axes. 
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In the crystallographic theory, it is assumed that slip or twinning occurs on 
suitable (lll){ll2}", systems, corresponding to equivalent (lIO){llO}-y planes 
in the austenite. Since the {ll2}",(lll)", system is that commonly adopted for 
bcc slip or twinning, the physical requirements of the theory are satisfied. 

6.2.2 Comparison of Crystallographic Theory with Experimental Results 

Some plots of experimental measurements typical of habit planes in steel 
martensites are shown in Fig. 6.11. These results indicate that there is a fairly 
wide scatter in experimental measurements for a given type of steel, and that 
alloying additions can have a marked effect on the habit plane. It appears that 
on reaching a critical carbon content, martensite in steel changes its habit 
plane, these transitions being approximately {1ll} ~ {225} ~ {259}-y with 
increasing C content (there is overlap of these transitions in practice). As a 
general rule, the {lll} martensites are associated with a high dislocation 
density lath morphology, or consist of bundles of needles Iying on {lll}-y 
planes, while the {225}-y and {259}-y martensites have a mainly twinned plate or 
lens morphology. However, any exact morphological description of marten­
si te is not possible since, after thickening and growth, the shapes of the 
martensites are often quite irregular. Twinning is more predominant at high 
carbon or nickel contents and is virtually complete for {259}-y martensites. In 
stainless steel, the habit plane is thought to be nearer {ll2}, which has been 
explained in terms of a lattice invariant shear on {lOl}(lOI)"" corresponding to 
{111}(121)-y. Transmission electron micrographs of lath and twinned steel 
martensites are shown in Fig. 6.12, which also illustrates the 'classical' 
definition of lath and plate morphologies. 

The notable success of the crystallographic theory is that it was able to 
predict the fine substructure (twinning or slip) of martensite before it was 
actually observed in the electron microseope. For a typical (high-carbon) steel 

III 

Fe-8% Cr-low-C stE"el 

Stainless steel~ 
225 Fe-3% Cr-

low-C steel 
«0'4wt%C) 

Fe-0'45wt%C ~1'5% Csteel 
to l'4wt% C ~ 

~259 
Fe-l'8% C st~el 

001 011 

Fig. 6.11 Martensite habit planes in various types of steel. 
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midrib , 

Fig. 6.12 Transmission eIectron micrographs of (a) lath martensite and (b) 
twinned martensite . Note the midrib in the twinned martensite, which is thought to be 
the first part of the plate to grow. 

for example, to achieve a (259)'{ habit plane, twins having a spacing of only 
8-10 atomic planes, or -3 nm, are predicted. Twin thicknesses of this 
order of magnitude are observed in electron micrographs of high carbon 
martensites. On the other hand, it is usually difficult to predict exactly the 
habit plane of a given alloy on the basis of known lattice parameters, dilata­
tions, etc., and apart from a few cases, the theory is mainly of qualitative 
interest. The theory is essentially phenomenological, and should not be used 
to interpret the kinetics of the transformation. Attempts at combining the 
crystallographical aspects of the transformation with the kinetics have, 
however, recently been made and will be discussed later. 

6.3 Theories of Martensite Nucleation 

A single plate of martensite in steel grows in 10-5 to 10- 7 S to its full size, at 
velocities approaching the speed of sound. Using resistivity changes to 
monitor the growth of individual plates of martensite in, e.g. Fe-Ni alloys, 
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speeds of 800-1100 m/s have been measured (Nishiyama, 1978)6. The 
nucleation event is thus very important in martensitic transformations be­
cause of its likely influence on the final form of the full-grown plate. This 
implies that the nucleation of martensite influences the strength and tough­
ness of martensitic steels, since for a given austenite grain size, if the number 
of nuclei is large, then the final grain size of the martensite will be finer and 
hence the steel may be stronger. 

Because of the great speed of growth of martensite, it is extremely difficult 
to study this transformation experimentally. An example of Bunshah and 
Mehl's (1953) resistivity measurements7 is shown schematically in Fig. 6.13, 
indicating that 0.' gives a lower resistivity than -y. The small initial increase in 
resistivity is explained in terms of the initial strain of the austenite lattice by 
the martensite nucleus. This suggests in turn that the initial nucleus should be 
coherent with the parent austenite. This factor could be an important starting 
point when considering how nucleation occurs. 

6.3.1 Formation of Coherent Nuclei of Martensite 

The total increase in Gibbs free energy associated with the formation of a 
fully coherent inclusion of martensite in a matrix of austenite can be 
expressed as: 

ÄG = A-y + VÄGs - VÄGv (6.5) 

where -y is the interfacial free energy, ÄGs is the strain energy, ÄGv the 
volume free energy release, V the volume of the nucleus and A the surface 

Resistivity 
y 

I 

-----a 

Time 

Fig. 6.13 Resistivity changes during the growth of single plates of rnartensite across a 
grain in a Fe-Ni alloy. Frorn this it can be calculated that the velocity of growth is 
ab out 1000 rn/so (After R. Bunshah and R.F. Mehl, Transactions AlME 197 
(1953) 1251.) 
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area. This expression does not account for possible additional energies that 
may be available due, e.g. to thermal stresses during cooling, externally 
applied stresses, and stresses produced ahead of rapidly growing plates. As 
with other nucleation events there is a balance between surface and elastic 
energy on the one side, and chemical (volume) free energy on the other. 
However, in martensitic transformations the strain energy of the coherent 
nucleus is much more important than the surface energy, since the shear 
component of the pure Bain strain is as high as s = 0.32 which pro duces large 
strains in the surrounding austenite. On the other hand, the interfacial 
(surface) energy of a fully coherent nucleus is relatively smalI. 

Consider the nucleation of a thin ellipsoid al nucleus, with radius a, 
semi-thickness c and volume V, as iIIustrated in Fig. 6.14. In agreement with 
experimental observations, we assume that nucleation does not necessarily 
occur at grain boundaries. We also assume to begin with that nucleation 
occurs homogeneously without the aid of any other types of lattice defects. As 
seen from Fig. 6.14, the nucleus forms by a simple shear, s, parallel to the 
plane of the disc, and complete coherency is maintained at the interface. On 
this basis Equation 6.5 can be written 

2(2 - u) 4 
äG = 2-rra2-y + 2IJ.V(s/2f 8(1 _ u) -rrc/a - 3-rra2c . äGy (6.6) 

where -y refers to the coherent interfacial energy of the coherent nucleus, u is 
the Poissons ratio of the austenite, and IJ. is the shear modulus of the 
austenite. If u = t Equation 6.6 can be simplified to: 

16-rr 4-rr 
äG = 2-rra2-y + -3 (s/2flJ.ac2 - -3 a2c . äGy 
~ ~ ~ 

(6.7) 

surface elastic volurne 

Fig. 6.14 Schematic representation of a martensite nuc1eus. 
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In this expression, the negative term llGy is the free energy difference at the 
Ms temperature between the austenite and martensite phases and is defined in 
Fig. 6.3a. The middle term referring to the strain energy, is due to the shear 
component of strain only and neglects the small additional strain due to the 
dilatation which is assumed to occur normal to the disco As pointed out by 
Christian (1965)', the most favourable nucleation path is given by the 
condition that the habit plane is exactly an invariant plane of the shape 
transformation (to re du ce coherency energy) although this is not necessarily 
realized in practice. The minimum free energy barrier to nucleation is now 
found by differentiating Equation 6.7 with respect to a and c, and by 
subsequent substitution we obtain: 

512 "{3 
llG* = 3 . (IlG

y
)4 . (S/2)4J.l2 'TT joules/nucleus (6.8) 

This expression is thus the nucleation barrier to be overcome by thermal 
fluctuations of atoms if classical, homogeneous nucleation is assumed. It is 
seen that the energy barrier is extremely sensitive to the values chosen for ,,{, 
llGy and s. The critical nucleus size (c* and a*) is also highly dependent upon 
these parameters. It can be shown that: 

and 

2"{ 
c* =--

llGy 

* _ 16"{J.l(s/2)2 
a - (IlGy )2 

(6.9) 

(6.10) 

Typically llGy = 174 MJ m -3 for steel. s varies according to whether the net 
shear of a whole plate (e.g. as measured from surface markings) or the shear 
of a fully coherent plate (as measured from lattice fringe micrographs) is 
considered. For the present we shall assurne a value of 0.2 which is the 
'macroscopic' shear strain in steel. We can only guess at the surface energy of 
a fully coherent nucleus, but a value of ~20 mJ m- 2 seems reasonable. Using 
these values gives c* /a* = 1/40, and llG* = 20 eV, wh ich in fact is too high 
for thermal fluctuations alone to overcome (at 700 K, kT = 0.06 eV). 
Indeed, there is plenty of experimental evidence to show that martensite 
nucleation is in fact a heterogeneous process. Perhaps the most convincing 
evidence of heterogeneous nucleation is given by small particle 
experimentsS•9•1O • 

In these experiments sm all single-crystal spheres of Fe-Ni of a size range 
from submicron to a fraction of a millimetre were cooled to various tempera­
tures below the M" and then studied metallographically. These experiments 
showed that: 

1. Not a11 particles transformed even if cooled down to + 4 K, i.e. ~300 °C 
below the Ms of the bulk material; this appears to completely rule out 
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homogeneous nucleation, since this should always occur at a certain 
undercooling. Indeed, the maximum undercooling for certain alloys 
reached as much as 600-700 °C 

2. The average number of nuclei (based on plate counts) was of the order 
of 104 per mm3 ; this is less than to be expected for purely homogeneous 
nucleation. 

3. The number of nuclei increases substantially with increasing supercool­
ing prior to transformation; on the other hand, the average number of 
nuclei is largely independent of grain size, or even whether the particles 
(of a given size) are single crystals or polycrystalline. 

4. The surface does not appear to be a preferred site for nucleation. 

On the basis of (3) and (4) it is thought that since surfaces and grain 
boundaries are not significantly contributing to nucleation, then the trans­
formation is being initiated at other defects within the crystal. The most likely 
types of defect which could produce the observed density of nuclei are 
individual dislocations, since an annealed crystal typically contains ~ 105 or 
more dislocations per mm2 . 

6.3.2 Role of Dislocations in Martensite Nucleation 

A number of researchers have considered possible ways in which dislocations 
may contribute to martensite nucleation. It is instructive to consider so me of 
these ideas and see how they can fit in with the various features of martensitic 
transformations already discussed. 

Zener (1948)11 demonstrated how the movement of (112)'Y partial disloca­
tions during twinning could generate a thin bcc region of lattice from an fcc 
one, and this is illustrated in Fig. 6.15. In this figure the different layers of the 
close-packed planes of the fcc structure are denoted by different symbols and 
numbered 1, 2, 3, from bottom to top layer. As indicated, in the fcc lattictr 
the normal twinning vector is 51, wh ich can be formed by the dissociation of 
an ~(11O) dislocation into two partials: 

5 = 51 + 52 

i.e. (6.11) 

a a _ a _ _ 
2[110] = 6[211] + 6[121] 

In order to generate the bcc structure it requires that all the 'triangular' 
(Level 3) atoms jumps forward by ~51 = f2[211]. In fact, the lattice produced 
is not quite the bcc one after this shear, but requires an additional dilatation 
to bring about the correct lattice spacings. As pointed out by Christian (1965)1, 
however, this re action produces a bcc lattice only two atom layers thick. 
Recent electron microscopy work by Brooks et al. (1979)12 indicated that 
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Fig. 6.15 Zener's model of the generation of two-atom-thick martensite by a 
half-twinning shear (some additional minor adjustments are also needed). 

thicker nuclei couid form by this mechanism at dislocation pile-ups, where the 
partial dislocations are forced closer together thereby reducing the slip vec­
tors such that the core structures correspond to a bcc stacking. Pile-ups on 
nearby planes can hence interact such as to thicken the pseudo-bcc region. 

An alternative suggestion was earlier made by Venables 14\ (1962) also in 
connection with the formation of martensite in stainless steels, i.e. in the case 
of alloys of low stacking fault energy. Venables proposed that a ' forms via an 
intermediate (hcp) phase which he termed epsilon martensite, thus: 

(6.12) 

Using the same atomic symbols as before, Venables' transformation mecha­
nism is shown in Fig. 6.16. The €'-martensite structure thus thickens by 
inhomogeneous half-twinning shears on every other {111})' plane. Such 
faulted regions have been observed to form in conjunction with martensite 
and an example is given in Fig. 6.17. On the other hand, there has been no 
direct evidence of the € --,> a transition, and recent electron microscopy work 
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2·54 

(OOO~, [1120] 

~ 
2·54 Ä 

2'40Ä 

2'48 Ä 

Fig. 6.16 Venables' model for the 'Y -+ E' -+ (x' transformation in stainless steel. 

indicates that the E' and 0. ' phases in martensitic stainless steels form 
independently of each other by different mechanisms, i.e. the transformation 
reactions in stainless steel are of the type 'Y ~ E or 'Y ~ 0. 112•14 • Other 
detailed models of how dislocations may bring about the martensitic trans­
formation in iron alloys have been given, e.g. by Bogers and Burgers (1964)15 
and more recently by Olson and Cohen (1976)16. 
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Fig. 6.17 Dislocation-assisted martensite transformation in a plastically deformed 
17% Cr-8% Ni Stainless steel. (DY courtesy of B. Lehtinen, Institute far Metals 
Research, Stockholm , Sweden.) 

Another example of the fact that the half-twinning shear in fee material ean 
induee a martensitie transformation is in eobolt 17 . In this ease there is an 
fee ~ eph transformation at around 390 oe. The generation of large numbers 
of ~(112)'Y partial disloeations on {111}'Y planes has been observed direct1y in 
the transmission eleetron mieroseope using a hot stage, as shown in Fig. 6.18 . 
The staeking faults in this ease appeared to initiate at grain boundaries. The 
habit plan is {111}'Y and the orientation relationship is (111)"1// (0001)". The 
transformation is reversible (at ~430 0c) and the eph ~ fee reaetion oeeurs 
by the following dissoeiation on the hep basal plane: 

1 __ 1 _ 1_ 
3[1210] ~ 3[0110] + 3[1100] (6.13) 

As before, the re action has to oeeur on every other hep plane in order to 
generate the fee strueture. 

It is thus seen that some types of martensite ean form direetiy by the 
systematic generation and movement of extended disloeations. It is as if the 
M s temperature of these alloys marks a transition from positive to negative 
staeking fault energy. It appears, however, that this type of transformation 
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can not occur in high stacking fault energy nor in thermoelastic martensites, 
and it is thus necessary to consider alternative ways in which dislocations can 
nucleate martensite other than by changes at their cores. It is also difficult to 
understand twinned martensite, merely on the basis of dislocation co re 
changes. 

6.3.3 Dislocation Strain Energy Assisted Transformation 

We now consider the possibility that the nucleation barrier to form coherent 
nuclei can be reduced by the help of the elastic strain jield of a dislocation. 
This theory20 thus differs fundamentally from the other dislocation-assisted 
transformation theories discussed, all of which were based on atomic shuffles 
within the dislocation core. We also note that in this case it is unnecessary that 
the habit plane of the martensite corresponds to the glide planes of austenite. 
Furthermore, it is assumed that coherent nuclei are generated by a pure Bain 
strain, as in the classical theories of nucleation. 

1t can be shown that the strain field associated with a dislocation can in 
certain cases provide a favourable interaction with the strain field of the 
martensite nucleus, such that one of the components of the Bain strain is 
neutralized thereby reducing the total energy of nucleation. This interaction 
is illustrated schematically in Fig. 6.19, in wh ich it is seen that the dilatation 
associated with the extra half plane of the dislocation contributes to the Bain 
strain. Alternatively the shear component of the dislocation could be utilized. 

Such an interaction thus modifies the total energy of Equation 6.5 to: 

(6.14) 

where ßGd represents the dislocation interaction energy which re duces the 
nucleation energy barrier. It can be shown that this interaction energy is given 
by the expression: 

ßGd = 2f1S1T . ac . b (6.15) 

Fig. 6.19 IlIustrating how one of the strain components of the Bain deformation may 
be compensated for by the strain field of a dislocation wh ich in this case is tending to 
push atom planes together. 
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where 5 refers to the Burgers veetor of the disloeation, and s refers to the 
sh.ear strain of the nucleus. 

The interaetion energy used in Equation 6.15 assurnes that a complete loop 
is interaeting with the nucleus. In praetiee it is likely that only apart of a 
disloeation will be able to 'reaet' with the nucleus in this way. 

Equation 6.14 may now be written in full (see Equation 6.7) as: 

16TI 4TI 
ß.G = 2TIa2-y + 3(s/2)2j.1ac2 - ß.Gv 3 a2c - 2f1STIaC . b (6.16) 

By summing the various eomponents of this expression it is possible to 
eompute the total energy of a martensite nucleus as a funetion of its diameter 
and thiekness (a, c), whether it is twinned or not (this affeets s, see, e.g. 
Fig. 6.9) and the degree of assistanee from the strain field of a disloeation (or 
group of disloeations). This result is shown sehematieally in Fig. 6.20a. It has 
been ealculated that a fully eoherent nucleus ean reaeh a size of about 20 nm 
diameter and two to three atoms in thiekness by this partial interaetion with 
the strain field of a disloeation. However, it will not be able to thieken or even 
grow larger unless twins form or slip oeeurs to further reduee strain energy. 
The attraetive feature of this theory is that it essentially eombines the erystal­
lographie eharaeteristics of the inhomogeneous shear and the Bain strain in 
terms of total strain energy at nucleation. It is thus in line with the majority of 
the known charaeteristies of martensite, including the initial straining of the 
lattiee due to the eoherent nucleus (see Fig. 6.13) and the faet that an 
inhomogeneous shear is neeessary for growth. It even shows that in prineiple 
nucleation ean oeeur in the vicinity of any disloeation, thus underlining the 

Fully coherent 
nucleus 

I--.... e-==:::::::::==-::::::~~::----I .. N ucl eu s s iz e 
I I " 

-ve 

...... 

" \ 
Critical size \ 

for coherency loss\ 
twinned nucleus 

Fig. 6.20 (a) Schematic diagram based on Equation 6.16, illustrating the need for 
the nuc1eus to twin if it is to grow beyond a certain critical size. (b) Lattice image of 
the tip of a martensite plate in a Ti-Ni alloy. The first interfacial dislocation behind the 
growing front is indicated. (After R. Sinc1air and H.A. Mohamed, Acta Metallurgica 
26 (1978) 623. 
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statistical correlation between dislocation density in well-annealed austenite 
and martensite formation indicated by the small particle experiments. 

The M s temperature is thus associated with the most potent nuclei, perhaps 
depending on the orientation or configuration of the dislocation, or groups of 
dislocations with respect to the potential martensite nucleus. The large under­
coolings below bulk M s as observed from the small particle experiments thus 
reflect the statistical prob ability that ideally oriented dislocations are rela­
tively few and far between, so that high chemical driving forces are needed in 
most cases. The burst phenomenon, in wh ich an autocatalytic process of 
rapid, successive plate formation occurs over a small temperature range in, 
e.g. Fe-Ni alloys, is explicable on this basis by the large elastic stresses set up 
ahead of a growing plate. In this case, the elastic strain field of the plate acts 
as the necessary interaction term in Equation 6.10. The question of whether 
slip or twinning occurs at the critical nucleus size in order to assist growth of 
the nucleus appears to be a function of the alloy content and Ms temperature, 
and this factor will be taken up in more detail in the next section on marten­
si te growth. 

In summary, we have not dealt with all the theories of martensite nuclea­
tion in this section as recorded in the literature, or even with all alloys 
exhibiting martensitic transformations. Instead we have attempted to illus­
trate some of the difficulties associated with explaining a complex event which 
occurs at such great speeds as to exclude experimental observation. A gen­
eral, all-embracing theory of martensite nucleation has still evaded us, and 
may not even be feasible. 

6.4 Martensite Growth 

Once the nucleation barrier has been overcome, the chemical volume free 
energy term in Equation 6.10 becomes so large that the martensite plate 
grows rapidly until it hits a barrier such as another plate, or a high angle grain 
boundary. It appears from observations, that very thin plates first form with a 
very large ale ratio (see Fig. 6.14) and then thicken afterwards. In high 
carbon martensites this often leaves a so-called "midrib" of fine twins, and an 
outer less well defined region consisting of fairly regular arrangements of 
dislocations. In low carbon lath martensite, transmission microscopy reveals a 
high dislocation density, sometimes arranged in cellular networks in the case 
of very low C content, but no twins (see Fig. 6.12). In very high carbon 
martensite (259 type), only twins are observed. 

In view of the very high speeds of growth, it has been conjectured that the 
interface between austenite and martensite must be a glissile semicoherent 
boundary consisting of a set of parallel dislocations or twins with Burgers 
vector common to both phases, i.e. transformation disloeations. The motion 
of the dislocations brings about the required lattice invariant shear trans­
formation. As noted in Section 3.4.5, the motion of this interface mayor may 
not generate an irrational habit plane. 
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The habit plane transition in steels and Fe-Ni alloys as a function of 
alloying content of: {111}-y lath ~ {225}-y mixed lath/twins ~ {259}-y twinned 
martensite, is not properly understood. An important factor is thought to be 
that increased alloying lowers the M s temperature and that it is the tempera­
ture of transformation that dictates the mode of lattice invariant shear. 
Qualitatively, the slip-twinning transition in a crystal at low temperatures is 
associated with the increased difficulty of nucleating whole dislocations 
needed for slip. It is thought that the critical stress needed for the nucleation 
of a partial twinning dislocation is not so temperature dependent as the 
Peierls stress for a perfect dislocationl9• On the other hand, the chemical 
energy available for the transformation is largely independent of M s tempera­
ture. This implies that as the M s temperature is lowered the mechanism of 
transformation chosen is governed by the growth process having least energy. 
The other factor affecting mode of growth, as discussed in the previous 
section, is how the nucleus forms. If the nucleus forms by the generation of a 
homogeneous Bain deformation, the orientation of the nucleus in the auste­
nite is again dependent upon it finding the lowest energy. This may not 
coincide with anormal glide plane in the austenite-and in highly alloyed 
systems it evidently does not. On the other hand, the inhomogeneous shear 
during growth has to be dictated by the normal modes of slip or twinning 
available. This suggests that if the habit plane of the martensite is irrational, it 
may have to grow in discrete steps which are themselves developed by 
conventional modes of deformation. The resulting plate would then be, for 
example, likened to a sheared-over pack of cards (see, e.g. Fig. 6.9b). We 
now consider the two main cases of rational (Iath) and irrational (plate) 
martensite growth in steel in more detail. 

6.4.1 Growth of Lath Martensite 

The morphology of a lath with dimensions a > b ~ c growing on a 
{111}-y plane (see Fig. 6.20b) suggests a thickening mechanism involving the 
nucleation and glide of transformation dislocations moving on discrete ledges 
behind the growing front. This picture of growth is suggested, e.g. in the work 
of Sinclair and Mohammad (1978)20 studying NiTi martensite and Thomas 
and Rao (1978)21 in the case of steel martensite. 

It seems possible that due to the large misfit between the bct and fcc lattices 
dislocations could be self-nucleated at the lath interface. The criterion to be 
satisfied for dislocation nucleation in this case is that the stress at the interface 
exceeds the theoretical strength of the material. 

It can be shown using Eshelby's approach22 that for a thin ellipsoidal plate 
in which a ~ c the maximum shear stress at the interface between the 
martensite and austenite due to a shear transformation is given by the 
expression: 

(6.17) 



0 0'08 
11 

0·06 

10 

Martensite growth 411 

._- - -Threshold stress (Kelly) 

s = 0'32 
Laths 

~ 
s = 0·2 

20 30 40 
Morphology (ale ratio) 

Fig. 6.21 Equation 6.17 plotted for two values of shear corresponding to a pure Bain 
deformation (0.32) and a twinned plate (0.2). 

where f.l, is the shear modulus of the austenite. It is seen in this simple model 
that the shear stresses are sensitive to particle shape as weH as angle of shear. 
Of course in practice it is very difficult to define the morphology of martensite 
in such simple c/a terms, but this gives us at least a qualitative idea of wh at 
may be involved in the growth kinetics of martensite. 

Kelly (1966)25 has calculated a theoretical shear strength for fee materials of 
0.025 f.l, at ambient temperature, and this can be used as aminimum, or 
threshold stress for nucleating dislocations. Equation 6.17 is plotted in 
Fig. 6.21 in terms of different a: c ratios, assuming s = 0.2 which is typical of 
bulk lath and plate martensite. An approximate range of morphologies 
representative of lath or plate martensite is given in the figure. It is seen that 
Kelly's threshold stress for dislocation nucleation may be exceeded in the case 
of lath martensite, but seems unlikely in the case of the thinner plate 
martensite. It is interesting to note from Fig. 6.21, however, that shear loop 
nucleation in plate martensite is feasible if s ;;:: 0.32, which is the shear 
associated with a pure Bain strain (Fig. 6.9a). In other words, coherency loss 
of the initial co he re nt nucleus is energeticaHy possible. 

The assumption of shear loop nucleation in fact seems reasonable and 
likely in conjunction with lath growth. The same mechanism of dislocation 
generation during growth could even be applied to bainite where the mor­
phology appears to be fairly similar to lath martensite, although in this case 
some diffusion of carbon also occurs. It is thus seen that by nucleating 
dislocations at the highly strained interface of the laths, the misfit energy can 
be reduced and the lath is able to continue to grow into the austenite. 
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Internal friction measurements have shown that in lath martensite the 
density of carbon is slightly higher at cell walls than within cells, suggesting 
that limited diffusion of carbon takes place following or during the trans­
formation. The transformation could also produce adiabatic heating which 
may affect diffusion of carbon and dislocation recovery, at least at higher Ms 
temperatures. In this respect there appears to be a certain relationship be­
tween lower bainite and martensite. The higher Ms temperatures associated 
with lath martensite may be sufficient to allow dislocation climb and cell 
formation after the transformation, although the high growth speeds suggest 
an interface of predominantly screw dislocations. The volume of retained 
austenite between laths is relatively small in lath martensite (these small 
amounts of retained austenite are now thought to be important to the mecha­
nical properties of low-carbon steels24 ), suggesting that sideways growth, and 
transformation between laths occurs without too much difficulty. 

6.4.2 Plate Martensite 

In medium and high carbon steels, or high nickel steels, the morphology of 
the martensite appears to change from a lath to a roughly plate-like product. 
This is associated with lower Ms temperatures and more retained austenite, as 
illustrated by Fig. 6.22. However, as mentioned earlier, there is also a transi­
tion from plates growing on {225},/ planes to {259},/ planes with increasing 
alloy content. The lower carbon or nickel {225},/ martensite often consists of 
plates with a central twinned 'midrib', the outer regions of the plate being free 
of twins. It appears that the twinned midrib forms first and the outer (disloca­
tion) region which is less weIl defined than the midrib, grows afterwards. The 
high carbon or nickel {259} martensite on the other hand is completely 

700 

500 Ms temperature 

300 Oe 

Vol % 75 100 
laths 50 40 Vol % retained 

25 20 austenite 

0 
0'4 0'8 1'2 0 

Wt% C 
Fig. 6.22 Approximate relative percentages of lath martensite and retained austenite 
as function of carbon conte nt is steels. (Data from G.R. Speich, Metallurgical Trans­
actions, 3 (1972) 1045.) 
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twinned and the habit plane measurements have less scatter than the mixed 
structures. 

Typical morphologies for plate martensite are usually thought to be much 
thinner than lath martensite or bainite. On the basis of Fig. 6.21 it appears 
that there is likely to be a problem in nuc1eating whole dislocations in the case 
of grpwing plate martensite when s = 0.2, but that partial twinning disloca­
tions evidently are able to nuc1eate. Once nuc1eated, twinned martensite 
grows extremely rapidly, but the mechanism by which this oceurs has not been 
c1arified as yet. It is c1ear from work on low temperature deformation of fce 
metals, that twinning can be an important deformation mechanism. However, 
the problem in martensite transformations is to explain the extremely rapid 
rates of plate growth as based on twinning mechanisms. The pole mechanism 
seems inadequate in this respect, although mechanisms based on dislocation 
reftection processes may be more realistic27. Alternatively, it may be neces­
sary to invoke theories in which standing elastic waves may nuc1eate twinning 
dislocations25 as anaid to very rapid plate growth. 

The transition from twinning ---+ dislocations in 'midrib martensite' is intri­
guing and could be the result of a change in growth rate after the midrib forms 
(see, e.g., Shewmon, 1969f6. In other words, martensite formed at higher 
temperatures or slower rates grows by a slip mechanism, while martensite 
formed at lower temperatures and higher growth rates grows by a twinning 
mode. Indeed, in the case of ferritic steels, the normal mode of plastic 
deformation is very much a function of strain rate and temperature. 

An elegant model for a dislocation generated {225}-y martensite has been 
postulated by Frank (1953)27. Frank has basically considered the way to 
interface the fcc austenite lattice with that of the bcc martensite such as to 
reduce lattice misfit to a minimum. He finds that this can be achieved quite 
weIl with the help of a set of dislocations in the interface. In this model, the 
close-packed planes of the fcc and bcc structures are envisaged to meet 
approximately along the martensite habit plane as shown in Fig. 6.23a. Since 
the (111) and (101)". planes meet edge-on at the interface, the close-packed 
directions are parallel and lie in the interface plane. The reason for the 
rotation, IjI, shown in Fig. 6.23a, is to equalize the atomic spacings of the 
(111) and (101)". planes at the interface. However, in spite of this, there is 
still a slight misfit along the [011)-y, [111)". direction where the martensite 
lattice parameter is -2% less than that of austenite. Frank therefore 
proposed that complete matching can be achieved by the insertion of an array 
of screw dislocations with a spacing of six atom planes in the interface which 
has the effect of matching the two lattices and thus removing the misfit in this 
direction. This also brings about the required lattice-invariant shear on the 
(112)". plane as the interface advances. The resulting interface is illustrated in 
Fig.6.23b. 

In ternis of the minimum shear stress criterion (Fig. 6.21) the further 
expansion and thickening of a {225}-y twinned midrib by a Frank dislocation 
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interface could occur when the midrib reaches some critical ale ratio. 
However, there have been no detailed models developed as to how the Frank 
interface can be generated from the nucleation event. Assuming a cohe;rent 
nucleus with s = 0.32, it is seen from Fig. 6.21 that it is theoretically po'->'Slble 
for dislocation nucleation to occur at this stage to relieve coherency. 
Qualitatively, the larger amount of chemical free energy available after the 
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critical size for growth has been exceeded, may be sufficient to homo­
geneously nucleate dislocations28 particularly in the presence of the large 
strain energy of the rapidly growing plate29 • 

Other factors known to affect the growth of martensite are grain size, 
extern al stresses and the phenomenon of stabilization. We now briefty 
consider these effects. 

6.4.3 Stabilization 

This is a phenomenon associated with sampies cooled to some temperature 
intermediate between Ms and M f , held there for aperiod of time and then 
cooled again. In such a case, transformation does not immediately continue, 
and the total amount of transformed martensite is less than obtained by 
continuous cooling throughout the transformation range. It has even been 
observed that existing plates do not continue to grow after stabilization, but 
new plates are nucleated instead. The degree of stabilization is a function of 
the time held at temperature. This phenomenon is not properly understood, 
although it seems conceivable that carbon has time to diffuse to the interface 
under the inftuence of the high stresses associated with plate growth. There 
could also be local atomic relaxation at the interface, thereby increasing the 
nucleation barrier for dislocation generation. 

6.4.4 Eifect 01 External Stresses 

In view of the dependence of martensite growth on dislocation nucleation, it 
is expected that an externally applied stress will aid the generation of 
dislocations and hence the growth of martensite. It is weIl established, for 
example, that external stress lowers the nucleation barrier for coherency loss 
of second phase precipitates. External stresses can also aid martensite 
nucleation if the external elastic strain components contribute to the Bain 
strain. This will provide yet another interaction term in Equation 6.14. It has 
been shown in such cases that the Ms temperature can be raised30. However, 
if plastic deformation occurs, there is an upper limiting value of M s defined as 
the Md temperature. Conversely the Ms temperature can be suppressed to 
lower temperatures by, e.g. holding the sampIe being transformed under 
hydrostatic compression. This is because increasing pressure stabilizes the 
phase with the smaIler atomic volume, i.e. the close-packed austenite, 
thereby lowering the driving force !l.Gv for the transformation to martensite. 
On the other hand, the presence of a large magnetic field can raise the Ms 
temperature on the grounds that it favours the formation of the ferromagnetic 
phase. 

Plastic deformation of sampies can aid both nucleation and growth of 
martensite, but too much plastic deformation may in some cases suppress the 
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transformation. Qualitatively it could be expected that increases in disloca­
tion density by deformation should raise the number of potential nucleation 
sites, but that tao much deformation may introduce restraints to nuclei 
growth. 

The effect of piastically deforming the austenite prior to transformation on 
increasing the number of nucleation sites and hence refining plate size is of 
course the basis of the ausforming process. The high strength of ausformed 
steels is thus due to the combined effect of fine plate size, solution hardening 
(due to carbon) and dislocation hardening. 

6.4.5 Role of Grain Size 

Since martensite growth reHes on maintaining a certain coherency with the 
surrounding austenite, a high-angle grain boundary is an effective barrier to 
plate growth. Thus while grain size does not affect the number of martensite 
nuclei in a given volurne, the final martensite plate size is a function of the 
grain size. Another important feature of grain size is its effect on residual 
stress after transformation is completed. In large grain sized material the 
dilatation al strain associated with the transformation causes large residual 
stresses to be built up between adjacent grains and this can even lead to 
grain-boundary rupture (quench cracking) and substantially increase the dis­
location density in the martensite. Fine grain-sized metals tend to be more 
self-accommodating and this, tagether with the smaller martensite plate size, 
provides for stronger, tougher material. 

In summary, theories of martensite nucleation and growth are far from 
developed to astate where they can be used in any practical way-such as 
helping to control the fine structure of the finished product. It does appear 
that nucleation is closely associated with the presence of dislocations and the 
process of ausforming (deforming the austenite prior to transformation) could 
possibly be inftuenced by this feature if we knew more of the mechanism of 
nucleation. Growth mechanisms, particularly by twinning, are still far from 
clarified, however. 

6.5 Pre-martensite Phenomena 

This is a subject that has provoked considerable attention in re cent years from 
researchers, and is mainly concerned with ordered compounds exhibiting 
order ~ order martensitic transformations. A useful summary of this phe­
nomenon has been given recently by Wayman (1979)31. The effect has been 
observed in the form of anomalaus diffraction effects or even diffuse streaking 
as weIl as a resistivity anomaly, e.g. in TiNi alloys. In ß-brass thin foils a 
mottled contrast has been observed giving rise to side band reftections in 
diffraction patterns. In CuAu alloys the phenomenon occurs in the form of a 
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streaming or shimmering effect in bright field images of thin foils. The latter 
observation, first noted by Hunt and Pashley in 196232, has even been inter­
preted as possible evidence for the appearance of ftuctuating strain fields due, 
e.g. to a Bain deformation. Recent work in Wayman's laboratory suggests, 
however, that while the appearance of local reordering reactions above the 
Ms temperature are possible, there is still little direct evidence that the 
observed phenomena can be related to the initial stage of the martensitic 
transformation. Nevertheless, the effect is an intriguing one, particularly 
bearing in mind the relatively low undercoolings associated with ordered 
alloys (see, e.g., Table 6.1), and in this respect it could be conjectured that 
some process is occurring which very effectively aids the transformation of 
these alloys. 

6.6 Tempering of Ferrous Martensites 

Although the diffusionless martensite transformation is fundamental to the 
hardening of steel, most (if not all) technological steels have to be heat 
treated after the transformation in order to improve toughness and in some 
cases even strength. Recent years have seen notable developments in these 
steels, achieving in some cases very high degrees of sophistication in the form 
of carbide dispersions and various types of substructure strengthening. For 
useful reviews see, e.g., Speich33 and Honeycombe34 . 

The martensitic transformation usually results in a ferritic phase which is 
highly supersaturated with carbon and any other alloying elements that re­
main locked into the positions they occupied in the parent austenite. On 
ageing, or tempering, therefore, there is a strong driving force for precipita­
tion. As is usual with low temperature ageing the most stable precipitate, as 
indicated by the equilibrium phase diagram, is not the first to appear. The 
ageing sequence is gene rally a' ~ a + E-carbide or a + Fe3C, depending 
upon the tempering temperature. It is not thought that E-carbide (Fe2.4C) 
decomposes directly to Fe3C, but that the transition only occurs by the 
E-carbide first dissolving. When strong carbide-forming alloying elements 
such as Ti, Nb, V, Cr, W, or Mo are present the most stable precipitate can be 
an alloy carbide instead of cementite. See, for example, the Fe-Mo-C phase 
diagram in Fig. 6.24. However, these ternary additions are dissolved substitu­
tionally in the ferrite lattice and are relatively immobile in comparison to 
interstitial carbon. The precipitation of these more stable carbides is there­
fore preceded by the formation of E-carbide and Fe3C which can occur solely 
by the diffusion of carbon. Alloying elements are only incorporated into the 
precipitate in proportion to their overall concentration in the ferrite. 

The various changes that can take pi ace during the tempering of ferrous 
martensites are summarized in Table 6.3. In practice he at-treatment tim es 
are limited to a few hours and the phases that appear within these time 
periods depend on the temperature at which tempering occurs. Therefore 



Is
ot

he
rm

 7
0

0
e
 (

1
2

9
2

 F
) 

7 6 
I 

:
-
-
-
,
-

-.
-

F
e

3
C

+
(Q

-F
e

l 

c 
I 

" 
(M

u
C

. 
L 

0 
5 

LJ
 

1 _
_

 -
-

-
-
-

..
0

 

Fe
3C

+M
zC

 +
g

ra
p

h
it

e 

~
 

0 u C
l)

 g 
4 -c C

l)
 

0 ~
 

C
l)

 

a..
. -.s=. .2
' 

C
l)

 

3:
 

3 2 

3
0

 
4

0
V

 
5

0
 

6
0

 
7

0
 

8
0

 
W

ei
gh

t 
P

er
ce

nt
ag

e 
M

ol
yb

de
nu

m
 

F
ig

. 
6.

24
 

A
n

 i
so

th
er

m
 al

 s
ec

ti
on

 t
hr

ou
gh

 t
he

 F
e-

M
o

-C
 p

ha
se

 d
ia

gr
am

 a
t 

70
0°

C
. 

(A
ft

er
 T

. 
W

ad
a 

in
 M

et
al

s 
H

an
db

oo
k,

 8
th

 e
dn

.,
 V

ol
. 

8,
 A

m
er

ic
an

 S
oc

ie
ty

 f
or

 M
et

al
s,

 
19

73
, 

p.
 

40
9.

) 

.j:
:>

. 
.....

.. 
0

0
 

tl
 

s
; ~
 

ö'
 

;::
 
~
 

1:;
 ~ ;::
 
~
 

o ~ l::
) .... ö'
 

i;; 



Tempering of ferrous martensites 419 

Table 6.3 gives a summary of the new phases that appear within the various 
temperature ranges, and provides details of other microstructural changes 
that take place. It should be noted, however, that the temperature ranges 
given are only approximate and that there is a great deal of overlap between 
the various ranges. 

Table 6.4 summarizes the observed precipitation sequences in a few 
selected steel compositions. These compositions are experimental alloys that 
have been studied to avoid the complications that arise with commercial 
alloys where many interacting alloying elements are present. The crystal 

Table 6.3 Transformations Occurring During Tempering of Ferrous 
Martensites 

Temperature;oC 

25-100 

100-200 

200-350 

250-350 

350-550 

400-600 

500-700 

600-700 

Transformation 

Carbon segregation to 
dislocations and 
boundaries; pre­
precipitation clustering 
and ordering 
Transition-carbide 
precipitation, diam. 
2 nm (first stage of 
tempering) 
Retained austenite 
transforms to ferrite 
and cementite (second 
stage) 
Lath-like Fe3C 
precipitation (third 
stage) 
Segregation of 
impurity and alloying 
elements 
Recovery of 
dislocation 
substructure. Lath-like 
Fe3C agglomerates to 
form spheroidal Fe3C 
Formation of alloy 
carbides. (secondary 
hardening or fourth 
stage) 
Recrystallization and 
grain growth; 
coarsening of 
spheroidal Fe3C 

Remarks 

Clustering predominant 
in high-carbon steels 

Carbides may be TJ(Fe2C) 
or B(Fe2.4C) 

Associated with tempered 
martensite embrittlement 

Responsible for temper 
embrittlement 

Lath structure maintained 

Occurs only in steels 
containing Ti, Cr, Mo, V, 
Nb, or W; Fe3C may 
dissolve 
Recrystallization 
inhibited in medium­
carbon and high-carbon 
steels; equiaxed ferrite 
formed 
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Table 6.4 Carbide Precipitation Sequences 

Alloy (wt%) 

Fe-C 
Fe-2 V-0.2 C 
Fe-4 Mo-0.2 C 
Fe-6 W-0.2 C 
Fe-12 Cr-0.2 C 

* Does not form when C ~ 0.2%. 

Precipitation sequence 

E-carbide* ~ Fe3C(~graphite) 
Fe3C ~ VC or V 4C3 
FeC ~ M02C ~ M6Ct 
Fe3C ~ W 2C ~ M23C6 ~ M6C 
Fe3C ~ Cr7C3 ~ Cr23C6 

t M stands for a mixt ure of the substitution al alloying elements, in this case 
Fe and Mo. 

structures, shapes and orientation relationships for some of these precipitates 
are listed in Table 6.5. 

On the basis of the data given in Tables 6.3 to 6.5, we note the following 
features: 

Carbon Segregation 
As a result of the large distortion caused by the carbon atoms in the martensi­
tic lattice there is an interaction energy between carbon and the strain fields 

Table 6.5 Data Concerning Carbides Precipitated During Tempering 
of Martensite 

Crystal Orientation Temperature of 
Carbide structure Shape relationship formation;oC 

E-carbide hcp laths (lOll)EII(101)" 100-250 
(Fe2-3C) [0001 lEI 1[011 l" 

cementite orthorhombic laths (001)ell(211)" 250-700 
(Fe3C) [100lel I[Oll l" 

VC-V4C3 cubic (NaCI plates (100)ell(100)" -550 
structure) [011 lei 1[010]" 

Mo2C hcp (OOOl)ell(Ol1)" -550 
[1120]ell[100]" 

W2C hcp needles as Mo2C -600 

Cr7C3 hexagonal spheres -550 

Cr23C6 cubic plates (100)ell(100)" 
(M23C6) [OlOlell[OlO]" 

M6C cubic -700 
(Fe3Mo3C, 
Fe3W3C) 
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around dislocations . In lath martensite, for example, carbon tends to diffuse 
to sites dose to dislocations in order to lower its chemical potential. In plate 
martensite, however, the martensite is internally twinned and there are 
relatively few dislocations. In this case carbon-rich cluster" or zones tend to 
form instead. In low-carbon low-alloy steels, martensite starts to form at 
relatively high temperatures and there can be sufficient time during the 
quench for carbon to segregate or even precipitate as E-carbide or cementite. 

E-Carbide 
The reason for the 0.2% C limit (Table 6.4) is thought to be due to the fact 
that the M s temperatures of very low-carbon martensites are high enough to 
allow considerable carbon diffusion to lath boundaries du ring cooling (see, 
e.g., Fig. 6.3c). There is thus no carbon left in solution to precipitate out on 
reheating . E-Carbide has a hexagonal crystal structure and precipitates in the 
form of laths with an orientation relationship as shown in Table 6.5, (see 
Fig. 6.25). This orientation relationship provides good matching between the 
(101)", and (1011). planes. 

Fig. 6.25 e-carbide (dark) precipitated from martensite in Fe-24 Ni-0.5 e after 30 
min at 250 oe. Thin foil electron micrograph (x 90000). (After G.R. Speich in Metals 
Handbook, 8th edn. Vol. 8, American Society for Metals, 1973, p. 202.) 
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Cementite 
Cementite forms in most carbon steels on tempering between 250 and 700 oe. 
The precipitate is initially lath-like with a {Oll}a' habit plane, Fig. 6.26. It has 
an orthorombic crystal structure and forms with the orientation relationship 
given in Table 6.5. At high temperatures cementite rapidly coarsens into a 
spheroidal form, as shown in Fig. 6.32. In alloy steels the cementite composi­
tion can often be represented as (FeMhC where M is a carbide-forming 
alloying element. The composition may however be metastable if sufficient 
alloying elements are present. 

Alloy Carbides 
In steels containing sufficient carbide-forming elements alloy carbides are 
formed above -500°C where substitutional diffusion becomes significant. 
These carbides replace the less stable cementite which dissolves as a finer 
alloy carbide dispersion forms. Some typical precipitation sequences are 
listed in Table 6.4. There are two ways in which the Fe3C ~ alloy carbide 

Fig. 6.26 Cementite (dark laths) farmed during tempering a 0.42 C steel 1 h at 
300 oe. Thin fail electron micrograph (x 39000). (After G.R. Speich in Metals 
Handbook, 8th edn., Val. 8, American Saciety far Metals, 1973, p. 202.) 
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transformation can take place: 

423 

1. By in situ transformation-the alloy carbides nucleate at several points 
at the cementite/ferrite interfaces, and grow until the cementite dis­
appears and is replaced by a finer alloy carbide dispersion, see, e.g., 
Fig. 6.27. 

2. By separate nucleation and growth-the alloy carbides nucleate heter­
ogeneously within the ferrite on dislocations, lath boundaries, and prior 
austenite grain boundaries. The carbides then grow at the expense of 
cementite. 

Either or both mechanisms can operate depending on the alloy composition. 
The formation of alloy carbides is an important strengthening mechanism 

in high-speed tool steels that must operate at dull red heat without losing their 
cutting ability. The phenomenon is usually referred to as secondary harden­
ing. Figure 6.28 shows the effect of tempering molybdenum steels for various 
times and temperatures. The hardness of plain carbon martensites usually 
decreases with increasing temperature due to recovery and overageing 
effects. The replacement of a coarse cementite dispersion by a finer alloy 
carbide that is more resistant to coarsening, however, is able to produce an 
increase in hardness at around 550-600 oe. 

The effectiveness of these carbides as strengtheners depends on the fineness 
of the dispersion and the volume fr action precipitated. The fineness of the 
dispersion depends on !J.G * for nucleation wh ich in turn is inftuenced by the 

Fig. 6.27 W2C needles lying along the sites of former Fe3C precipitates in Fe-6.3 
W-0.23 C quenched and tempered 20 h at 600 oe. (After R.W.K. Honeycombe, 
Structure and Strength of Al/oy Steels, Climax Molybdenum, London, after A. T. 
Davenport.) 
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Fig. 6.28 The effect of molybdenum on the tempering of quenched 0.1 % esteeis. 
(After K.J. Irvine F.B. Pickering, Journal o[ the Iron and Steel Institute 194 
(1960) 137.) 

free energy of formation of the carbide, the interfacial energy and the misfit. 
A guide to the relative free energies of formation is given by Fig. 6.29 which 
shows the heats of formation (tlHf) of various nitrides, carbides and borides 
relative to that of cementite which is taken as tlHf = O. The finest precipitate 
dispersions are generally obtained from VC, NbC, TiC, TaC and HfC. These 
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Fig. 6.29 Enthalpies of formation of carbides, nitrides and borides. (Data from 
H. L. Schick, Thermodynamics of Certain Refractory Compounds, Academic Press, 
1966.) 
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are all close-packed intermetallic compounds. On the other hand the carbides 
with complex crystal structures and low heats of formation, e.g. M7C3, M6C 
and Mn3C6, generally form relatively coarse dispersions. 

The volume fraction of carbide precipitated depends on the solubility of the 
alloy carbide in the austenite prior to quenching, relative to the solubility in 
ferrite at the tempering temperature. Note that the solubility of a phase ß in a 
terminal solid solution of Cl was considered in Chapter 1 for binary alloys. It 
can similarly be shown that in ternary Fe-C-M alloys the concentrations of M 
and C in Fe in equilibrium with a carbide MmCn are approximately given by 
the relation38: 

(6.18) 

where [M] and [C] are the atomic percentages or mole fractions of M and C in 
solution and K is the solubility product which can be expressed as 

-~H 
K = Ko exp RT (6.19) 

where Ko is a constant and ~H is the enthalpy of formation of MmCn from M 
and C in solution. 

Figure 6.30 shows the solubility products of various carbides and nitrides in 
austenite as a function of temperature. The solubilities of these compounds in 
ferrite are very much lower and to a first approximation can be considered to 
be approximately equal. It is c1ear therefore that chromium, molybdenum 
and vanadium with the highest solubilities in austenite, should precipitate in 
the highest volume fractions in the ferrite. 

Effect of Retained Austenite 
In most steels, especially those containing more than 0.4% C, austenite is 
retained after quenching. On ageing in the range 200-300 °C this austenite 
decomposes to bainite. In some high-alloy steels austenite can be stabilized to 
such low temperatures that the martensite partially reverts into austenite on 
heating. Very thin regions of retained austenite may even be present between 
laths in low-carbon steel, and this is thought to improve the toughness of 
these steels independently of tempering treatments. 

Recovery, Recrystallization and Grain Growth 
As-quenched lath martensite contains high-angle lath boundaries, low-angle 
cell boundaries within the laths, and dislocation tangles within the cells. 
Recovery usually occurs above 400°C and leads to the elimination of both the 
dislocation tangles and the cell walls. The lath-like structure, however, re­
mains as shown in Fig. 6.31. The ferrite can recrystallize at high temperatures 
in low-carbon steels, (see, e.g., Fig. 6.32) but the process is inhibited in 
medium to high-carbon steels by the grain boundary pinning caused by 
carbide precipitates. In the latter steels recovery is followed by grain growth. 
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Fig. 6.30 Solubility products (in atomic per cent) of carbides and nitrides in austenite 
as a function of temperature.' (After R.W.K. Honeycombe, Structure and Strength of 
Alloy Steels, Climax Molybdenum, London, 1973.) 

Temper Embrittlement 
As pointed out in the introduction to this section the aim of tempering 
martensite is to improve ductility. However in some steels tempering in, or 
slow cooling through, the range 350-575 oe can lead to embrittlement. This 
has been attributed to the segregation of impurity atoms such as P, Sb or Sn to 
prior austenite grain boundaries. Some steels also show an embrittlement on 
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Fig. 6.31 A recovered lath martensite showing that the lath boundaries are retained. 
Fe-0.18 e tempered 10 min at 600 oe (x 2000). (After G.R. Speich in Metals 
Handbook, 8th edn., Vol. 8, American Society for Metals, Metals Park, Ohio, 1973, 
p. 202.) 

tempering between 230 and 370 oe. This may be caused by the formation of 
carbides with a critical plate-like shape. 

6.7 Case Studies 

It is clear from the foregoing theory of martensite that much work remains to 
be done before we can fully understand this complex transformation, particu­
larly in steels. In spite of this, the hardening of steel by quenching to obtain 
martensite is arguably one of the most important of all technological proces­
ses. In this section we illustrate four examples of technological alloys based on 
the martensite transformation. These are a quenched and tempered structural 
steel, some controlled transformation steels including TRIP steels, dual­
phase steel, and a TiNi 'memory' metal possessing a unique shape-memory 
property based on a diffusionless transformation. 

6.7.1 Carbon and Low-Alloy Quenched and Tempered Steels 

Composition range: 0.1-0.5 wt% C; (C < 0.3%: weldable without preheat) 
0.6-1.3% Mn with or without small alloying additions, 
e.g. Si, Ti, Mo, V, Nb, Cr, Ni, W, etc. 
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• 
• 

• 

• 

Fig. 6.32 A partially recrystallized structure. Top left: recovered but not recrystal­
Iized, bottom left: a new recrystallized grain. Coarse spheroidal cementite is also 
apparent. Fe-0.18 C quenched and tempered 96 hat 600°C (x 2000). (After G.R. 
Speieh, in Metals Handbook, 8th edn ., Vol. 8, American Society for Metals, 1973, 
p. 202.) 

Special properties: High strength, weldable constructional steels. 
Relevant phase diagrams: Fe-C, in conjunction with appropriate CCT, TTT 

diagrams (see, e.g., Fig . 6.3). 
Microstructures: See Figs . 6.1 and 6.12 . 

Comments: The compositions of these steels are chosen with respect to 
(a) hardenability; (b) weidability; (c) tempering properties, e .g. resistance to 
tempering, or increased tempering strength due to secondary hardening. 
Typically, lath or mixed (lath plus twinned) structures contain high densities 
of dislocations (0.3-0.9 x 1010 mm- 2), equivalent to a heavily worked steel. 
There is normally very little retained austenite associated with these steels 
see, e.g., Fig. 6.22. The lattice structure is bct, at least for carbon contents 
greater than ~0,2%. Below this composition it is suspected that due to the 
higher Ms temperature, some carbon segregates to dislocations or lath bound­
aries during the quench, as measured by resistivity and internal frictional 
measurements. 

These results indicate that only in steels containing more than 0.2% C is 
carbon retained in solution. Curiously, this effect is not reftected by hardness 
changes and therefore the main strengthening mechanism in these steels is 
thought to be the fine lath or cellular structures and not so much due to 
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carbon in solution. The yield strength can therefore be represented by a 
modified version of the Hall-Petch equation (Gladman et al., 1975?5: 

IT-y = ITi + Kd- 1/ 2 + ITdisl (+ ITppt) (6.20) 

where ITi is the friction stress (due to alloying elements in solution) and d 
refers to the mean cell, or lath size. K is a constant and ITdisl refers to the 
hardening contribution due to dislocations and/or twins; ITppt refers to carbide 
precipitation after tempering. Typical yield strengths of these tempered steels 
are in the range 500-700 MN m-2 , for a mean lath width of 2-3 flm. 

6.7.2 Controlled- Transformation Steels 

Compositions ranges: 

0.05-0.3 wt% C 
0.5-2.0% Mn 
0.2-0,4% Si 

14.0-17.0% Cr 
3.0-7.0% Ni 

-2% Mo 

Other possible additions: V, Cu, Co, Al, Ti, etc. 
Special praperties: Very high strength, weldable, good corrosion resistance; 

used, e.g., as skin for high speed aircraft and missiles. 
Relevant phase diagrams: See Fig. 6.33. 
Microstructures: Fine lath martensite with possible fine network of ß-ferrite. 
Comments: Since it is required to form, or work this material at ambient 
temperatures prior to hardening and tempering, elements that stabilize the 
austenite are used in significant amounts, e.g. Ni, Cu, etc. On the other hand, 
the Ms-Mf range should not be depressed too far, and the relative effects of 
alloying elements on Ms temperature are shown in Table 6.6. It is seen that in 
practice very strict contral over composition of these steels must be made, 
balancing the amount of ferrite formers (e.g. Mn) with C content. Such 
amounts of ß-ferrite are sometimes retained in order to improve weid ability 

Table 6.6 Effect of Alloying Elements on Ms in Steels 

F.B. Pickering, 'Physical metallurgy of stainless steel developments' Int. Met. 
Rev., 21, pp. 227-268, 1976. 

Element 

Change 
in M s °C 

N C Ni Co Cu Mn W Si Mo Cr V Al 

per wt% -450 -450 -20 + 10 -35 -30 -36 -50 -45 -20 -46 -53 
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(see Section 4.6.3). This also requires a careful balance in analyses, using, 
e.g., modified Schaeffler diagrams as a guide. Cold working is either carried 
out in the purely austenitic range (i.e. above Md) the steel then being 
quenched to obtain martensite, or worked below Md in which case deforma­
tion in duces the transformation to occur without the need for refrigeration. 
The latter steels are known as 'transformation induced plasticity' (TRIP) 
steels. Since the Ms-Mi range is about 100-140°C, the Ms temperature 
should not lie too far below the working temperature, or refrigeration will 
have to be carried out at such low temperatures that it may become too 
expensive. Retained austenite is undesirable in these steels because of its 
adverse effect on strength. The fine martensitic structure, in combination with 
work hardening and tempering give these steels strengths up to 
-1500 MN m- 2 . In Table 6.7, typical properties of various controlled trans­
formation steels are shown as a function of the type of heat treatment and 
transformation. 

The mechanical properties given in Table 6.7 show that sampies trans­
formed by refrigeration generally give the higher strengths. It is also seen that 
the austenitizing temperatures may change from alloy to alloy. Choice of 
austenitizing temperature is critical with regard to solution treatment, re­
solution of carbides and Ms temperature. For example, the lower the solution 
temperature, the more M23C6 will remain during austenitizing; this in turn 
re duces the Cr and C conte nt of the austenite which raises the Ms tempera­
ture. The example given of a TRIP steel in Table 6.7 shows that this material 
has exceptional high strength and toughness (50% elongation). 

6.7.3 The 'Shape-Memory' Metal: Nitinol 

Composition range: 55-55.5 wt% Ni-44.5-45% Ti. Possible additions: small 
amounts of Co (to vary M s )' 

Phase diagram: See Fig. 6.34. 

Phase transitions: 

Ordered TiNi(I) bcc A2 structure 
~ {650-700 °C diffusion controlled 

TiNi (II): complex CsC1-type structure 
~ {170°C martensitic 

TiNi (III): complex structure 

Special properties: The TiNi (II ~ III) transformation is reversible and 
effectively enables the alloy to be deformed by a shear 
transformation, i.e. without irreversible plastic defor­
mation occurring, by up to 16% elongationjcontraction. 
Thus 'forming' operations can be made below M s which 
may be 'unformed' simply by re-heating to above the Ms . 

These unique properties are used in such applications as, 
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(0) 

(b) 

Diffusionless transformations 
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Fig. 6.34 (a) Ti-Ni phase diagram (after D.R. Hawkins in Metals Handbook, 8th 
edn., Vol. 8, American Society for Metals, 1973, p. 326); (b) Ms temperature as 
function of Ni content. 
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e.g. toys, self-erecting space antennae, special tools, 
self-Iocking rivets, etc. 

Microstructure; very fine twinned martensite. 
Comments: This transformation is interesting for two reasons: firstly it 

involves a diffusionless transformation from one ordered structure to another. 
It is of course fundamental to this type of transformation that if the austenitic 
phase is ordered, the martensitic product must also be ordered. Secondly, the 
mode of the transformation is such that very extensive deformation (up to 
16%) can occur as a thermoelastic (non-plastic) martensitic shear mechanism, 
i.e. the transformation is reversible. Although this essentially involves an 
alloy of nominally stoichiometric composition, small additional increases in 
Ni (max ~55.6 wt%) can be tolerated. This increase in Ni content has the 
important effect of decreasing the Ms temperature. The Ms temperature as a 
function of Ni content is shown in Fig. 6.34b. However, it is advisable not to 
exceed 55.6 wt% Ni, to avoid the precipitation of the TiNi3 phase. To avoid 
this problem, sm all amounts of Co can be added virtually on a 1 : 1 basis as a 
substitute for Ni. 

While the martensitic phase is described as a complex CsCI ordered lattice, 
as afirst approximation the transformation is related to the type: bcc ~ hcp. 
The habit plane of the twinned martensite plate is irrational and elose to 
(551)bCC (Sinelair and Mohammed, 1978)20. 

Another interesting feature of this transformation is that it appears to bring 
about an abrupt change in Young's modulus and yield strength. This change 
in Young's modulus also results in distinct changes in the modulus of 
resilience, the 'damping' properties of the material being much greater in the 
martensitic (TiNi III) form. 

The large amount of deformation that this alloy can undergo due its special 
transformation characteristics is utilized commercially. For example, it may 
be "formed" in a fully reversible way simply by deforming below the Ms 

temperature. Subsequent heating above the transition temperature then 
changes the deformed (sheared) structure back to its original form. This 
unique feature of alloys such as this has made them known as: "memory 
metals" . There are a number of so-called memory metals known today37, 

although none so commercially useful as TiNi alloys. 
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Exercises 

6.1 Use free energy-composition diagrams to illustrate the driving force for 
the Fe-Ni martensitic transformation at T> To; T = To; T = Ms • 

Show how this chemical free energy can be estimated if the undercooling 
is known. Explain why the driving force for the nucleation of martensite 
at the M s temperature is independent of carbon concentration in Fe-C 
steels. 

6.2 Wh at are the possible non-chemical energy terms in the martensitic 
transformation? Derive equations for the critical size and volumes of a 
martensite nucleus using classical nucleation theory. What evidence is 
there that martensite nucleates heterogeneously? 

6.3 Evaluate Equations 6.8, 6.9 and 6.10 for Fe-C martensite assuming 
AGv = 174 MJ m-3 , 'Y = 20 mJ m-2 , s = 0.2, f.L = 80 GN m-2 

6.4 Give an exact definition of the habit plane of martensite. Describe how 
this habit plane might be measured experimentally. Give possible 
reasons why there is so much scatter of habit plane measurements in a 
given sampie. 

6.5 In the phenomenological approach to martensitic transformations there 
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are two different but equivalent ways of producing the lattice invariant 
shear. Show exactly what is meant by this. Wh at is the experimental 
proof of both types of shear? 

6.6 Draw a diagram to illustrate Bain's homogeneous deformation model 
for the fee ~ bcS diffusionless transformation. Assuming a y = 3.56 A 
and an = 2.86 A, and that c!a for martensite is 1.15 calculate the 
maximum movement experienced by atoms during the transformation. 
Assume that c!a = 1.1. 

6.7 What are the essential differences in martensite nucleation models based 
(a) on changes at the core of a dislocation; (b) on dislocation strain field 
interaction ? Discuss the advantages and disadvantages of both models in 
terms of the known characteristics of martensitic transformations. 

6.8 Give possible reasons why the habit plane of martensite changes as a 
function of alloying content in steels and Fe-Ni alloys. What factors 
influence the retention of austenite in these alloys? 

6.9 Wh at is the role of austenitic grain size in martensitic transformations? 
Is austenitic grain size important to the strength of martensite? What 
other factors are impol'tant to strength and toughness in technological 
hardened steels? 

6.10 Suggest possible alloying and heat treatment procedures needed to 
design the following steels: (a) a quenched and tempered steel; (b) a 
dual phase steel; (e) amaraging steel; (d) a TRIP steel. 

6.11 How would you characterize the unique properties of alloys which can 
be utilized as 'memory metals' . How would you design a TiNi alloy for 
use as, e.g., a self-Iocking rivet? Give instructions on how it is to be 
used. 



Solutions to Exercises 
Compiled by lohn C. Ion 

Chapter 1 

1.1 Cp = 22.64 + 6.28 x 1O-3T J mol-1K-1 

1.2 

fT2C 
Entropy increase, flS = 2dT 

TI T 

f1358 22.64 + 6.28 x 1O-3T 
flS300-1358 = T dT 

300 

~ 
::::l 

= l~öll[22.641n T + 6.28 x 1O-3Tj 

= 40.83 J mol-1K-1 

1600 -, 

800 -

Liquid Fe _ - -

y·Fe 

~ 
~ E 500 

_______ ~_c 

a-Fe {E. 
300 

o 50 100 150 

Pressure, kbar 
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24 

Liquid Fe 

'Y-Fe 

At 1600"C 

110 

Solutions 10 exercises 

>-L ",e> ",,,, 
u:'" 

(I) Pressure 

o.-Fe 

y-Fe 

t-Fe 

kbar 

22 

a-Fe 

y-Fe 

At 800"C 

120 

Schematic free energy-pressure curves for pure Fe. 

1.3 From Equation 1.14 

(~~)eq - ::v 
Assuming !1H and !1 V are independent of T and P for the range of 
interest, the equation may be rewritten as 

where: !1H = H L - H S = 13050 J mol-I; 

!1V = VL - VS = (8.0 - 7.6) x 1O-6m3 ; 

T = (1085 + 273) K. 

Thus if !1P is 10 kbar, i.e. 109 Nm-2 , the change in the equilibrium 
melting temperature is given by the above equation as 

!1T = 42 K 



Solutions to exercises 443 

1.4 Phases stable at low temperatures must have low enthalpies because 
the (- TS) term in the expression for G becomes negligible. Phases 
stable at high temperatures, on the other hand, have higher entropies 
to compensate for higher enthalpies. 

1.5 

Six distinguishable configurations. 

Theoretical number of distinguishable ways of arranging two black 
balls and two white balls in a square is 

(NB + Nw )! = (2 + 2)! = 6 
NB! Nw ! 2! 2! -

1.6 Dividing both sides of Equation 1.30 by the number of moles of 
solution (nA + nB) gives 

dG' dnA dnB 
---- = JlA + JlB -,---=--
(nA + nB) (nA + nB) (nA + nB) 

The left-hand side of this equation is the free energy change per mole 
of solution and can therefore be written dG. 

dnA d dnB --...:...:...--,-- an 
(nA + nB) (nA + nB) 

are the changes in the mole fractions of A and B, dXA and dXB . 

The above equation can therefore be written as 
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dG = IlAdXA + IlBdXB 

dG dXA 
Thus dXB = IlA dXB + IlB 

= -IlA + IlB 

But using Equation 1.31 

G = IlA XA + IlBXB 

. G - IlA X A 
glves IlB = X B 

.. dG G - IlA X A 
glvmg dXB = -IlA + X B 

dG 
or IlA = G - X B dX

B 

- (QR) - -From the figure IlA = PR - X B X
B 

= PQ = OS 

(1.6.1) 

i.e. point S, the extrapolation of the tangent to point R on the 
G-curve represents the quantity IlA. 

Equation 1.6.1 gives 

dG 
IlB = IlA + dXB 

- UV 
i.e. IlB = OS + US 

But US = OT = 1 
Thus IlB = OS + UV = TV 
i.e. point V represents the quantity IlB. 

>-
~ 
Cl) 
c: 
Cl) 

Cl) 
Cl) 

u: I 
I 

v 

s ----------t-GL ------ u 

I 

o __ --------------~I~p-----------eT 
A B 
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1.7 Equation 1.31: G = IlAXA + IlBXB 

Equation 1.39: G = XAGA + XBGB + OXAXB + RT(XAlnXA 
+ XBlnXB) 

= XAGA + XBGB + Q(XiXB + X~XA) 
+ RT(XAlnXA + XBlnXB) 

= XA[GA + QX~ + RTlnXA] + XB[GB 
+ oxi + RTlnXB] 

Comparison with Equation 1.31 and using X A + X B = 1 gives 

IlA = GA + Q(1 - X A)2 + RTlnXA 
IlB = GB + Q(1 - X B)2 + RTlnXB 

1.S (a) Atomic weight of Au = 197 
Atomic weight of Ag = lOS 

15 
No. of moles of Au = 197 = 0.076 

25 
No. of moles of Ag = lOS = 0.231 

no. of moles of solution = 0.307 

) . 0.076 
(b Mole fractiOn of Au = 0.307 = 0.24S 

. 0.231 
Mole fractiOn of Ag = 0.307 = 0.752 

(c) Molar entropy of mixing, ASmix = -R(XAlnXA + XBlnXB) 

ASmix = -S.314(0.24S·lnO.24S + 0.752· In 0.752) 
= 4.66 J K- 1 mol- 1 

(d) Total entropy of mixing = Molar entropy of mixing 
x no. of moles of solution 

= 4.66 x 0.307 

= 1.43 J K- 1 

(e) Molar free energy change at 500°C = AGmix 

445 

= RT(XAlnXA + XBlnXB) 

.. AGmix = -TASmix = -773 x 4.66 = -3.60 kJ mol- 1 

(f) IlAu = GAu + RTlnXAu 
= 0 + (S.314· 773 ·ln 0.24S) 
= -S.96kJ mol- 1 
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1.9 

Solutions to exercises 

IlAg = GAg + RTlnXAg 

= 0 + (8.314·773· In 0.752) 
= -1.83 kJ mol-I 

(g) For a very small addition of Au 

1.9 

t 
>­
Cl 
CD 
c: 
Q) 

Q) 
Q) 

u: 

dG' = IlAu· dnAu(T, P, nB constant) 

At 500°C, IlAu = -8.96 kJ mol-I. 

Avogadro's Number = 6.023 X 1023 

1 eV = 1.6 X 10-19 J 

-I -8.96 X 103 -I 
-8.96 kJ mol = 1.6 X 10-19 X 6.023 X 1023 eVatom 

= -0.1 eVatom- 1 

. . Adding one atom of Au changes the free energy of solution 
by -0.1 eV. 

8 

T = T, 
~\~r 
_----------- c 

Graphite 

a b 
d 

e 
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n 0 

h ---------i 

c d 

--Fe3C 

- - --Graphite 

Fe Graphite 
%C-. 

G-composition and T-composition diagrams tor the Fe-Fe3C 
and Fe-C systems (not to scale). 

1.10 dCu = -Ill dnA 

dCß = +Il~ dnA 

At equilibrium dCu + dCß = 0 
i.e. -Ill dnA + Il~ dnA = 0 
i.e. III = Il~ 

Similarly for B, C, etc. 

1.11 Equilibrium vacancy concentration 

e I1Cv 
Xv = exp - RT 

I1Sv I1Hv = exp -·exp ---
R RT 

1 eV = 1.6 X 10-19 J 
.. R = 8.63 X 10-5 eV atom- 1 K- 1 

( -0.8 ) 
X~ (933 K) = exp (2) . exp 8.63 X 10-5 X 933 

= 3.58 X 10-4 

( -0.8 ) 
X~ (298 K) = exp (2) . exp 8.63 X 10-5 X 298 

= 2.28 X 10-13 
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Q 
1.12 Assurne X Si = A exp - RT 

Q 
InXsi = InA - RT 

At 550°C (823 K): In 1.25 = InA - Q/(8.314 x 823) 
At 450°C (723 K): In 0.46 = InA - Q/(8.314 x 723) 

which can be solved to give 

Q = 49.45 kJ mol- 1 

A = 1721 

Thus at 200°C (473 K) 

( 49450 ) 
XSi = 1721· exp - 8.314 x 473 

= 0.006 atomic % 

According to the phase diagram, the solubility should be slightly 
under 0.01 atomic %. Reliable data is not available at such low 
temperatures due to the long times required to reach equilibrium. 

1.13 A sketch of the relevant phase diagram and free energy curves is 
helpful in solving this problem. See p. 449. 

I1GA and 11GB are as defined in (b) and (c). 

Since A and Bare mutually immiscible, the tangent to the liquid 
curve GL at X B = X~ will intercept the curves for the A and B phases 
as shown, i.e. IlÄ = G1, Il~ = G~. 

The liquid is assumed ideal, therefore from Fig. 1.12 

I1GA = -RTElnXÄ 

and 

11GB = -RTElnX~ 
But I1G A and 11GB can also be found from the relationships shown in 
Figs (b) and (c). 

If C~ = C~, Equation 1.17 gives 

L 
I1G=-·I1T 

Tm 

or 
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I~ - - - - TE f--------"'''''------...1 

(a) (b) G~ G~ 

t 
>. 
!:l 
Q) 
c: 
Q) 

Q) 

~ 
LI.. 

F ree energy 01 pure A A B 

G'l 6G: 
G~ 

(d) 

A xg B 

(a) Schematic phase diagram; 
(b) G-T curves for pure A; 
(c) G- T curves for pure B; 
(d) Free energy curves for the A-B system at TE. 

Thus 11GA = l1Sm(A)' (Tm(A) - TE) 
11GB = l1Sm(B)·(Tm(B) - TE) 

or 

Finally therefore: 

-RTEInXÄ = l1Sm(A)· (Tm(A) - Td 

-RTEInX~ = l1Sm(B)· (Tm(B) - TE) 

-8.314 TEInXÄ = 8.4 (1500 - TE) 

-8.314 TEIn (1 - XÄ) = 8.4 (1300 - TE) 

Solving these equations numerically gives 

XÄ = 0.44 

X~ = 0.56 

TE = 826 K 

449 

Free energy 01 pure B 
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1.14 If solid exists as a sphere of radius r within a liquid, then its free 
energy is increased by an amount 

G~ - G~ = 2yVm 

r 
(from Equation 1.58) 

where G~ is the molar free energy of the sphere and G~ is the molar 
free energy in the absence of interfaces. 

Growth of the sphere must lead to a reduction of the total free 
energy of the system, i.e. growth can occur when 

G~< GL 

. GL GS 2yVm I.e. - 00 >--
r 

See figure below. 

---Growth occurs spontaneously with 
a decrease in free energy 

Substituting Equation 1.17 for GL - G~ gives 

. AT 2yVm Tm 
1. e. Li > -'--......:..:.:.~ 

rL 

Substituting the numerical values given 

dT(r = 1 Ilm) > 0.2 K 
AT(r = 1 nm) > 200 K 

1.15 Composition = 40% A, 20% B, 40% C; 
a = 80% A, 5% B, 15% C; 
ß = 10% A, 70% B, 20% C; 
y = 10% A, 20% B, 70% C. 
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Let the mole fractions of a, ß and Y in the final microstructure be X a , 

X ß and x.y respectively. 

Balance on A: 0.4 = 0.8 X a + 0.1 Xß + 0.1 X y 

Balance on B: 0.2 = 0.05 Xa + 0.7 Xß + 0.2 Xy 

Balance on C: 0.4 = 0.15 Xa + 0.2 Xß + 0.7 Xy 

Solving these equations gives: Xa = 0.43; Xß = 0.13; Xy = 0.44 

1.16 From Equations 1.41 and 1.43 we have 

IlA = GA + RTlnyAXA 

where GA is the free energy of pure A at temperature T and pressure 
P. 

Suppose GA is known for a given temperature and press ure To and 
Po 

i.e. GA(To, Po) = G?. 

From Equation 1.9 for 1 mole of A 

dGA = -SAdT + VmdP 

Thus if S A and V m are independent of T and P, changing temperature 
from To to T and pressure from Po to P will cause a total change in 
GA of 

and 

t':1GA = -SA(T - To) + Vm(P - Po) 

GA = G?. + t':1G 

= G?. + SA(To - T) + Vm(P - Po) 

IlA = G?. + SA(To - T) + Vm(P - Po) + RTlnyAXA 

The accuracy of this equation decreases as (T - To) and (P - Po) 
increase. 
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Chapter 2 

2.1 (a) 

Carburizing 
gas 

1.4 

Sheet Decarburizing 
gas 

0.15 

Carbon concentration 

L 
Thickness 

(b) Under steady-state conditions, flux of carbon atoms into one side 
= flux out of the other side = J. 

I = _ DcdC 
dx 

D1.4 {~} = DO.15 {~} 
1.4 0.15 

{dC} j{dC} = DO.15 = 2.5 x 1O=~: = 0.32 
dx 1.4 dx 0.15 D1.4 7.7 x 10 --

(c) Assume that the diffusion coefficient varies linearly with carbon 
concentration 

D = a + bC 

where a and bare constants that can be determined from the data 
given. Fick's first law then gives 

dC 
I = -(a + bC) dx 

or f ldx = - f (a + bC) dC 
bC2 

i.e. -lx = aC + - + d 
2 

where dis an integration constant. If we define C = Cl at x = 0 

b 2 
d = -aCl - 2 Cl 
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Solutions to exercises 

Similarly, if C = C2 at x = I, the thickness of the sheet, gives 

b 2 b 2 
-li = aC2 + 2" C2 - aC I - 2" CI 

i.e. 1 = {a( CI - C2 ) + ~ (Ci - C~)} / I. 

The constants a and b can be determined from 

D l = a + bC l 

D2 = a + bC2 

from WhlCh a = D2 - C2 
. (D l - D2) 

Cl - C2 

d b - D I - D2 

an - CI - C2 

453 

Substitution of these express ions into the equation for 1 gives 
after simplification 

= (D2 + DI)CI - C2 

1 2 I 

Substituting: D l = 7.7 X 10- 11 m2 s- 1 

D2 = 2.5 X 10- 11 m2 s- 1 

gives 

1.4 3 
CI = - x 60 kg m-

0.8 

0.15 3 
C2 = -- x 60 kg m--

0.8 

= 2 x 10-3 m 

1 = 2.4 X 10-6 kg m-2 S-1 

2 

--d __ 

Consider two adjacent (111) planes in an f.c.c. crystal. A vacancy in 
plane 1 can jump to one of three sites in plane 2. For the sake of 
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generality, let this number of jumps be designated P (=3)0 In all there 
are 12 possible sites (nearest neighbours)o 

If nl and n2 are the numbers of vacancies m-2 in planes 1 and 2 
respectively, the number of jumps from 1 to 2 will be given by 

- P 2 Jy = 12 rvnl m- S-I 

where r v is the jump frequency of the vacancieso 

Likewise 

Therefore following the same arguments as in Section 20201 (po 6) 
gives 

( p 2 ) öCy 

J y = - 12 d r v öx 

where dis the perpendicular separation of the adjacent planes, ioeo we 
can write 

In fococo metals the jump distance a is given by 

where a is the lattice parameter. 

For (111) planes 

d = ;3 = a ~~ 
Putting P = 3 gives 

1 2 
D y = 6 a r y 

For (100) planes, adjacent planes are in fact (200) 
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2.3 The activity along the bar is described by the following equation 

~ 
.<: 
U 
tlS 

oS 

. . Ao (x2 
) achvlty = --·exp --

2~rrDt 4Dt 

where Ao = initial activity; 

D = diffusion constant; 

t = time; 

x = distance along the bar. 

Thus by plotting In (activity) vs x2 , a straight line of slope - (4Dt)-1 
is produced, enabling D to be found since t is known. 

x Ilm 10 20 30 40 50 

x2 Ilm2 100 400 900 1600 2500 

activity 83.8 66.4 42.0 23.6 8.74 

In (activity) 4.43 4.20 3.74 3.16 2.17 

• 
• 

4 

• 

• 
3 

2+-------~------_r------~------_,r_------r_--~---

o 1000 2000 

From the graph: slope = -8.66 x 10-4 Ilm-2. 

Hence: __ 1_ = -8.66 x 10-4 

(4Dt) 

Since t = 24 h 
D = 3.34 X 10-15 m2 S-I 
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- (1tx) t 2.4 C = C + ßo sin T exp-~ 

For this equation to be a solution of Fick's second law, the following 
condition must be met 

But 

2.5 (a) 

öC . (1tX) 1 t Öl = - ßo sm T . ~ exp -~ 

- = ßo exp -- . - cos -öC t 1t (1tX) 
Öx , I I 

~:~ = -ßo exp -~. ;: sin (7) 
öC öZC lZ ,.-=-.-
öt öXZ 1tZ 

lZ 
,=-z-1t D B 

(Equation 2.21) 

C(x) = 4Co f _._1_. sin (2i + 1) 1tX 
1t j=O 21 + 1 I 

where I = thickness of sheet, 

Co = initial concentration. 

C(x) 

---I 
1 

I 
I 
I 
I 

O+----~------.-------r-------r_-

o I 
4 

I 
2 

x-

31 
4 
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The first two terms of the series are 

X = - sm - + - sm -C() 4Co [. 1tX 1. 31tX] 
n: 1 3 1 

Plotting this sum for the range 0 < x < 1 gives the eurve plotted 
opposite 

(b) If the surfaee eoneentration is effeetively zero, the solution to the 
diffusion equation beeomes 

C(x, t) = 4Co f _._1_. sin ((2i + 1) 1tX) 
n: i=O 21 + 1 1 

[-(2i + 1)2n:2Dt] 
. exp 12 

The amplitude of the first term (A \) is obtained by putting x = 1/2 
and i = 0, i.e. 

A 4Co [-n:2Dt] 1= -·exp -2-
n: 1 

The amplitude of the seeond term (A 2 ) is obtained by putting x = 

1/6 and i = 1, i.e. 

4Co [-9n:2Dt] 
A 2 = 3n: . exp 12 

If A 2 < 0.05 AI 

4Co [-9n:2Dt] 4Co [-n:2Dt] 
3n: . exp 12 < 0.05· -;-. exp -1-2-

12 

whieh gives t > 0.0240 D 

(e) Assurne that the time taken to remove 95% of all the hydrogen is 
so long that only the first term of the Fourier se ries is signifieant. 
The hydrogen eoneentration at this stage will then be given by 

4Co . 1tX (-n:2Dt) C(x, t) = -;-·sm Z·exp -p-

i.e. as shown in the figure on page 458. 

At the required time (t\) the shaded area in the figure will be 5% 
of the area under the eoneentration li ne at t = 0, i.e. 

rC(Xh t\) dx = 0.05 Col 
)0 
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which gives t l = 0.282 ~ 

i 
c 

1=0 
Co+-------------------------~ 

1=1, 

o 
x ..... 

Note that this time is an order of magnitude larger than the time 
derived in part (b). Consequently it is c1early justified to ignore all 
terms of the Fourier series but the first. 

( -13400) From Table 2.1, D = 0.1 exp RT 

i.e. D (20°C) = 4.08 X 10-4 mm2s- 1 

Thus for I = 10 mm: t l = 19.2 h, 
for I = 100 mm: I 1 = 1920 h (80 days). 

Molar 
free energy 

Il~ = Il~ 
(equilibrium) 

A xe a 

xa -

2 

x; 8 

-118=11& 
(equilibrium) 

At the initial compositions 1 and 2 of a and ß respectively the 
chemical potentials of A and B atoms in each phase can be found by 
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extrapolation of the tangents to the free energy curves at 1 and 2 to the 
corresponding sides of the free energy diagram, as shown above. 

All atoms diffuse so as to reduce their chemical potential. 
Therefore, A atoms will have a tendency to diffuse from a to ß (IlA > 
1l!1,) and B atoms will have a tendency to diffuse from ß to a (Il~ > 
1l'B)· 

The resultant composition changes are indicated in the diagram. 
Diffusion stops, and equilibrium is reached, when IlA = Il~ and 1l'B = 
Il~. That this process results in areduction in the total free energy of 
the diffusion couple can be seen from the diagram below. The initial 
free energy GI can be reduced to Gz by a change in the compositions 
of the a and ß phases to X~ and X'ß, the equilibrium compositions 
(provided X~ < X Bulk < X'ß). 

A XBuik Xß 

2.7 Substituting into Darken's Equations (2.47) and (2.51) 

( a a ) ÖXZn 
V = D zn - D cu ~ 

we obtain 

0.026 x 10-6 = (D~n - Dcu) x 0.089 mm S-1 

4.5 x 10-7 = 0.78 D~n + 0.22 Dcu mmz S-1 

From which 

Dzn = 5.1 X 10-7 mmz S-I 

Dcu = 2.2 X 10-7 mmz S-I 

B 
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The expected variation of D~n, D~u and Da are shown schematically 
below 

~----------------.-------~%Zn 
Cu i 

Solubility limit tor a 

Since Zn has a lower melting point than Cu, it diffuses faster of the 
two, and since increasing the zinc content re duces the liquidus tem­
perature, all diffusivities can be expected to increase with increasing 
Zn concentration. 

G(T,) 

Ge 

t 118(2) 

118 

A a b c d 8 
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a b C d B XB _ 

a 

t 
Cl) 

ß u 
c:: m 
1ii 
0 

Y 

0 aA 

-co a 

ß 

y 
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2.9 

(i) 

(ii) 

t 
e 
c: 
m 
in o 

t 
CI> 
I.) 
c: 
m 
in 
o 

t 
CI> 
I.) 

c:: 
.!!l 
UJ 

0 

A 

Solutions to exercises 

a t b 

Bulk composition 

a 
Xe -

a 

xe ..... 

a 

t 
---- ---- --- -\1 --

ß I 
I 
I 
I 

0.9 

Cl 

ß 

Cl 

t = 0 

B 

t> 0 
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: 
I 
la 
I 
I -------j----

A 

I 
Iß 
I 
I 

Bulk 
0.5 -

- --

0.9 B 

463 

L 

The total distance the interface moves, s, can be calculated in terms of 
the total couple thickness, L, by writing down an equation describing 
the conservation of B, i.e. 

0.9 (~ + s) + 0 (~ - s) = 0.5L 

± = 5.6 x 10-2 

Chapter 3 

3.1 Considering only nearest neighbours, if a surface atom has B 'broken' 
bonds, it will have an excess energy of B. E/2, where E is the bond 
energy. 

For f.c.c. crystals, each atom has twelve nearest neighbours in the 
bulk, so that E = L s/6Na , where L s is the molar latent heat of sub­
limation and Na Avogadro's number (no. of atoms per mole). 

The surface energy per surface atom is therefore given by 

B L s 
Y~v = -. - per surface atom 

12 Na 

If each surface atom is associated with a surface area A, the surface 
energy is 

B L s . 
Y = --.- per umt area 

sv 12A Na 

A can be calculated in terms of the lattice parameter a: 
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* Each surface atom is connected to two nearest neighbours in the 
{220} plane. Therefore it must be connected to ten others out of the 
plane. Since the atoms are symmetrically disposed about the {220} 

{hkl} {111 } {200} {220} 

~~2 ~ ~a a 

A* a a Y3 a2 aY2 
Y2'Y2'2 a·-

2 2 

B 3 4 5* 

Ysv 0.25 [~s] 0.33[;J 0.42 [~s ] 
a a 

Ysv 0.58[a;~J 0.67[a;~J 0.59 [a!;z,J 

plane, there must be five bonds above the plane of the paper and five 
below (giving a total of 12). 
+It can be shown that in general for f.c.c. met als 

a2~(h2 + k2 + F) 
A=~~------':'" 

4 

For the simple cases above, however, A can be calculated directly 
from a sketch, as shown. 

3.2 Esv = (cos e + sin 1(1). 2:2 

i.e. Esv = (cos 8 + sin 8)'-;' 
2a 

8>0 

dEsv ( . 8 E 
~ = -SIll + COS 8) . 2a2 

(d!v)e=o = 2:2 
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and Esv = (cos 9 - sin 9)· 2:2' 9<0 

. h' (dEsv ) E WhlC glVes da 9=0 = - 2a2 

At 9 = 0 there is a cusp in the Esv - 9 curve with slopes ± 2:2 ' 

3.3 For a two-dimensional rectangular crystal with sides of lengths LI and 
L2 and surface energies '11 and '12 respectively, the total surface energy 
is given by 

G = 2(LI'I1 + L2'12) 

The equilibrium shape is given when the differential of G equals 
zero, i.e. 

dG = 2(Lld'll + '1ldLI + L2d'l2 + '12dL2) = 0 

Assuming that '11 and '12 are independent of length gives 

'11dL I + '12dL2 = 0 

But since the area of the crystal A = LI L2 is constant 

dA = L2dL2 + L2dLI = 0 

Giving 

!.! = '12 
12 YI 

3.4 (a) By measuring, the misorientation 9 = 11. 
(b) By constructing a Burgers circuit around a dislocation, the 

Burgers vector is found to be 1.53 mm in the photograph (i.e. 
one bubble diameter). 

For a low-angle grain boundary, the spacing of the dislocations 
is given by 

D=_b_ 
sin 9 

1.53 
D=--=80mm 

sin 11° . 

wh ich is very dose to the mean dislocation spacing in the 
boundary. 
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3.5 Like all other natural processes, grain boundary migration always 
results in a reduction in total free energy. 

Grain growth 

During the process of grain growth all grains have approximately the 
same, low dislocation density, which remains unchanged during the 
grain growth process. 

Grain boundaries move towards their centres of curvature in this 
case, because atoms tend to migrate across the boundaries in the 
opposite direction (from the high press ure side to the low press ure 
side), in order to reduce their free energy, or chemical potential. 

The process also results in a reduction of the total number of grains 
by the growth of large grains at the expense of sm aller ones. The net 
result is a reduction in the total grain boundary area and total grain 
boundary energy. 

Recrystallization 

In this case, grain boundary energy is insignificant in comparison with 
the difference in dislocation energy density between recrystallized 
grain and surrounding deformed matrix. The small increase in total 
grain boundary energy that accompanies growth of a recrystallization 
nucleus is more than compensated for by the reduction in total dis­
location energy. 

The boundaries of recrystallization nuclei can therefore migrate 
away from their centres of curvature. 

3.6 (a) The pulling force acting on the boundary is equivalent to the free 
energy difference per unit volume of material. 

~b2 
If the dislocations have an energy of - J m -I, and the 

4 
dislocation density is 1016 m -2, then the free energy per unit 
volume, G, is given by 

G 1016 1010 X (0.28 X 10-9)2 -3 
= x 4 = 1.96 MJ m 

Thus the pulling force per unit area of boundary is 1.96 MN m-2• 
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(b) For nucleus growth, reduction in free energy due to annihilation 
of dislocations must be greater than or equal to the retarding 
force due to grain boundary curvature. 

Equating this with the driving force across a curved boundary 

I.e. 1.96 x 106 ~ 2r 
r 

. >- 2r 
.. r -- 1. 96 X 106 

Thus the smallest diameter = 1.0 11m 

3.7 From the phase diagrams, the limit of solid solubility of Fe in Al is 
0.04 wt% Fe, whereas that of Mg in Al is 17.4 wt% Mg. If one 
element is able to dissolve another only to a sm all degree, the extent 
of grain boundary enrichment will be large. (See for example Fig. 
3.28, p. 138.) Thus grain boundary enrichment of Fe in dilute Al-Fe 
alloys would be expected to be greater than that of Mg in AI-Mg 
alloys. 

3.8 See Fig. 3.35, p. 145. 
If da < dß, then in general the dislocation spacing (D) will span n 

atom planes in the ß phase and (n + 1) planes in the a phase, i.e. 

D = ndß = (n + 1) da 

From the definition of 0 we have 

( -ve) 

Substitution into the first equation gives 

n(l + 0) da = (n + 1) da 

1 
i.e. n = Ö 

d 
and D = ~ o 
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3.9 

Solutions to exercises 

_--2x2--__ 

The edges of the plate exert a force on the periphery of the broad 
face equal to Y2 . 4· 2.x2 
This force acts over an area equal to (2.x2)2 

IlP = Y2' 4 . ~2 = 2Y2 
(2.x2) X2 

The periphery of each edge is acted on by a force of magnitude 
2·Y2·2.x1 + 2·YI·2.x2 

The area of each edge is 2.x I . 2x2 

IlP = 2Y2' 2.x 1 + 2YI ·2.x2 = Y2 + .2'.!. 
2.x1 ·2x2 X2 Xl 

From the Wulff theorem (p. 115) for an equilibrium plate shape: 

XI YI -=-
X2 Y2 

(see also Exercise 3.3) 

IlP = 2YI = 2Y2 
XI X2 

3.10 See Section 3.4.1 (p: 143). 

3.11 Atomic radius of Al = 1.43 A 
Atomic radius of Fe = 1.26 A 
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1.26 - 1.43 
Hence zone misfit = 1.43 x 100% 

= -11.89%. 

When the misfit is less than 5%, strain energy effects are less 
important than interfacial energy effects and spherical zones minimize 
the total free energy. However, when the misfit is greater than 5%, 
the small increase in interfacial energy caused by choosing a disc 
shape is more than compensated by the reduction in coherency strain 
energy. 

Thus the zones in Al-Fe alloys would be expected to be disc­
shaped. 

3.12 Assuming that the matrix is elastically isotropie, that both Al and 
Mg atoms have equal elastie moduli, and taking a value of 1/3 for 
Poisson's ratio, the total elastic strain energy I1Gs is given by: 

Il = shear modulus of matrix; 
o = unconstrained misfit; 

V = volume of an Al atom. 

o = 1.60 - 1.43 = 0.119 
1.43 

V = 4/3· 1t. (1.43 X 10-10)3 = 1.225 X 10-29 m3 

IlAI = 25 GPa = 25 x 109 Nm-2 

.. I1Gs = 4 x 25 X 109 x (0.119)2 x 1.225 X 10-29 J atom-1 

= 1.735 X 10-20 J atom-1 

In 1 mol there are 6.023 X 1023 atoms 

1.735 X 10-20 x 6.023 X 1023 -1 
I1Gs = 1000 kJ mol 

= 10.5 kJ mol-1 

1 eV = 1.6 X 10-19 J, thus 

1.735 x 10-20 -1 
I1Gs = 1.6 x 10-19 eVatom 

= 0.1 eV atom- 1 

It is also implicitly assumed that individual Mg atoms are separated 
by large distances, so that each atom can be considered in isolation, 
Le. dilute solutions. 

The use of Equation 3.39 is also based on the assumption that the 
matrix surrounding a single atom is a continuum. 

3.13 See Section 3.4.4. (p. 160). 
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3.14 When a Shockley partial dislocation passes through an f.c.c. crystal 
the atoms above the glide plane in positions Aare shifted to B 
positions, B into C positions, etc. 

-L 

3.15 

i.e. A ~ B ~ C ~ A 

A B C A 

C A -L 
B C 

B 
-L-

C A A A 

A B B B B 

C C C C C Twin 
Plane 

B B B B B 

A A A A A 

C C C C c 

e B B B B 

The above se ries of diagrams shows the twinning process. 

v 

t D 

~IL-__ ---F • 

Let the interface CD move with a velocity v perpendicular to the 
interface. 

Consider unit area of interface perpendicular to both BC and CD. 

Mass flow perpendicular to BC = u x h. 
Mass flow perpendicular to CD = v x I. 

From the conservation of mass: u x h = v x I. 

u x h 
v=--

I 
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8 8 8 8 8 8 

C C C C C C 

A A A A A A Fee I 

8 8 
11/11/11/ 

8 8 --A-- 8 
I I 

C --- C 
I 

C ------- c--- I c ---c---

8 8 8 8 8 8 

A A A A A A 

Fee 11 
C C C C C C 

8 8 8 8 8 8 

A A A A A A 

If a single atom in crystal I attempts to jump into a crystal 11 position 
a ring of dislocation and an unstable A upon A situation results. 

A Shockley partial dislocation in every {111} slip plane creates a 
glissile interface between two twinned crystals: 

A .1 A 
--- - -- 'I ----------------

8 I 
..1. c 

1 
1 _c _________ .&. .... __ -'-1 __________ 8_ 

I 
_A __________ ~... _ --,r-------A--

8 I 
.L. c ---,..-,----

I _c _________________ .1. .... ___ I --8 

A I A 
.1. 

11 

Note, however, that as a result of the shape change produced by the 
transformation large coherency stresses will be associated with the 
interface (see Fig. 3.62a). 

Similar coherency stresses will arise as a result of the f.c.c./h.c. p. 
interface in Fig. 3.61. Strictly speaking, Fig. 3.60 is an incorrect 
representation of the stacking sequence that results from the passage 
of the partial dislocations. In layer 10, for example, there will not be 
a sudden change across the 'extra half-plane' of A to B or B to C, but 
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rather a gradual change associated with long range strain fields in 
both crystals. 

3.17 Solid/vapour interfaces and solidIliquid interfaces in non-metals are 
faceted and therefore migrate by ledge mechanisms. 

SolidIliquid interfaces in metals are diffuse and migration occurs by 
random atom jumps. 

3.18 See Section 3.3.4, p. 130. 

3.19 

From equations 1.41 and 1.43 we can write 

Ilk = GB + RT In YiXi 

Il~ = GB + RT In YeXe 
.. YiXi 

L\1l~ = Il~ - Il~ = RT In-­
YeXe 

For ideal solutions: Yi = Ye = 1 
For dilute solutions (Xi « 1): Yi = Ye = constant (Henry's Law) 

such that in both cases 

. Xi 
L\1l~ = RT In X 

e 

This can also be written 

L\llh = RTln (1 + Xi~eXe) 
If the supersaturation is smalI, i.e. 

(Xi - Xe) « Xe, then 

L\llh = RT (Xi ~eXe) 
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3.20 
a 

ß 

T, I - -1- - - - - - - - - - - - - --

I 

x~ 

Suppose the alloy had reached equilibrium at a temperature Tl and 
consists of long plate-like precipitates. The bulk alloy composition is 
Xo, the equilibrium concentrations at Tl and T2 are Xl and X 2 

respectively, where T2 is the temperature to which the alloy is heated. 

(i) Diffusion control (ii) Interface control 

xß ----~ --------~ 

x, ____ a_J p 1 a t ~ t, ______ -:L t_~~~_ 
~~--~----~--~ 
x, t t ~ t, 1 = 12 > I, _ _ _ _ _ __ _ ~ __ - - -

-------------[~ -J----

- Distance 

x -----------------------------, 

- - - - - - - - -----------
x,- - - - - - - - - - - - - --

1= <X> 

xo-------------
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(iii) Mixed control: similar to diffusion control except the interface 
concentration in the a-matrix will be less than X 2 , the equi­
librium concentration at T2 • 

Chapter 4 

4.1 

Differentiating this equation with respect to r: 

ddGr 2 
~ = -41tr . dGv + 81trySL 

At the critical radius, r*, this expression is equal to zero 

° = -41tr*2. dGv + 81tr*YsL 

* 2YSL r =--
dGv 

In order to calculate the critical value of dG, dG * at this radius, 
the value of r* is substituted into the original equation 

dG * = -41t (2YsL)
3 

• dG + 4 (2YsL)
2 

3 dGv v 1t dGv YSL 

161tY~L 
3(dGv)2 

4.2 From Equation 4.10, at the equilibrium melting temperature Tm 

nr = noexp (~~~r) 
At the equilibrium melting temperature dGv = 0, so that Equation 
4.4 be comes 

dGr(T = Tm) = 41tr2YSL 

For a cluster containing ne atoms with an atomic volume n we have 

41t? _ r. 
3 - neU 

Therefore the expression for dGr becomes 

_ (3nne)2/3' Y 
dGr - 41t 41t 
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Substituting n = 1.6 x 10-29 m3 

and y = 0.177 Jm-2 gives 

f..G r = (5.435 x 10-20) n~/3 

For 1 mm3 , no = 6.25 X 1019 atoms 
Therefore when nc = 10 atoms, nr = 9 x 1013 clusters mm-3 ; 

and when nc = 60 atoms, nr = 3 clusters mm-3 ; 

when nc = 100 atoms, nr = 4 x 10-8 clusters mm-3 ; 

or, alternatively, 1 cluster in 2.5 x 107 mm3 (251). 

475 

4.3 As the undercooling (f..T) is increased, there is an increasing con­
tribution from f..Gy in the equation 

whereas the interfacial energy is independent of f..T. Consequently, 
for a given r, f..G r decreases with increasing f..T, and the 'maximum' 
cluster size increases somewhat. 

4.4 From Equation 4.13 

{ -16nY~LT~ 1} 
Nhom = foCoexp 3L;kT . f..T2 

where T = Tm - f..T 

From which the following values are obtained: 

f..T K Nhom m-3 S-l Nhom cm-3 S-l 

180 0.7 7 x 10-7 

200 8 X 106 8 
220 1 x 1012 1 X 106 

Note the large change in N over the sm all temperature range (see 
Fig.4.6). 

4.5 f..G* = ~. V*· f..Gy 

For homogeneous nucleation, it has been shown (see 4.1) that 

* 2YSL r =--
f..G y 

Thus for a spherical nucleus 

4nr *3 32ny3 
V* SL 

= -3 - = 3(f..Gy P 
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ö'G * = !. V* . ö'G = 161tY~L 
2 v 3ö'G; 

This is identical to that derived in 4.1, and so the equation holds for 
homogeneous nucleation. 

For heterogeneous nucleation, it can be shown that 

* 2YSL r =--
ö'Gv 

The volume of a spherical cap on a flat mould surface is given by 

3 (2 + cos 8)(1 - cos 8)2 V = 1tr ~----'-"'----~ 
3 

Thus 

V* = 1t (2YSL)3 . (2 + cos 8)(1 - cos 8)2 
ö'Gv 3 

where 8 is the 'wetting' angle. 

Substituting into the given equation 

1 4 Y~L 2 ö'G* = -. V*· ö'G = -1t-. (2 + cos 8)(1 - cos 8) 
2 v 3 ö'G; 

Writing the normal free energy equation for heterogeneous nuclea­
tion in terms of the wetting angle 8 and the cap radius r 

AG - {_i __ 1AG 4 2 } (2 + cos8)(1 - COS8)2 
Li het - 31tr Li v + 1tr YSL 4 

But from Equations 4.19 and 4.17 we have 

ö'G * = 161tY~L. (2 + cos 8)(1 - cos 8)2 
3ö'G; 4 

which is identical to that obtained using ö'G* = ~V*ö'Gv 

4.6 See Section 4.1.3. 

4.7 Consider a cone-shaped crevice with semiangle a as shown below: 
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477 

The wetting angle between nuc1eus and mould wall (8) is fixed by the 
balance of surface tension forces (Equation 4.14). The activation 
energy barrier (~Gtiet) depends on the shape of the nuc1eus as deter­
mined by the angles a and 8. 

From Equation 4.23, for a given undercooling (~T), ~Gv and r* 
are constant, such that the following equalities apply 

S = ~Gtiet = Vtiet 
~Gtiom Vtiom 

i.e. 
S = ~Gtiet = Volume of the heterogeneous nucleus 

~Gtiom Volume of a sphere with the same nuc1eus/ 
liquid interfacial radius 

It can be seen that the shape factor (S) will decrease as a decreases, 
and on cooling below Tm the critical value of ~G * will be reached at 
progressively lower values of ~T, i.e. nucleation becomes easier. 

When a ~ 90 - 8, S = 0 and there is no nuc1eation energy barrier. 
(It can be seen that a = 90 - 8 gives a plan ar solid/liquid interface, 
i.e. r = 00 even for a negligibly small nucleus volume.) 

Once nuc1eation has occurred, the nuc1eus can grow until it reaches 
the edge of the conical crevice. However, further growth into the 
liquid requires the solid/liquid interface radius to pass through a 
minimum of R (the maximum radius of the cone). This requires an 
undercooling given by 

i.e. 

2YSL = L~T 
R Tm 

~T= 2YSLTm 

RL 
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4.8 For conical crevices with a < 90 - e the solid/liquid interface can 
maintain a negative radius of curvature which stabilizes the solid 
above the equilibrium melting temperature (Tm): 

(- r) L 

As the temperature is raised above Tm the solid will melt back into 
the crevice to maintain equilibrium with a radius given by 

r= 
2YSLTm 

LI1T 

where (-I1T) is now the superheat above Tm· 

4.9 If the situation described above is realized in practice it would explain 
the observed phenomena. 

4.10 (a) The values of the three interfacial energies are as folIows: 

Solid-liquid = 0.132 J m-2 ; 

Liquid-vapour = 1.128 J m-2 ; 

Solid-vapour = 1.400 J m-2 . 

Thus the sum of the solid-liquid and liquid-vapour interfacial 
free energies is less than the solid-vapour free energy, and there 
is no increase of free energy in the early stages of melting. 
Therefore, it would be expected that a thin layer of liquid should 
form on the surface below the melting point, because the dif­
ference in free energies could be used to convert solid into liquid. 

(b) Imagine the system I below. The free energy of this system is 
given by: 

G(I) = G S + Ysv 

System 11 contains a liquid layer of thickness 0 and solid reduced 
to a height (1 - ö). (The difference in molar volume between 
liquid and solid has been ignored.) 
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1 m2 

""'-.... V V 

1m 

G(I) 

/ly 

S L 

S 
(1 - S) S 

Thus 

G(II) = G S(1 - 8) + GL8 + YSL + YLV (8 > 0) 

G(II) = G S + 8(G L - G S) + YSL + YLV (8) 0) 

At an undercooling .1T below Tm , G L _ GS = L.1T 
Tm 

l.e. 
S L.1T 

G(II) = G + --8 + YSL + YLV 
Tm 

L.1T 
or G(II) = G(I) - .1y + T· 8 

m 

where .1y = Ysv - YSL - YLV 

This is shown in the figure below: 

479 

11 

Note that as 8 ~ 0, G(II) ~ G(I), which means that in practice YSL + 
YLV ~ Ysv as a result of an interaction between the S/L and LlV 
interfaces as they approach to within atomic dimensions of each 
other. 

The optimum liquid layer thickness (80) will be that giving a 
minimum free energy as shown. We cannot calculate this value 
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without a knowledge of the above interaction. However, it is reason­
able to assurne that the minimum will occur at aseparation of a 
few atom diameters, provided omax in the above diagram is at least a 
few atom diameters. omax is defined by G(I) = G(I1) 

LI1T 
G(I) = G(I) - l1y + T· omax 

m 
i.e. 

. l1yTm 
AlternatIvely, I1T = V--

U max 

If omax = 10 nm (say), then I1T = 16 K. 
It seems therefore that surface melting is theoretically possible a few 
degrees below Tm. 

4.11 (a) Repeated surface nucleation (see Section 4.2.2, p. 198). 

G 
, 
hl 
t 

r -
L 

s 

Suppose the edge of the cap nucleus is associated with an energy 
e (J rn-I). Formation of such a cap will cause a free energy 
change given by 

I1G = -nr2hl1Gv + 2nre 

The critical cap radius r* is given by d(I1G) = 0 
dr 

. * e 
l.e. r = hl1Gv 

and 

The rate at WhiC(h _c;~s*)nucleate 
proportional to exp ~ 

on the surface should be 
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But, t1G oc t1Tj , the undercooling at the interface, so for sm all 
undercoolings we have 

(-k) I· ~2 ~l N oc exp - nuc el m s 
t1Tj 

where k is approximately constant. 
Each time a cap is nucleated, it should grow rapidly across the 

interface to advance a distance h. It seems reasonable to suppose 
therefore that the growth rate will be proportional to N, i.e. 

-k 
v oc exp­

t1Tj 

(b) Very roughly, Equation 4.28 can be seen to be reasonable as 
folIows: 

Firstly, it is reasonable to suppose that the distance between 
successive turns of the spiral (L) will be linearly related to the 
minimum radius at the centre (r*). Thus we have 

L oc r* oc t1Ti l 

Secondly, for sm all undercoolings, the lateral velocity of the 
steps (u) should be proportional to the driving force, which in 
turn is proportional to t1 Tj 

u oc t1Tj 

Thus the velocity normal to the interface v is given by 

uh 
v = - oc t1T2 

L I 

where h is the step height. 

4.12 Equilibrium solidification (see Figs. 4.19 and 4.20) 

From Fig. 4.19 the lever rule gives the mole fraction solid (fs) at T2 

as 

fs = XL - Xo = (Xs/k) - Xo 
XL - X s (Xs/k) - X s 

kXo 
X s = -1 ---(-1 -'--k-) f:-s 
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This expression relates the composition of the solid forming at the 
interface at T2 to the fraction already solidified. For the case shown in 
Fig. 4.19, it will be roughly as shown below: 

t 
x. 

o f. 

The temperature of the interface (T2) as a function of the fraction 
solidified can be obtained using the following relationship which is 
apparent from Fig. 4.19 

T2 - T3 Xo - X s 
= 

Tl - T3 Xo - kXo 

Substituting for X s gives 

~: = ~: = { I + k C ~ fs) fl 
This will be a curved line roughly as shown below for the case 
described for Fig. 4.19 (k - 0.47). 

T3 -+---------~.-----
o 



Solutions to exercises 

No diffusion in solid, perfect mixing in liquid (see Fig. 4.21). 

Again, we have 

T2 - T3 Xo - Xs 
Tl - T3 Xo - kXo 

Xs is now given by Equation 4.33 such that 

T2 - T3 Xo - kXo(1 - fs)(k-l) 

Xo - kXo 

1 - k(l - fs)(k-l) 

(1 - k) 

483 

where Tl > T2 > TE' For the phase diagram in Fig. 4.21a, the 
following variation is therefore obtained (k - 0.47, the exact form of 
the curve depends on k, of course) 

o f. 

No diffusion in solid, no stirring in liquid (see Fig. 4.22) 

T, 

t 
Initial transient 

Sieady state Final transient 

~+-____________________ L-____ __ 

o f. 
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4.13 No diffusion in solid, complete mixing in liquid 

s 

-Xo x kXo 

(b) 

kXo 

o+---------------------------~=-~----~ 
o 



So/utions to exercises 485 

Diagram (a), above, is a typical phase diagram for k > 1. (In this 
case, k = 3.) The variation of composition along the bar can be 
calculated using Equation 4.33 

i.e. X s = kXo(l - fs)(k-l) 

The result for k = 3 is shown in diagram (b). fs is proportional to 
distance along the bar. Note that the final composition to solidify is 
pure solvent (Xs = 0). 

No diffusion in solid, no stirring in liquid. 

kXo 

Steady state 
Xo 

o+---------------------------~~--~ 
o 

4.14 During steady-state growth the concentration profile in the liquid 
must be such that the rate at which solute diffuses down the concen­
tration gradient away from the interface is balanced by the rate at 
which solute is rejected from the solidifying liquid, i.e. 

-DC{ = v(CL - Cs) 

Assuming the molar volume is independent of composition, this 
becomes 

-~~XL = V (~o - Xo) at the interface 

The concentration profile in the liquid is given by 

XL = XO{l - 1 ~ k. exp - (D~V)} 

~L = XoC ~ k).; ·exp - (;;V) 

v 
= -(Xo - Xd 

D 
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4.15 

Solutions to exercises 

Substituting this expression into the solute equation 

v (Xo ) -D· D (Xo - Xd = v k - X o 

Since XL = Xo/k at the interface, the expressions are equivalent, and 
the profile satisfies the solute balance. 

700 

5004---~r-----r---~~--~----~-----r----~ 
o 5 10 15 

For an AI-O.5 wt% Cu alloy: 

20 25 30 35 
Xsolute 

(a) Interface temperature in the steady state is given by the sol idus 
temperature for the composition concerned, 

Interface temperature = 650.1°e 

(b) Diffusion layer thickness is equivalent to the characteristic width 
of the concentration profile, 

. DL 3 X 10-9 
Thlckness = - = = 6 X 10-4 m 

v 5 x 10-6 

(c) A plan ar interface is only stable if there is no zone of constitu­
ti on al undercooling ahead of it. Under steady-state growth, con­
sideration of the temperature and concentration profiles in the 
liquid ah"ead of the interface gives that the critical gradient, TL, 
can be expressed as follows 

T' - Tl - T3 
L - D/v 

where Tl = liquidus temp at Xo 
T3 = solidus temp at X o 

Th T' - (658.3 - 650.1) oe -I 
us L - 6 X 10-4 m 

= 13.7 K mm- I 
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(d) For an AI-2 wt% Cu altoy: 

Interface temperature = 620.4°C 

.. . 3 X 10-9 

DIffusIOn layer thickness = 5 x 10-6 = 6 X 10-4 m 

. (653.2 - 620.4) 
Temperature gradIent = 6 X 10-4 = 54.7 K mm- 1 

4.16 Scheil equation: XL = xo/Lk-l) 

Since it is assumed that the solidus and liquidus lines are straight, k is 
constant over the solidification range, and may be calculated using 
X max and XE as follows 

k Xs . 
= XL at a gIven temperature 

At the eutectic temperature, X s = X max and XL = XE' 

5.65 
Thus, k = 33.0 = 0.17 

33 

5.65 

~o ~ 
0.341========================-.-----,-1 kXo 

o 0.88 0.97 
Distance along bar 

The above plot may be constructed by considering the composition 
of the initial solid formed (kXo), the position at which the solid has 
the compositions X o and X max , and the eutectic composition, XE' 

Initial solid formed = kXo. 

= 0.17 x 2 wt% Cu 
= 0.34 wt% Cu 
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The volume fraction of liquid remaining, A when the solid 
deposited has a composition Xo is found from the Scheil equation. 

Thus when X s = X o; XL = ~O, and the Scheit equation becomes 

Xo = X. f(k-l) 
k 0 L 

_1_ = f( -0.83) 
0.17 L 

A = 0.12, hence fs (position along bar) = 0.88 

Simitarly, when X s = X max = 5.65wt% Cu, the Scheit equation 
becomes 

5.65 = 2 x f(-0.83) 
0.17 L 

_ (0.17 X 2)110.83 

A - 5.65 

= 0.03 

Hence fs (position along bar) = 0.97 

From the information given, XE = 33 wt% Cu for positions along the 
bar between 0.97 and 1. 
(b) From the diagram, the fraction solidifying as a eutectic, JE = 0.03. 

(c) For an AI-0.5 wt% Cu alloy solidified under the same conditions, 
the fraction forming as eutectic may be found from the Scheil 
equation as before by putting X s equal to Xmax : 

X -X. f(k-l) 
L - 0 L 

Xs _ X. f(k-l) 
k - 0 L 

X max _ X. f(k-l) 
k - 0 L 

5.65 = 05 x f(-0.83) 
0.17 . E 

_ (0.17 X 0.5)110.83 

fE - 5.65 

= 0.006 
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4.17 Cells grow in the direction of maximum temperature gradient, which 
is upstream in a convection current. 

4.18 

T, 

y I 

I 

I 
0.25 

L 

Assurne equilibrium conditions between J and L 

t 
Temperalure al which all 
/) disappeared 

d 

h 

L 

4.19 It can be shown that the growth rate of a lamellar eutectic v, is given 
by the following equation 

v = kDI1.T. . - 1 - -1 ( A *) 
o A A 

where k = proportionality constant; 
D = liquid diffusivity; 

I1.To = interface undercooling; 
A = lamellar spacing; 

A * = minimum possible value of A. 
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(i) When the undercooling is fixed, k, D and I1To may be combined 
to form a constant c, thus 

v=C.~.(l-~*) 
Differentiating this equation with respect to A 

dv -c 2CA* 
dA =)1+Y 

·ff .. d· d2v 2c 6CA * 
Dl erentIatmg a secon time: dA 2 = A3 - y. 

C 2CA * . 
Hence A 2 = Y at the max. or mm. growth rate. 

A = 2A* 

Substituting this value into the equation of the second differential 

d2v 2c 6CA* 
dA2 = A3 - Y 

2c 6CA * 
- 8A *3 - 16A *4 

-C 

- 8A *3 

Thus when A = 2A *, the growth rate is a maximum. 

(ii) When the growth rate is fixed, the original equation may be 
rewritten as follows 

1 ( A *) a=I1To·i I-T 
where 

v 
a=-

kD 

a 1 A* 
Thus: I1To = i - A2 

Differentiating with respect to A 

-a dl1To 1 2A * 
I1 T6· ~ = - A2 + A3 

dl1To _ I1T6 ( 1 2A *) 
~ - ---;- A2 - ):} 
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Differentiating a second time 

-a d2~To d~To 2a 2 61. * 
~Tr dA2 + ~·~TÖ = 1.3 - 1.4 

-a d2ßTo 2 (1 21.*) (2 61.*) 
~To· dA2 + ~To 1.2 - 1.3 = 1.3 - 1.4 

d2~TÖ = 2~To (~ _ 21.*) _ ßTÖ (~ _ 61.*) 
dA2 a 1.2 1.3 a 1.3 1.4 

Substituting I. = 21.* 

d2~To 2~To ( 1 1) ~TÖ ( 1 6) 
dA2 = -a- 41.*2 - 41.*2 - --;;- 41.*3 - 161.*3 

Th d2~To. . . 
us dA 2 IS posItIve 

Hence undercooling is a minimum when A. = 2A * 
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4.20 The total change in molar free energy when liquid transforms into 
lamella a + ß with a spacing I. is given by Equation 4.37, i.e. 

~G(A) = -~G(oo) + 2YaßVrn 

I. 

The equilibrium eutectic temperature TE is defined by A. = 00 and 
G(oo) = O. 

We can define a metastable equilibrium eutectic temperature at 
(TE - ~TE) such that at this temperature there is no change in free 
energy when L ~ a + ß with a spacing A, i.e. at TE - ßTE , 

ßG(A) = o. 
Also from Equation 4.38 at an undercooling of ~TE 

~G(oo) = ~H~TE 
TE 

Finally, then, combining these equations gives 

~TE = 2YaßVrn TE 

~ 

~H 
Substituting: Yaß = 0.4 J m-2, TE = 1000 K, V

rn 
= 8 X 108 J m-3 

gives 

10-6 

~TE =-­
I. 

i.e. for A = 0.2 ~m, ßTE = 5 K 

I. = 1.0 11m, ~TE = 1 K 
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4.21 

ß 

Solutions to exercises 

Note that if these eutectics grow at the optimum spacing of 21..* the 
total undercooling at the interface during growth (ATo) will be given 
by Equation 4.39 such that 

for I.. = 0.2 11m, 1..* = 0.1 11m, ATo = 10 K 

and I.. = 1.0 11m, 1..* = 0.5 11m, ATo = 2 K 

a ß a ß 

1-,,-1 I---,,-j 
Lamellar eutectic Rod-like euleclic 

For a lamellar eutectic the total interfacial area per unit volume of 
eutectic is given by: 2/1.., irrespective of volume fraction of ß. 

For the rod eutectic, considering rods of unit length, and diameter 
d, the area of a/ß interface per unit volume of eutectic is given by 

nd 2nd 
A' A{312 = 1..213 

For the rod eutectic to have the minimum interfacial energy, then 

2nd 2 . d 13 
A2{3 <~, l.e. ~ < -;-

d depends on the volume fraction of ß, (f) 

f = nd2/A 2.J3 
4 2 

From which f < fe = 213 = 0.28. n --

4.22 See Sections 4.4 and 4.5. 

4.23 See Section 4.5. 
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Chapter 5 

5.1 [Xo ( ) (1 - Xo)] ( 2 
~Go = RT Xoln Xe + 1 - Xo In (1 _ Xe) - Q Xo - Xe) 

(a) By direct substitution into the above equation 

~Go = 420.3 J mol- 1 

(b) Applying the lever ruIe to the system at equilibrium 

(c) 

. f .. (Xo - Xe) 
Mole fractlOn 0 preclpltate = (Xß _ Xe) = 0.08 

Assuming the molar volume is independent of composition, this 
will also be the volume fraction. 

Assuming a regular cubic array with a particle spacing of 50 nm, 
the number of particIes per cubic metre of alloy = 

1 _ 8 X 1021 
(50 X 10-9)3 -

Let all the particIes be of equal volume and spherical in shape 
with a radius r. Then the total volume of particles in 1 m3 of 
alloy = 

4 
8 X 1021 X -1tr3 

3 

Equating this with the volume fraction of precipitate 

4 
8 x 1021 x 31tr3 = 0.08 m3 

r = 13.4 nm. 

Thus in 1 m3 of alloy the total interfacial area = 

8 x 1021 X 41tr 2 = 1.8 X 107 m2 
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(d) If Yuß = 200 mJ m-2 

total interfacial energy = 200 x 1.8 X 107 mJ m-3 alloy 

= 3.6 x 106 J m-3 alloy 

= 36 J mol- 1 

(e) The fraction remaining as interfacial energy = 4~~.3 = 9% 

(f) When the precipitate spacing is 111m; 

f . I 3 1 
No 0 partIe es per m = (1 X 10-6)3 

= 1 X 1018 m-3 

Using the same method as in (c), the particle radius is found to 
be 267 nm. 

Thus in 1 m3 of alloy the total interfacial area = 

1 x 1018 X 41t x (2.67 X 10-7)2 

= 8.96 X 105 m2 

Total interfacial energy = 1.8 X 105 J m-3 alloy 

= 1.8 J mol-1 

Fraction remaining as interfacial energy = 0.4% 

A 

ilGo = Go - Gf 

Go = Xoll~ + (1 - X o) Il~ 
Gf = Xoll~ + (1 - X o) Il~ 

B 
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From Equation 1.40 

Il~ = GB + RTlnXo + 0(1 - Xo? 
IlB = GB + RTlnXe + 0(1 - Xe)2 

Il~ = GA + RTln(l - Xo) + nxJ 
Ill. = GA + RTln(l - Xe) + nx; 

Combining the above equations gives 
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[ Xo (1 - Xo)] 2 
dGo = RT Xoln Xe + (1 - Xo) In (1 _ Xe) - O(Xo - Xe) 

(a) dGn = RTln ~o per mole of precipitate 
e 

Thus for a precipitate with Xo = 0.1 and Xe = 0.02 at 600 K: 

dGn = 8.0 kJ mol- 1 

(b) Assuming that the nucleus is spherical with a radius r, and ignor­
ing strain energy effects and the variation of y with interface 
orientation, the total free energy change associated with nucleation 
may be defined as 

dG = _irtr3. dG + 4rtr2y 3 y 

where dGy is the free energy released per unit volume. Differ­
entiation of this equation yields the critical radius r * 

r* = l:1...- = 2yVm = 0.50 nm 
I1Gy I1Gn 

(c) The me an precipitate radius for a particle spacing of 50 nm was 
calculated as 13.4 nm = 27 r *. For a 1 Ilm dispersion the 
precipitate radius, 267 nm = 534 r*. 

a 

r---~~~t-------------~LJ~~ 
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From Equation 1.68 

Ilß = GB + RTln yoXo 

Il~ = GB + RTln YeXe 

where Yo and Ye are the activity coefficients for alloy compositions Xo 
and Xe respectively 

IlGn = Ilß - Il~ = RTln Y~Xo 
Ye e 

For ideal solutions Yo = Ye = 1 
For dilute solutions Yo = Ye = constant (Henry's Law) 

In both cases 

X o 
IlG = RTln-

n Xe 

5.5 (a) Consider equilibrium of forces at the edge of the precipitate: 

Yaa _--------~ 

For unit area of interface 

Yaa = 2Yaß cos 8 

8 -1 Yaa 53 1° = cos -- = . 
2Yaß --

(b) The shape factor S(8) is defined as 

1 
S(8) = 2 (2 + cos 8)(1 - cos 8)2 = 0.208 

Yaß 

Yaß 
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a 'f 

Co - - - - - - - --~---------

C"t:==~ __________ _ 
x 

x 

Using the simplified approach, above, the carbon concentration 

d · . h . dC b d gra lent In t e austemte, dx may e expresse as 

For unit area of interface to advance a distance dx, a volume of 
material 1. dx must be converted from y containing Cy to a 
containing Ca moles of carbon per unit volume, i.e. (Cy - Ca) dx 
moles of carbon must be rejected by diffusion through the y. 
The flux of carbon through unit area in time dt is given by 
D(dC/dx) dt, where D is the diffusion coefficient. Equating the 
two expressions gives 

(Cy - Ca)dx = D(~) dt 
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dx (dC) 1 
dt = D dx . (Cy - Ca) 

Thus using the simple concentration profile obtained earlier 

dx _ D (Cr - Co) . 1 
dt - L (Cy - Ca) 

The width of the diffusion zone L may be found by noting that 
conservation of solute requires the two shaded areas in the 
diagram to be equal 

(Co - Ca)x = L(Cr 2- Co) 

L = 2(Co - Ca)x 
(Cy - Co) 

Substituting for L in the rate equation 

dx = D(Cr - CO)2 

dt 2(Co - Ca)(Cy - Ca)x 

Assuming that the molar volume is constant, the concen­
trations may be replaced by mole fractions (X = CV m). Integration 
of the rate equation gives the half-thickness of the boundary 
slabs as 

_ (Xr - X o) ~(Dt) 
X - (Xo - X a)1I2(Xy - X a )1I2 

(c) The mole fractions in the above equation can be replaced ap­
proximately by weight percentages. For ferrite precipitation from 
austenite in an Fe-0.15 wt% e alloy at 800 oe, we have 

X y = 0.32; 

Xo = 0.15; 

X a = 0.02; 
D"t = 3 x 10-12 m2 S-l 

giving x = 1.49 X 10-6 t 1l2 . 

(d) The previous derivation of x(t) only applies for short times. At 
longer times the diffusion fields of adjacent slabs begin to overlap 
reducing the growth rate. The lever rule can be used to ca1culate 
the maximum half-thickness that is approached for long times. 

Assume the grains are spherical with diameter D. When the 
transformation is complete the half-thickness of the ferritic slabs 
(xmax) is given by 
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(D - 2xmax)3 = f 
D3 y 

where I y is the volume fraction of austenite. 

o 
• 

. _ 113° .. X max - (1 - I y )"2 
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(The same answer is obtained for any polyhedron.) Approxi­
mately, I y is given by 

Iy = Xo - X a 

X y - X a 

In the present case I y = 0.43, such that for D = 300 J.lm; 

Xmax = 36.5 J.lm 

This value will be approached more slowly than predicted by the 
parabolic equation, as shown schematically in the diagram below. 

Real variation (schematic) 

O~----.------r-----r----~-----.-----,r-----.-~ 

o 100 200 300 400 500 600 700 
Time (S) 

The exact variation would require a more exact solution to the 



500 

5.7 

Solutions to exercises 

diffusion problem. However, the approximate treatment leading 
to the parabolic equation should be applicable for short times. 

v 
a 

ß --+_ .. U 

.. .. 

Consider unit area of interface perpendicular to the diagram: 

Mass flow in the direction of u = u x h; 

Mass flow in the direction of v = v x A. 

From the conservation of mass: u X h = v x A 

uxh 
v=--

A 

5.8 f=l-exp(-Kt n ) 

At short times this equation becomes 

f= Kt n 

(a) Pearlitic nodules grow with a constant velocity, v. The volume 
fraction transformed after a short time t is given by 

i.e. 

41tv3 

K = 3d 3 ' n = 3 

(b) For short times, slabs growing in from the cube walls will give 

i.e. 

K = 6v 1 
d ' n = . 
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Nucleation or growth rate 

Civilian transformations that are induced by an increase in tempera­
ture show increasing nucleation and growth rates with increasing 
superheat above the equilibrium temperature (Te). This is because 
both driving force and atom mobility (diffusivity) increase with 
increasing /). T. 

5.10 (a) G = XAGA + XBGB + QXAXB + RT(XAlnXA + XBlnXB) 

GA = GB = 0 gives: 

but 

G = QXAXB + RT(XAlnXA + XBlnXB) 

dG = QXAdXB + QXBdXA 

+ RT[dXA + dXB + InXAdXA + InXBdXB] 

X A + X B = 1 

dXA + dXB = 0 

dG 
- = n(XA - X B) + RT(lnXB - InXA ) 
dXB 

(b) This system has a symmetrical miscibility gap with a maximum at 
XA = X B = 0.5 for which 

d2G = 4RT - 2n 
dX~ 

d2G 
It can be seen that as T increases -d 2 changes from negative to 

X B 
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positive values. The maximum of the solubility gap (T = Tc) 
d2G 

corresponds to dX~ = 0 

n 
i.e. Tc = 2R 

( ) E . dG . h . . 
c quatmg dX B to zero m t e equatlOns glves 

0.5 

n(XA - X B ) + RT(lnXB - InXA ) = 0 

Putting n = 2R Tc gives 

This equation can be used to plot the coordinates of the 
miscibility gap as shown below: 

0.5 
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(d) The locus of the chemical spinodal is given by 

d2G 
-2=0 
dXB 

Le. 

This is also shown in the figure. 

dG d2G (LUf 
G(Xo + LU) = G(Xo) + dX(LU) + dX2 -2- + ... 

dG d2G (LU)2 
G(Xo - LU) = G(Xo) + dX(-LU) + dX2 -2- + ... 

503 

:. Total free energy of an alloy with parts of composition (Xo + LU) 
and (Xo - LU) is given by 

G(Xo + LU) + G(Xo - LU) = ~ (2G(X) + d2G (LU)2 
2 2 2 0 dX2 

= G(Xo) + ~ ~; (LU)2 

Original free energy = G(Xo) 

1 d2G 
. . Change in free energy = 2 dX2 (LU)2 

5.12 Equation 5.50 gives the minimum thermodynamically possible wave­
length Amin as 

2112E'Vm is a positive constant, while d2G/dX2 varies with com­
position X B as shown below: 
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+ 

o+---~----;------.------------

I 
I 
I 

Chemical 
spinodal 

I 
I 

Coherent 
spinodal 

I 

0.5 

0.5 

Thus Amin = 00 at the coherent spinodal, but decreases as X B 

increases towards 0.5, as shown schematically above. The wavelength 
that forms in practice will be determined by a combination of thermo­
dynamic and kinetic effects, but qualitatively it will vary in the same 
way as Amin. 

5.13 (a) Massive transformations are classified as civilian nucleation and 
growth transformations which are interface controlled. This is 
because massive transformations do not involve long-range dif­
fusion, but are controlled by the rate at which atoms can cross 
the parent/product interface (see also Section 5.9). 

(b) Precipitation reactions can occur at any temperature below that 
marking the solubility limit, whereas massive transformations 
cannot occur until lower temperatures at least lower than To 
(Fig. 5.74). Massive transformations therefore occur at lower 
temperatures than precipitation reactions. However, at low tem­
peratures diffusion is slow, especially the long-range diffusion 
required for precipitation. Massive transformations have the 
advantage that only short-range atom jumps across the parentl 
product . interface are needed. Thus it is possible for massive 
transformations to achieve higher growth rates than precipitation 
reactions despite the lower driving force. 
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At T> To 

At T = To 

At T = Ms «To) 

For an alloy of composition X, at T > Ta, the free energy curve for 0 

lies above that for y, thus austenite is stable at this composition and 
temperature, and the martensitic transformation is unable to occur. 

At a temperature T = Ta the 0 and 0' free energy curve coincides 
with that for y, and so at this temperature and composition both the 
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martensite and austenite have equal free energy, and there is no 
driving force for the martensitic transformation. 

At a temperature T = M s the y free energy curve lies above that for 
a, therefore y is thermodynamically unstable, and there is a driving 
force for the martensitic transformation proportional to the length 
AB. The significance of the M s temperature is that it is the maximum 
temperature for which the driving force is sufficient to cause the 
martensitic transformation. No such driving force is present at tem­
peratures above M s• 

At the equilibrium temperature To, 110 for the transformation is 
zero, thus 

at 

110y- a' = I1Hy-a' - Tol15 = 0 

I1Hy-a' 
To, 115 = To 

For sm all undercoolings I1H and 115 may be considered to be 
independent of temperature, thus the free energy change may be 
expressed in terms of the undercooling as folIows: 

110y-a' = I1Hy-a' (To - Ms) 
To 

at the Ms temperature. 
The driving force for the martensitic transformation has been 

shown to be proportional to the undercooling (To - M s), where To is 
the temperature at which austenite and martensite have the same free 
energy, and M s is the temperature at which martensite starts to form. 
In the Fe-C system both To and M s fall with increasing carbon 
content, with an equal and linear rate. Thus the difference (To - Ms) 

remains constant for different carbon contents, which means that the 
driving force must remain constant. 

See Section 6.3.1 (p. 398). 

512 y3 (5)4 
110* = 3· (110v)4· "2 .1l2n 

c* = J:L 
110v 

* _ 16YIl(5/2)2 
a - (110v)2 

Substitution of the values given gives 

110* = 3.0 X 10-18 J nudeus- 1 

c* = 0.23 nm 

a* = 8.5 nm 

J nudeus- 1 
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6.4 The habit plane of martensite is a common plane between martensite 
and the phase from which it forms which is undistorted and unrotated 
during transformation. Thus all directions and angular separations in 
the plane are unchanged during the transformation. 

The martensitic habit plane may be measured using X-ray diffrac­
tion and constructing pole figures. The figures are analysed and the 
plane index may be determined by measuring the positions of diffrac­
tion spots from martensite crystals produced from austenite crystals. 

The main reason for the scatter in the measurement of habit planes 
is that the martensite lattice is not perfectly coherent with the parent 
lattice, and so astrain is inevitably caused at the interface. This may 
act to distort the habit plane somewhat. Internal stress formed during 
the transformation depends on transformation conditions. Habit 
plane scatter has been observed to increase when the austenite has 
been strained plastically prior to transformation, indicating that prior 
deformation of the austenite is an important factor. 

Another reason for the scatter is that during the formation of 
twinned martensite, the twin width may be varied to obtain adjacent 
twin widths with very low coherency energies. Experimental studies 
have shown that the lowest energy troughs are very shallow and quite 
extensive, enabling the production of habit planes which may vary by 
several degrees in a given alloy. 

6.5 The key to the phenomenological approach to martensitic trans­
formations is to postulate an additional distortion which re duces the 
elongation of the expansion axis of the austenite crystal structure to 
zero. This second deformation can occur in the form of dislocation 
slip or twinning as shown below: 

s 

D - '~ Slip 

s 

D - Twinning 

Austenite Martensite 
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Dislocation glide or twinning of the martensite reduces the strain of 
the surrounding austenite. The transformation shear is shown as S. 

Both types of shear have been observed under transmission electron 
microscopy. 

Austenite Martensite 

Assuming that ay = 3.56 A and aa = 2.86 A, and that c/a for 
martensite is equal to 1.1, the movements of atoms in the c and a 
directions may be calculated 

aa = 2.86 A :. Ca = 3.15 A 

ay = 3.56 A 
a 0 

:. ~2 y = 2.52 A 

Vertical movement of atoms = 3.56 - 3.15 A 
= 0.41 A 

Horizontal movement of atoms = 2.86 - 2.52 A 
= 0.34 A 

Thus by vector addition, the maximum movement is found to be 

0.53 A 

6.7 See Sections 6.32 and 6.33. 

6.8 The habit plane of martensite is found to change with carbon and 
nickel contents in Fee and FeNi alloys respectively. This may be 
explained by considering the nature and the method of formation of 
the martensite which is dependent on alloy content. 

In low-carbon steels the Ms temperature is high and martensite 
forms with a lath morphology growing along a {111} plane. Growth 
occurs by the nucleation and glide of transformation dislocations. 
However, as the carbon content is increased the morphology changes 
to a plate structure which forms in isolation. The degree of twinning 
is higher in this type of martensite. An important difference in this 
process is that the M s temperature is lowered with increasing alloy 
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conte nt which me ans that the austenite is not as uniformly or as 
efficiently eliminated as with lath martensites. Plate martensite is 
formed by a burst mechanism, this factor contributing to the fact that 
the habit plane changes to {225}, and to {259} with even higher 
carbon content. 

Similar arguments may be used to explain the change in habit plane 
with increasing Ni content in FeNi alloys, since Ni acts in a similar 
way to C, lowering the M s temperature and influencing martensite 
morphology and amount of retained austenite. 

The amount of retained austenite is also influenced by the austen­
itizing temperature since this influences the amount of dissolved iron 
carbide. The quenching rate is also important, an oil quench will 
produce more retained austenite than a water quench. 

6.9 See Section 6.4.5. 

6.10 See Section 6.7. 

6.11 See Section 6.7.4. 
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temperature effects, 4 

Gibbs phase rule, 36 
Gibbs-Thomson effect, 46 
Glissile interfaces, 163, 172,409,413 
Gradient energy, 311 
Grain boundaries, 116 

high angle, 118 
in cellular precipitation, 322 
in nucleation, 271 
low-angle, 116 
special, 122 

Grain boundary 
allotriomorphs, 317 
energy, 117 
junctions, 124 
migration, 130 
mobility, 135 
segregation, 138 

Grain coarsening, 131, 140 
Grain growth, 131, 139 

abnormal, 142 
during tempering of steel, 426 

Growth ledges, 179, 199,285 
Guinier-Preston (GP) zones, 149,291 

equilibrium shape of, 158 

Habit plane, 153 
of Widmanstätten plates, 150, 152, 

317 
of martensite laths and plates, 390, 

396 
Hardenability, 338 
Heat ftow, 203, 239 
Helical dislocations, 303 
Henry's law, 22 
Heterogeneous nucleation (see 

Nucleation, heterogeneous) 
Homogeneous nucleation (see 

Nucleation, homogeneous) 
Homogenization, 71 

Ideal solutions, 13 
Ingot structure, 233 
Inoculants, 196 
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Intensive thermodynamic properties, 4 
Interdiffusion coefficient, 88 
Interface 

coherence, 143 
controlled growth, 106, 173, 175, 

285 
migration, 171 
mobility, 172 
reaction, 106 
stability during solidification, 203 

Interfaces, 110 
coherent, 143 
complex semicoherent, 148 
effect on equilibrium, 44 
free energy of, 110 
incoherent, 147 
interphase, 142 
irrational, 149, 167 
semicoherent, 145 
solid/liquid, 168, 197 
solid/vapour, 112 

Intermetallic compounds, 27 
Interphase precipitation, 349 
Interstitial 

compounds, 27 
diffusion, 61, 63 
sites in cubic crystals, 385 

Invariant plane strain, 391 

Kinetics, 55 
of grain growth, 139 
of phase transformations, 287 

Kirkendall effect, 89 
Kurdjumov-Sachs orientation 

relationship, 148, 317, 394 

Latent heat 
of fusion, 7, 112, 170 
of melting, 7, 112, 170 
of sublimation, 112, 170 
of vaporization, 112 

Lateral growth, 178, 198,285 
Lath martensite, 410 
Laves phases, 27 
Ledge mechanism, 178, 198,285 
Local equilibrium, 97, 103, 177,210, 

224,279 
Long-range order, 358 
Lower bainite, 337 

Martensite, 382 
crystallography, 389 
effect of external stresses, 415 

Index 

growth,409 
habit planes, 389, 390, 396 
Mf temperature, 383, 386 
Ms temperature, 383, 386 
nudeation, 397 
role of grain size, 416 

Massive transformations, 263, 288, 349 
Mechanical properties 

of age hardening alloys, 294 
of controlled transformation steels, 

434 
of titanium alloys, 372 

Metastable equilibrium, 2 
Metastable (transition) phases, 2, 292 
Microstructure, 110 
Military transformations, 173,382 
Miscibility gap, 33, 308 

coherent, 312 
incoherent,313 

Misfit dislocations, 145 
Misfit parameters, 157 
Mobility 

of atoms, 92 
of glissile interfaces, 172 
of grain boundaries, 135 
of interphase interfaces, 172 
of twin boundaries, 136 

Mushy zone, 236 

Nishiyama-Wasserman orientation 
relationship, 148,317,394 

Nitinol,431 
Non-equilibrium lever rule, 212 
Nucleation, heterogeneous, 192 

activation energy barrier, 193, 195, 
272 

in Iiquids, 185 
in solids, 271 
of martensite, 400 
on dislocations, 274 
on grain boundaries, 271 
rate of, 194, 276 
vacancy-assisted, 275 

Nucleation, homogeneous 
activation energy barrier, 187, 266 
in liquids, 185, 186 
in solids, 265 
of martensite, 397 
rate of, 191, 267 

Off-eutectic alloys, 229 
Off-eutectoid alloys, 333 
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Order 
long-range order parameter, 358 
short-range order parameter, 24 

Order-disorder transformations, 263, 358 
Orientation relationship, 144 

of some martensites, 390 
Overageing, 306 

Partially coherent precipitates, 151 
Particle coarsening, 314 
Pasty zone, 236 
PearIite, 288, 326 

growth,330 
in off-eutectoid alloys, 333 
nucleation, 327 

Peritectic solidification, 231 
Phase diagrams, 33 

AI-Cu, 291 
binary,33 
Cu-Zn, 353 
eutectic, 36, 51 
Fe-C, 250, 318 
Fe-Cr-C, 432, 433 
Fe-Cr-Ni, 250, 257 
Fe-Mo-C,418 
Fe-Cr-Mo-W-V-C,253 
Mg-AI, 326 
ternary,48 
Ti-Ni, 436 

Phases,1 
electron, 28 
intermediate, 26 
Laves,27 
metastable, 2, 292 
ordered, 24, 35 
transition, 292 

Plate martensite, 412 
Polymorphic transformations, 263 
Precipitate 

coarsening, 314 
growth, 279, 283 

Precipitate-free zones, 304 
Precipitation, 263 

in AI-Ag alloys, 302 
in AI-Cu alloys, 291 
of a from ß brass, 349 
offerrite from austenite, 317 

Pre-martensitic phenomena, 416 
Pro-eutectoid ferrite, 317 
Pro-eutectoid cementite, 322 

Quenched and tempered steels, 428 
Quenched-in vacancies, 303 

RaouIt's law, 22 
Recalescence, 346 
Recovery during tempering, 426 
Recrystallization, 138, 288, 426 
Retained austenite, 383, 426 
Reversion, 301 
Richard's rule, 11 

Schaeffter diagram, 257 
Scheil equations, 212 
Second-order transformation, 361 
Secondary hardening in high-speed tool 

steels,423 
Segregation in ingots and castings, 237 
Segregation of carbon duirng tempering, 

420 
Seit-diffusion, 75 

activation energy of, 76 
experimental data, 78 

Semicoherent interfaces, 145 
Shape of inclusions and precipitates 

coherent precipitates, 155 
grain boundary effects, 154 
incoherent precipitates and 

inclusions, 159 
interfacial energy effects, 149 
misfit strain effects, 155 
plate-like precipitates, 160 

Shape-memory,431 
Shockley partial dislocations, 164 
Short-range order, 24 
Shrinkage in ingots and castings, 237 
Site saturation, 288 
Solid solutions 

binary, 11, 52 
carbon in iron, 285 
free energy of, 11 
ideal, 13 
interstitial,24 
ordered, 23, 24 
quasi-chemical model, 18 
real, 23 
regular, 18,41 
solubility as a function of 

temperature, 41 
Solidification, 185 

aIloy,208 
carbon steels, 249 
castings, 233 
driving force for, 10 
eutectic, 222 
fusion welds, 243 
high-speed steels, 251 
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ingots, 233 
low-alloy steels, 249 
peritectic, 231 
rapid, 249 
shrinkage, 237 
single-phase alloys, 208 
stainless steel weid metal, 256 
unidirectional,208 

Solubility product, 426 
Solute drag, 138 
Spinodal decomposition, 308 
Spiral growth, 201 
Stabilization of austenite, 415 
Stacking faults, 167 

in martensitic transformations, 402, 
404 

in precipitate nucleation, 273, 276, 
303 

Stirling's approximation, 14 
Substitution al diffusion, 75 
Surface nucleation, 200 
Surface tension, 111 

TTT diagrams, 287, 301, 339 
Temper embrittlement, 427 
Tempering offerrous martensites, 417 
Ternary alloys, 48 

diffusion in, 96 
Texture 

deformation, 138 

Index 

recrystallization, 138 
Thermal activation, 56, 66,172 
Thermodynamics, 1 
Ti-6V-4Al alloys, 366 
Tie-lines, 50 
Torque term, 126 
Transformation shears, 337, 383 
Transformation dislocations, 409 
Transition phases, 292 
Twin boundaries, 122 

in solidification, 202 

Unconstrained misfit, 155 
Up-hill diffusion, 60, 96, 308 
Upper bainite, 334 

Vacancy 
Concentration,43 
diffusion, 79 
formation enthalpy, 43, 76 
formation energy, 43, 76 
formation entropy, 43 
jump frequency, 79 
quenched-in, 303 

Valency compounds, 28 

WeIdability, 372 
Widmanstätten side-plates, 317 
Widmanstätten structures, 153,279,318 
Wulff construction, 115 




