


4.2.1 Factors Affecting Melting Points of Ceramics that are Predominantly
lonically Bonded
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Polarizing power of cation. High charge and small size increase the polarizing
power of cations. Over the years many functions have been proposed to
quantify the effect, and one of the simplest is to define the ionic potential
of a cation as:
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where z* is the charge on the cation and r its radius. The ionic powers of a
few selected cations are listed in Table 4.2, where it i1s clear that high
charge and small size greatly enhance ¢ and consequently the covalent
character of the bond.

To illustrate compare MgO and Al,Oz. On the basis of ionic charge
alone, one would expect the melting point of Al,O; (+3, —2) to be higher
than that of MgO (—2. +2), and yet the reverse is observed. However.
based on the relative polarizing power of A" and Mg”". it is reasonable
to conclude that the covalent character of the AlI-O bond is greater than



4.3 Thermal Expansion

It is well known that solids expand upon heating. The extent of the
expansion is characterized by a coefficient of linear expansion o, defined as
the fractional change in length with change in temperature at constant
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where /, 1s the original length.

The origin of thermal expansion can be traced to the anharmonicity or
asymmetry of the energy distance curve described in Chap. 2 and reproduced
in Fig. 4.3. The asymmetry of the curve expresses the fact that it is easier to
pull two atoms apart than to push them together. At 0K, the total energy of
the atoms is potential, and the atoms are sitting at the bottom of the well
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4.4 Young’s Modulus and the Strength of Perfect Solids

In addition to understanding the behavior of ceramics exposed to thermal
energy, it is important to understand their behavior when they are subjected
to an external load or stress. The objective of this section is to interrelate the
shape of the energy versus distance curve E(r), discussed in Chap. 2, to
the elastic modulus, which is a measure of the stiffness of a material and
the theoretical strength of that material. To accomplish this goal. one
needs to examine the forces F(r) that develop between atoms as a result of
externally applied stresses. As noted in Sec. 2.4, F(r) is defined as

_ dE(r)
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F(r)

From the general shape of the E(r) curve, one can easily sketch the shape of a
typical force versus distance curve, as shown in Fig. 4.6. The following salient
features are noteworthy:

e The net force between the atoms or ions is zero at equilibrium, i.e., atr = r,.

e Pulling the atoms apart results in the development of an attractive restoring
force between them that tends to pull them back together. The opposite is
true if one tries to push the atoms together.

» In the region around r = ry the response can be considered, to a very good
approximation, linear (inset in Fig. 4.6). In other words, the atoms act as if
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Figure 4.6 Typical force—distance curve. Slope of line going through ry is the stiffness of
the bond §j,. It is assumed in this construction that the maximum force is related to the
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ag=Ye (4.4)

where ¥ is Young’s modulus and ¢ is the strain experienced by the matenal.
defined as

e=tlo (4.5)

Here L is the length under the applied stress, and L, is the original length.
Refer once more to the force/distance curve shown in Fig. 4.6. In the
vicinity of ry, the following approximation can be made:

F = Sy(r —rp) (4.6)
where S, is the stiffiness of the bond, defined as
dF
= | — 4.7
So ( r )r:rn. (4.7)
Note that Eq. (4.6) is nothing but an expression for the extension of a linear

spring.

Dividing Eq. (4.6) by rj and noting that F fr% is approximately the stress
on the bond, while (r — ry)/rg is the strain on the bond, and comparing the
resulting expression with Eq. (4.4), one can see immediately that

ro (4.8)

Theoretical strengths of solids

The next task is to estimate the theoretical strength of a solid or the stress that
would be required to simultaneously break all the bonds across a fracture
plane. It can be shown (see Prob. 4.2) that typically most bonds will fail
when they are stretched by about 25%, 1.e., when rg; = 1.25r,. It follows
from the geometric construction shown in Fig. 4.6 that

ZF[TH!?{ ~ 2qu:¢

Sy ~ ~ 4.10
Ot~ 1.25r5 — 1y (4-10)
Dividing both sides of this equation by r, and noting that
F .
rf;_a" ~ Tmax (4.11)
"o
1.e.. the force divided by the area over which it operates, one obtains
Y
Tmax g (4.12)



4.5 Surface Energy

The surface energy + of a solid is the amount of energy needed to create a
unit area of new surface. The process can be pictured as shown in Fig. 4.7a.
where two new surfaces are created by cutting a solid in two. Given this

simple picture, the surface energy is simply the product of the number of

bonds N, broken per unit area of crystal surface and the energy per bond
Ebond* or

Y= NH'E['IUI'Id [415}

For the sake of simplicity, only first-neighbor interactions will be considered
here, which implies that Ey,4 is given by Eq. (2.15). Also note that since N,
is a function of crystallography, it follows that ~ 1s also a function of
crystallography.

To show how to calculate surface energies by starting with Eq. (4.15).
consider cleaving a rock salt crystal along its (100) plane.*! shown in
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Figure 4.7 (a) The creation of new surface entails the breaking of bonds across that
surface. (b) Structure of (100) plane in the rock salt structure. (¢) Structure of (110)
plane in same structure. Note that the coordination number of ions in this plane 1s 2.
which implies that to create a (110) plane. only two bonds per ion would have to be broken.



Experimental Details
Melting points

Several methods can be used to measure the melting point of solids. One of
the simplest is probably to use a differential thermal analyser (DTA for short).
The basic arrangement of a differential thermal analyser is simple and is
shown schematically in Fig. 4.8a. The sample and an inert reference (usually
alumina powder) are placed side by side in a furnace, and identical thermo-
couples are placed below each. The temperature of the furnace is then slowly
ramped, and the difference in temperature AT = Tmpie — Trer 1s measured
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Figure 4.8 (a) Schematic of DTA setup. (b) Typical DTA traces upon heating (bottom
curve) and cooling (top curve).



Kkroger—Vink notation

CaCl, = Cal, + Vi, + 2CI&,
2MaCl

CaCl, = Cay, + CI} + Clgy
MNa(l
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Figure 6.5 Bookkeeping technique for impurity incorporation reactions. (a) CaCl, in
NaCl leaves a vacancy on cation sublattice. (#) An alternate reaction is for the extra CI
ion to go interstitial. This reaction is unlikely, however, given the large size of the Cl
ion. (¢) Al Oy in MgO creates a vacancy on the cation sublattice. (/) MgO in Al,O, creates
a vacancy on the anion sublattice.

created does not change the regular site ratios of the host crystal (interstitial sites
are not considered regular sites).
EXAMPLE 2
Doping MgO with Al,O; (Fig. 6.5¢):
Al,O4 o 2AlY, + Vi, + 306

EXAMPLE 3
Doping Al,O; with MgO (Fig. 6.54), one possible incorporation reaction is
2MgO =, Mgl + Vi + 205



